1
|
Fjeld K, Gravdal A, Brekke RS, Alam J, Wilhelm SJ, El Jellas K, Pettersen HN, Lin J, Solheim MH, Steine SJ, Johansson BB, Njølstad PR, Verbeke CS, Xiao X, Lowe ME, Molven A. The genetic risk factor CEL-HYB1 causes proteotoxicity and chronic pancreatitis in mice. Pancreatology 2022; 22:1099-1111. [PMID: 36379850 PMCID: PMC11157984 DOI: 10.1016/j.pan.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND & AIMS The CEL gene encodes the digestive enzyme carboxyl ester lipase. CEL-HYB1, a hybrid allele of CEL and its adjacent pseudogene CELP, is a genetic variant suggested to increase the risk of chronic pancreatitis (CP). Our aim was to develop a mouse model for CEL-HYB1 that enables studies of pancreatic disease mechanisms. METHODS We established a knock-in mouse strain where the variable number of tandem repeat (VNTR) region of the endogenous mouse Cel gene was substituted with the mutated VNTR of the human CEL-HYB1 allele. Heterozygous and homozygous Cel-HYB1 mice and littermate wildtype controls were characterized with respect to pancreatic pathology and function. RESULTS We successfully constructed a mouse model with pancreatic expression of a humanized CEL-HYB1 protein. The Cel-HYB1 mice spontaneously developed features of CP including inflammation, acinar atrophy and fatty replacement, and the phenotype became more pronounced as the animals aged. Moreover, Cel-HYB1 mice were normoglycemic at age 6 months, whereas at 12 months they exhibited impaired glucose tolerance. Immunostaining of pancreatic tissue indicated the formation of CEL protein aggregates, and electron microscopy showed dilated endoplasmic reticulum. Upregulation of the stress marker BiP/GRP78 was seen in pancreatic parenchyma obtained both from Cel-HYB1 animals and from a human CEL-HYB1 carrier. CONCLUSIONS We have developed a new mouse model for CP that confirms the pathogenicity of the human CEL-HYB1 variant. Our findings place CEL-HYB1 in the group of genes that increase CP risk through protein misfolding-dependent pathways.
Collapse
Affiliation(s)
- Karianne Fjeld
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
| | - Anny Gravdal
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ranveig S Brekke
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Jahedul Alam
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway
| | - Steven J Wilhelm
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Khadija El Jellas
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway
| | - Helene N Pettersen
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway
| | - Jianguo Lin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Marie H Solheim
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway
| | - Solrun J Steine
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Bente B Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway
| | - Pål R Njølstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Pediatric and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Caroline S Verbeke
- Department of Pathology, Oslo University Hospital Rikshospitalet, Oslo, Norway; Department of Pathology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Xunjun Xiao
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mark E Lowe
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Anders Molven
- The Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway; Section for Cancer Genomics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Kawamoto M, Yoshida T, Tamura K, Dbouk M, Canto MI, Burkhart R, He J, Roberts NJ, Klein AP, Goggins M. Endoplasmic stress-inducing variants in carboxyl ester lipase and pancreatic cancer risk. Pancreatology 2022; 22:959-964. [PMID: 35995657 PMCID: PMC9669157 DOI: 10.1016/j.pan.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/04/2022] [Accepted: 08/07/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress-inducing variants in several pancreatic secretory enzymes have been associated with pancreatic disease. Multiple variants in CEL, encoding carboxyl ester lipase, are known to cause maturity-onset diabetes of the young (MODY8) but have not been implicated in pancreatic cancer risk. METHODS The prevalence of ER stress-inducing variants in the CEL gene was compared among pancreatic cancer cases vs. controls. Variants were identified by next-generation sequencing and confirmed by Sanger sequencing. Variants of uncertain significance (VUS) were assessed for their effect on the secretion of CEL protein and variants with reduced protein secretion were evaluated to determine if they induced endoplasmic reticulum stress. RESULTS ER stress-inducing CEL variants were found in 34 of 986 cases with sporadic pancreatic ductal adenocarcinoma, and 21 of 1045 controls (P = 0.055). Most of the variants were either the CEL-HYB1 variant, the I488T variant, or the combined CEL-HYB1/I488T variant; one case had a MODY8 variant. CONCLUSION This case/control analysis finds ER stress-inducing CEL variants are not associated with an increased likelihood of having pancreatic cancer.
Collapse
Affiliation(s)
- Makoto Kawamoto
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Takeichi Yoshida
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Koji Tamura
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Mohamad Dbouk
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Marcia Irene Canto
- Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Jin He
- Surgery, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Nicholas J Roberts
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Alison P Klein
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; The Sol Goldman Pancreatic Cancer Research Center, And the Bloomberg School of Public Health, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Michael Goggins
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Medicine, Johns Hopkins Medical Institutions, Baltimore, MD, USA; Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, USA.
| |
Collapse
|
3
|
Mohindroo C, De Jesus-Acosta A, Yurgelun MB, Maitra A, Mork M, McAllister F. The Evolving Paradigm of Germline Testing in Pancreatic Ductal Adenocarcinoma and Implications for Clinical Practice. Surg Pathol Clin 2022; 15:491-502. [PMID: 36049831 DOI: 10.1016/j.path.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Identification of deleterious germline mutations in pancreatic ductal adenocarcinoma (PDAC) patients can have therapeutic implications for the patients and result in cascade testing and prevention in their relatives. Universal testing for germline mutations is now considered standard of care in patients with PDAC, regardless of family history, personal history, or age. Here, we highlight the commonly identified germline mutations in PDAC patients as well as the impact of multigene panel testing. We further discuss therapeutic implications of germline testing on the index cases, and the impact of cascade testing on cancer early detection and prevention in relatives.
Collapse
Affiliation(s)
- Chirayu Mohindroo
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 1360, Houston, TX 77030, USA; Department of Internal Medicine, Sinai Hospital of Baltimore, 2435 W. Belvedere Ave, Ste 56, Baltimore, MD 21215, USA
| | - Ana De Jesus-Acosta
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 401 North Broadway, Baltimore, MD 21231, USA
| | - Matthew B Yurgelun
- Department of Medical Oncology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, 2130 West Holcombe Boulevard, Houston, TX 77030, USA
| | - Maureen Mork
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030, USA
| | - Florencia McAllister
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Unit 1360, Houston, TX 77030, USA; Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, 1515 Holcombe, Houston, TX 77030, USA; Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
4
|
Mao XT, Deng SJ, Kang RL, Wang YC, Li ZS, Zou WB, Liao Z. Homozygosity of short VNTR lengths in the CEL gene may confer susceptibility to idiopathic chronic pancreatitis. Pancreatology 2021; 21:1311-1316. [PMID: 34507899 DOI: 10.1016/j.pan.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The carboxyl-ester lipase (CEL) gene contains a variable number of tandem repeats (VNTR) region. It remains unclear whether the number of repeats in the CEL VNTR is related to the risk of pancreatic diseases. The aim of this study was to investigate whether CEL VNTR length is associated with idiopathic chronic pancreatitis (ICP), alcoholic chronic pancreatitis (ACP), or pancreatic cancer in a cohort of Chinese patients. METHODS CEL VNTRs were genotyped in patients diagnosed with ICP (n = 771), ACP (n = 222), or pancreatic cancer (n = 263), and in healthy controls (n = 927). CEL VNTR lengths were determined using a screening method combining PCR and DNA fragment analysis. RESULTS Overall, the CEL VNTR lengths ranged from 5 to 22 repeats, with the 16-repeat allele ('normal' size, N) accounting for 73.82% of all observed alleles. The VNTR allele frequencies and genotype distributions were not significantly different between healthy controls and patients with ACP or pancreatic cancer. For the ICP group, allele frequencies did not differ significantly from the controls, while the frequency of the SS genotype (homozygosity for 5-15 repeats) was significantly higher in the patients (4.67%) than in the controls (1.94%) (p = 0.0014; OR = 2.47; 95% CI = 1.39-4.39). CONCLUSIONS There were no associations between the CEL VNTR length and ACP or pancreatic cancer. However, homozygosity for short VNTR lengths may confer susceptibility to ICP.
Collapse
Affiliation(s)
- Xiao-Tong Mao
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Shun-Jiang Deng
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | | | - Yuan-Chen Wang
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Zhao-Shen Li
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Wen-Bin Zou
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| | - Zhuan Liao
- Department of Gastroenterology, Digestive Endoscopy Center, Changhai Hospital, The Second Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China.
| |
Collapse
|
5
|
Greenhalf W, Lévy P, Gress T, Rebours V, Brand RE, Pandol S, Chari S, Jørgensen MT, Mayerle J, Lerch MM, Hegyi P, Kleeff J, Castillo CFD, Isaji S, Shimosegawa T, Sheel A, Halloran CM, Garg P, Takaori K, Besselink MG, Forsmark CE, Wilcox CM, Maisonneuve P, Yadav D, Whitcomb D, Neoptolemos J. International consensus guidelines on surveillance for pancreatic cancer in chronic pancreatitis. Recommendations from the working group for the international consensus guidelines for chronic pancreatitis in collaboration with the International Association of Pancreatology, the American Pancreatic Association, the Japan Pancreas Society, and European Pancreatic Club. Pancreatology 2020; 20:910-918. [PMID: 32624419 DOI: 10.1016/j.pan.2020.05.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Patients with chronic pancreatitis (CP) have an increased risk of pancreatic cancer. We present the international consensus guidelines for surveillance of pancreatic cancer in CP. METHODS The international group evaluated 10 statements generated from evidence on 5 questions relating to pancreatic cancer in CP. The GRADE approach was used to evaluate the level of evidence available per statement. The working group voted on each statement for strength of agreement, using a nine-point Likert scale in order to calculate Cronbach's alpha reliability coefficient. RESULTS In the following domains there was strong consensus: (1) the risk of pancreatic cancer in affected individuals with hereditary pancreatitis due to inherited PRSS1 mutations is high enough to justify surveillance; (2) the risk of pancreatic cancer in patients with CP associated with SPINK1 p. N34S is not high enough to justify surveillance; (3) surveillance should be undertaken in pancreatic specialist centers; (4) surveillance should only be introduced after the age of 40 years and stopped when the patient would no longer be suitable for surgical intervention. All patients with CP should be advised to lead a healthy lifestyle aimed at avoiding risk factors for progression of CP and pancreatic cancer. There was only moderate or weak agreement on the best methods of screening and surveillance in other types of environmental, familial and genetic forms of CP. CONCLUSIONS Patients with inherited PRSS1 mutations should undergo surveillance for pancreatic cancer, but the best methods for cancer detection need further investigation.
Collapse
Affiliation(s)
- William Greenhalf
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Philippe Lévy
- Service de Pancréatologie-Gastroentérologie, Pôle des Maladies de l'Appareil Digestif, DHU UNITY, Hôpital Beaujon, APHP, 92118 Clichy Cedex, and Université Paris 7, France
| | - Thomas Gress
- Department of Gastroenterology, Endocrinology and Metabolism, University Hospital, Philipps-Universität Marburg, Marburg, Germany
| | - Vinciane Rebours
- Service de Pancréatologie-Gastroentérologie, Pôle des Maladies de l'Appareil Digestif, DHU UNITY, Hôpital Beaujon, APHP, 92118 Clichy Cedex, and Université Paris 7, France
| | - Randall E Brand
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, University of Pittsburgh Medical Center, 5200 Centre Avenue, Suite 409, Pittsburgh, PA, 15232, USA
| | - Steve Pandol
- Cedars-Sinai Medical Center, Los Angeles, CA, United States Veterans Affairs Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, CA, USA
| | - Suresh Chari
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU, Munich, Germany
| | - Markus M Lerch
- Department of Medicine A, University Medicine Greifswald, D-17475, Greifswald, Germany
| | - Péter Hegyi
- Institute for Translational Medicine &Department of Translational Medicine/1st Department of Medicine, Medical School, Pécs, H-7624, Hungary
| | - Jörg Kleeff
- Department of Surgery, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Shuiji Isaji
- Department of Surgery, Mie University Graduate School of Medicine, Japan.
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Andrea Sheel
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Christopher M Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Pramod Garg
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Kyoichi Takaori
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Marc G Besselink
- Department of Surgery, Amsterdam Gastroenterology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Chris E Forsmark
- Division of Gastroenterology, Hepatology, and Nutrition, University of Florida, Gainesville, FL, USA
| | | | - Patrick Maisonneuve
- Division of Epidemiology and Biostatistics, IEO European Institute of Oncology IRCCS, Milan, Italy.
| | - Dhiraj Yadav
- Department of Medicine University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - David Whitcomb
- Department of Medicine University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - John Neoptolemos
- Department of General Surgery, University of Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany.
| |
Collapse
|
6
|
El Jellas K, Johansson BB, Fjeld K, Antonopoulos A, Immervoll H, Choi MH, Hoem D, Lowe ME, Lombardo D, Njølstad PR, Dell A, Mas E, Haslam SM, Molven A. The mucinous domain of pancreatic carboxyl-ester lipase (CEL) contains core 1/core 2 O-glycans that can be modified by ABO blood group determinants. J Biol Chem 2018; 293:19476-19491. [PMID: 30315106 DOI: 10.1074/jbc.ra118.001934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/11/2018] [Indexed: 12/20/2022] Open
Abstract
Carboxyl-ester lipase (CEL) is a pancreatic fat-digesting enzyme associated with human disease. Rare mutations in the CEL gene cause a syndrome of pancreatic exocrine and endocrine dysfunction denoted MODY8, whereas a recombined CEL allele increases the risk for chronic pancreatitis. Moreover, CEL has been linked to pancreatic ductal adenocarcinoma (PDAC) through a postulated oncofetal CEL variant termed feto-acinar pancreatic protein (FAPP). The monoclonal antibody mAb16D10 was previously reported to detect a glycotope in the highly O-glycosylated, mucin-like C terminus of CEL/FAPP. We here assessed the expression of human CEL in malignant pancreatic lesions and cell lines. CEL was not detectably expressed in neoplastic cells, implying that FAPP is unlikely to be a glycoisoform of CEL in pancreatic cancer. Testing of the mAb16D10 antibody in glycan microarrays then demonstrated that it recognized structures containing terminal GalNAc-α1,3(Fuc-α1,2)Gal (blood group A antigen) and also repeated protein sequences containing GalNAc residues linked to Ser/Thr (Tn antigen), findings that were supported by immunostainings of human pancreatic tissue. To examine whether the CEL glycoprotein might be modified by blood group antigens, we used high-sensitivity MALDI-TOF MS to characterize the released O-glycan pool of CEL immunoprecipitated from human pancreatic juice. We found that the O-glycome of CEL consisted mainly of core 1/core 2 structures with a composition depending on the subject's FUT2 and ABO gene polymorphisms. Thus, among digestive enzymes secreted by the pancreas, CEL is a glycoprotein with some unique characteristics, supporting the view that it could serve additional biological functions to its cholesteryl esterase activity in the duodenum.
Collapse
Affiliation(s)
- Khadija El Jellas
- From the Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway.,Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway.,KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| | - Bente B Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Karianne Fjeld
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,Center for Medical Genetics, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Aristotelis Antonopoulos
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Heike Immervoll
- From the Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway.,Department of Pathology, Ålesund Hospital, N-6017 Ålesund, Norway
| | - Man H Choi
- From the Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway.,Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Dag Hoem
- Department of Gastrointestinal Surgery, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Mark E Lowe
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Dominique Lombardo
- INSERM, CRO2, Center for Research in Biological Oncology and Oncopharmacology, Aix-Marseille University, 13284 Marseille Cedex 07, France
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway.,Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Anne Dell
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Eric Mas
- INSERM, CRO2, Center for Research in Biological Oncology and Oncopharmacology, Aix-Marseille University, 13284 Marseille Cedex 07, France
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Anders Molven
- From the Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5020 Bergen, Norway, .,Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway.,KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
7
|
Abstract
OBJECTIVE The aim of this study was to evaluate the connection between pancreatic cancer (PC) and genetic variants associated with chronic pancreatitis via systematic review and meta-analysis. METHODS The data search was performed in 3 major databases (PubMed, Embase, and Cochrane Library). The selected studies have looked into the presence of the pancreatitis-associated genes in patients with PC and in control subjects, the outcome being the frequency of the mutations in the 2 groups. For the binary outcomes, pooled odds ratio (OR) and 95% confidence interval (CI) were calculated. RESULTS Ten articles proved to be eligible for the qualitative synthesis, and 8 articles were suitable for statistical analysis. Six case-control studies, comprising 929 PC cases and 1890 control subjects for serine protease inhibitor Kazal type 1 (SPINK1) mutations, and 5 case-control studies, comprising 1674 PC cases and 19,036 control subjects for CFTR mutations, were enrolled in our analysis. SPINK1 mutations showed no association with PC (OR, 1.52; 95% CI, 0.67-3.45; P = 0.315), whereas mutations in CFTR modestly increased the risk of PC (OR, 1.41; 95% CI, 1.07-1.84; P = 0.013). CONCLUSION Our meta-analysis showed that mutations in CFTR modestly increase the risk of PC, whereas no association was found between SPINK1 and PC.
Collapse
|
8
|
Ho J, Li X, Zhang L, Liang Y, Hu W, Yau JCW, Chan H, Gin T, Chan MTV, Tse G, Wu WKK. Translational genomics in pancreatic ductal adenocarcinoma: A review with re-analysis of TCGA dataset. Semin Cancer Biol 2018; 55:70-77. [PMID: 29705685 DOI: 10.1016/j.semcancer.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
Malignancy of the pancreas is a leading cause of cancer-related mortality, with the highest case-fatality of all cancers. Nevertheless, the lack of sensitive biomarkers and presence of biological heterogeneity precludes its early detection and effective treatment. The recent introduction of next-generation sequencing allows characterization of multiple driver mutations at genome- and exome-wide levels. Sequencing of DNA and RNA from circulating tumour cells has also opened an exciting era of non-invasive procedures for tumour detection and prognostication. This massively-parallel sequencing technology has uncovered the previously obscure molecular mechanisms, providing clues for better stratification of patients and identification of druggable targets for the disease. Identification of active oncogenic pathways and gene-gene interactions may reveal oncogene addiction and synthetic lethality. Relevant findings can be extrapolated to develop targeted and personalized therapeutic interventions. In addition to known mutational events, the role of chromosomal rearrangements in pancreatic neoplasms is gradually uncovered. Coupled with bioinformatics pipelines and epidemiological analyses, a better framework for risk stratification and prognostication of pancreatic cancer will be possible in the near future. In this review, we discuss how translational genomic studies facilitate our understanding of pathobiology, and development of novel diagnostics and therapeutics for pancreatic ductal adenocarcinoma with emphases on whole genome sequencing, whole exome sequencing, and liquid biopsies. We have also re-analyzed The Cancer Genome Atlas (TCGA) dataset to look for genetic features associated with altered survival in patients with pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jeffery Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Xianchun Li
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 00060, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Yonghao Liang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Hu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Johnny C W Yau
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Hung Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Tony Gin
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.
| | - Gary Tse
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
9
|
Mutations in the pancreatic secretory enzymes CPA1 and CPB1 are associated with pancreatic cancer. Proc Natl Acad Sci U S A 2018; 115:4767-4772. [PMID: 29669919 DOI: 10.1073/pnas.1720588115] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To evaluate whether germline variants in genes encoding pancreatic secretory enzymes contribute to pancreatic cancer susceptibility, we sequenced the coding regions of CPB1 and other genes encoding pancreatic secretory enzymes and known pancreatitis susceptibility genes (PRSS1, CPA1, CTRC, and SPINK1) in a hospital series of pancreatic cancer cases and controls. Variants in CPB1, CPA1 (encoding carboxypeptidase B1 and A1), and CTRC were evaluated in a second set of cases with familial pancreatic cancer and controls. More deleterious CPB1 variants, defined as having impaired protein secretion and induction of endoplasmic reticulum (ER) stress in transfected HEK 293T cells, were found in the hospital series of pancreatic cancer cases (5/986, 0.5%) than in controls (0/1,045, P = 0.027). Among familial pancreatic cancer cases, ER stress-inducing CPB1 variants were found in 4 of 593 (0.67%) vs. 0 of 967 additional controls (P = 0.020), with a combined prevalence in pancreatic cancer cases of 9/1,579 vs. 0/2,012 controls (P < 0.01). More ER stress-inducing CPA1 variants were also found in the combined set of hospital and familial cases with pancreatic cancer than in controls [7/1,546 vs. 1/2,012; P = 0.025; odds ratio, 9.36 (95% CI, 1.15-76.02)]. Overall, 16 (1%) of 1,579 pancreatic cancer cases had an ER stress-inducing CPA1 or CPB1 variant, compared with 1 of 2,068 controls (P < 0.00001). No other candidate genes had statistically significant differences in variant prevalence between cases and controls. Our study indicates ER stress-inducing variants in CPB1 and CPA1 are associated with pancreatic cancer susceptibility and implicate ER stress in pancreatic acinar cells in pancreatic cancer development.
Collapse
|
10
|
Johansson BB, Fjeld K, El Jellas K, Gravdal A, Dalva M, Tjora E, Ræder H, Kulkarni RN, Johansson S, Njølstad PR, Molven A. The role of the carboxyl ester lipase (CEL) gene in pancreatic disease. Pancreatology 2018; 18:12-19. [PMID: 29233499 DOI: 10.1016/j.pan.2017.12.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 12/11/2022]
Abstract
The enzyme carboxyl ester lipase (CEL), also known as bile salt-dependent or -stimulated lipase (BSDL, BSSL), hydrolyzes dietary fat, cholesteryl esters and fat-soluble vitamins in the duodenum. CEL is mainly expressed in pancreatic acinar cells and lactating mammary glands. The human CEL gene resides on chromosome 9q34.3 and contains a variable number of tandem repeats (VNTR) region that encodes a mucin-like protein tail. Although the number of normal repeats does not appear to significantly influence the risk for pancreatic disease, single-base pair deletions in the first VNTR repeat cause a syndrome of endocrine and exocrine dysfunction denoted MODY8. Hallmarks are low fecal elastase levels and pancreatic lipomatosis manifesting before the age of twenty, followed by development of diabetes and pancreatic cysts later in life. The mutant protein forms intracellular and extracellular aggregates, suggesting that MODY8 is a protein misfolding disease. Recently, a recombined allele between CEL and its pseudogene CELP was discovered. This allele (CEL-HYB) encodes a chimeric protein with impaired secretion increasing five-fold the risk for chronic pancreatitis. The CEL gene has proven to be exceptionally polymorphic due to copy number variants of the CEL-CELP locus and alterations involving the VNTR. Genome-wide association studies or deep sequencing cannot easily pick up this wealth of genetic variation. CEL is therefore an attractive candidate gene for further exploration of links to pancreatic disease.
Collapse
Affiliation(s)
- Bente B Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Karianne Fjeld
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Khadija El Jellas
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Anny Gravdal
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Monica Dalva
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Erling Tjora
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Helge Ræder
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Rohit N Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anders Molven
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Pathology, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
11
|
Abstract
OBJECTIVES Presentation of pancreatic adenocarcinoma (PC) as acute pancreatitis (AP), association of chronic pancreatitis (CP) with PC, and role of inflammation in PC carcinogenesis are well recognized. We hypothesized that inflammatory changes associated with remote history of AP (≥2 years before PC diagnosis) would result in earlier age of PC diagnosis. METHODS We evaluated PC patients prospectively enrolled in the Pancreatic Adenocarcinoma Gene Environment Risk (PAGER) study at the University of Pittsburgh for history of pancreatitis and reviewed relevant medical records and imaging studies. Univariate and multivariable linear regression analyses evaluated the relationship between PC and remote history of AP. RESULTS Among 790 patients with histologically confirmed PC, 114 (14.4%) had a history of pancreatitis (AP within 2 years of PC diagnosis in 69 [8.7%], remote history of AP in 28 [3.5%], CP in 4 [0.5%], and unknown duration of pancreatitis in 13 [1.6%]). After controlling for age, sex, body mass index, smoking, alcohol history, and diabetic status at diagnosis, patients with a remote history of AP were diagnosed on average 4.7 years earlier with PC when compared with PC patients without history of AP (P < 0.035). CONCLUSIONS Remote history of AP may accelerate carcinogenesis in PC.
Collapse
|