1
|
Fu Q, Luo Y, Li J, Zhang P, Tang S, Song X, Fu J, Liu M, Mo R, Wei M, Li H, Liu X, Wang T, Ni G. Improving the efficacy of cancer immunotherapy by host-defence caerin 1.1 and 1.9 peptides. Hum Vaccin Immunother 2024; 20:2385654. [PMID: 39193797 PMCID: PMC11364082 DOI: 10.1080/21645515.2024.2385654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Cancer remains a major global health challenge. Immunotherapy has revolutionized the management of cancer, yet only a limited number of patients respond to such treatments. This is largely attributed to the immunosuppressive tumor microenvironment, which diminishes the effectiveness of immunotherapy. Recent studies have underscored the potential of naturally derived caerin 1 peptides, particularly caerin 1.1 and caerin 1.9, which exhibit strong antitumor effects and enhance the efficacy of immunotherapies in animal models. This review encapsulates the current research aimed at augmenting the effectiveness of immunotherapy, focusing on the role of caerin 1.1 and caerin 1.9 in boosting immunotherapeutic outcomes, elucidating possible mechanisms, and discussing their limitations and challenges.
Collapse
Affiliation(s)
- Quanlan Fu
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Yuandong Luo
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Junjie Li
- R&D Department, Zhongao Bio-pharmaceutical Technology Co., Ltd., Zhongshan, Guangdong Province, China
| | - Pingping Zhang
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Shuxian Tang
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Xinyi Song
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiawei Fu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Mengqi Liu
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Rongmi Mo
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ming Wei
- School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, Australia
| | - Xiaosong Liu
- R&D Department, Zhongao Bio-pharmaceutical Technology Co., Ltd., Zhongshan, Guangdong Province, China
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, Australia
| | - Guoying Ni
- R&D Department, Zhongao Bio-pharmaceutical Technology Co., Ltd., Zhongshan, Guangdong Province, China
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Grundy EE, Shaw LC, Wang L, Lee AV, Argueta JC, Powell DJ, Ostrowski M, Jones RB, Cruz CRY, Gordish-Dressman H, Chappell NP, Bollard CM, Chiappinelli KB. A T cell receptor specific for an HLA-A*03:01-restricted epitope in the endogenous retrovirus ERV-K-Env exhibits limited recognition of its cognate epitope. Mob DNA 2024; 15:19. [PMID: 39385229 PMCID: PMC11462856 DOI: 10.1186/s13100-024-00333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024] Open
Abstract
Transposable elements (TEs) are often expressed at higher levels in tumor cells than normal cells, implicating these genomic regions as an untapped pool of tumor-associated antigens. In ovarian cancer (OC), protein from the TE ERV-K is frequently expressed by tumor cells. Here we determined whether the targeting of previously identified epitope in the envelope gene (env) of ERV-K resulted in target antigen specificity against cancer cells. We found that transducing healthy donor T cells with an ERV-K-Env-specific T cell receptor construct resulted in antigen specificity only when co-cultured with HLA-A*03:01 B lymphoblastoid cells. Furthermore, in vitro priming of several healthy donors with this epitope of ERV-K-Env did not result in target antigen specificity. These data suggest that the T cell receptor is a poor candidate for targeting this specific ERV-K-Env epitope and has limited potential as a T cell therapy for OC.
Collapse
Affiliation(s)
- Erin E Grundy
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
| | - Lauren C Shaw
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, Perelman School of Medicine, Ovarian Cancer Research Center, The University of Pennsylvania, Philadelphia, PA, USA
| | - Loretta Wang
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
| | - Abigail V Lee
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
| | - James Castro Argueta
- The George Washington School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Daniel J Powell
- Department of Pathology and Laboratory Medicine, Center for Cellular Immunotherapies, Perelman School of Medicine, Ovarian Cancer Research Center, The University of Pennsylvania, Philadelphia, PA, USA
| | - Mario Ostrowski
- Department of Medicine, University of Toronto, Toronto, Canada
| | - R Brad Jones
- Weill Cornell Medicine Graduate School of Medical Sciences, New York, NY, USA
| | - C Russell Y Cruz
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
- Center for Cancer and Immunology, , Children's National Hospital, Washington, DC, United States
| | - Heather Gordish-Dressman
- The George Washington School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
- The Center for Translational Research, Children's National Hospital, Washington, DC, USA
| | | | - Catherine M Bollard
- The George Washington University Cancer Center, Washington, DC, USA
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA
- Center for Cancer and Immunology, , Children's National Hospital, Washington, DC, United States
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, USA.
- The George Washington University Cancer Center, Washington, DC, USA.
- The Integrated Biomedical Sciences at the George Washington University, Washington, DC, USA.
| |
Collapse
|
3
|
Esteller M, Dawson MA, Kadoch C, Rassool FV, Jones PA, Baylin SB. The Epigenetic Hallmarks of Cancer. Cancer Discov 2024; 14:1783-1809. [PMID: 39363741 DOI: 10.1158/2159-8290.cd-24-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 10/05/2024]
Abstract
Cancer is a complex disease in which several molecular and cellular pathways converge to foster the tumoral phenotype. Notably, in the latest iteration of the cancer hallmarks, "nonmutational epigenetic reprogramming" was newly added. However, epigenetics, much like genetics, is a broad scientific area that deserves further attention due to its multiple roles in cancer initiation, progression, and adaptive nature. Herein, we present a detailed examination of the epigenetic hallmarks affected in human cancer, elucidating the pathways and genes involved, and dissecting the disrupted landscapes for DNA methylation, histone modifications, and chromatin architecture that define the disease. Significance: Cancer is a disease characterized by constant evolution, spanning from its initial premalignant stages to the advanced invasive and disseminated stages. It is a pathology that is able to adapt and survive amidst hostile cellular microenvironments and diverse treatments implemented by medical professionals. The more fixed setup of the genetic structure cannot fully provide transformed cells with the tools to survive but the rapid and plastic nature of epigenetic changes is ready for the task. This review summarizes the epigenetic hallmarks that define the ecological success of cancer cells in our bodies.
Collapse
Affiliation(s)
- Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, Australia
| | - Cigall Kadoch
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Feyruz V Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
| | - Stephen B Baylin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, Michigan
- Department of Oncology, The Johns Hopkins School of Medicine, The Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland
| |
Collapse
|
4
|
Li S, Liang X, Shao Q, Wang G, Huang Y, Wen P, Jiang D, Zeng X. Research hotspots and trends of epigenetic therapy in oncology: a bibliometric analysis from 2004 to 2023. Front Pharmacol 2024; 15:1465954. [PMID: 39329125 PMCID: PMC11424529 DOI: 10.3389/fphar.2024.1465954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Background Epigenetics denotes heritable alterations in gene expression patterns independent of changes in DNA sequence. Epigenetic therapy seeks to reprogram malignant cells to a normal phenotype and has been extensively investigated in oncology. This study conducts a bibliometric analysis of epigenetic therapy in cancer, providing a comprehensive overview of current research, identifying trends, and highlighting key areas of investigation. Methods Publications concerning epigenetic inhibitors in cancer spanning 2004 to 2023 were retrieved from the Web of Science Core Collection (WoSCC). Co-occurrence analysis using VOSviewer assessed current status and focal points. Evolutionary trends and bursts in the knowledge domain were analyzed using CiteSpace. Bibliometrix facilitated topic evolution and revealed trends in keywords. National, institutional, and author affiliations and collaborations were also examined. Results A total of 2,153 articles and reviews on epigenetic therapy in oncology were identified, demonstrating a consistent upward trend over time. The United States (745 papers), University of Texas MD Anderson Cancer Center (57 papers), and Stephen B. Baylin (27 papers) emerged as the most productive country, institution, and author, respectively. Keyword co-occurrence analysis identified five primary clusters: tumor, DNA methylation, epigenetic therapy, expression, and immunotherapy. In the past 5 years, newly emerging themes with increased centrality and density include "drug resistance," "immunotherapy," and "combination therapy." The most cited publication reviewed current understanding of potential causes of epigenetic diseases and proposed future therapeutic strategies. Conclusion In the past two decades, the importance of epigenetic therapy in cancer research has become increasingly prominent. The United States occupies a key position in this field, while China, despite having published a large number of related papers, still has relatively limited influence. Current research focuses on the "combination therapy" of epigenetic drugs. Future studies should further explore the sequencing and scheduling of combination therapies, optimize trial designs and dosing regimens to improve clinical efficacy.
Collapse
Affiliation(s)
- Sisi Li
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Xinrui Liang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Qing Shao
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Guanwen Wang
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
- Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University Cancer Hospital, Chongqing, China
| | - Yuxin Huang
- School of Medicine, Chongqing University, Chongqing, China
| | - Ping Wen
- School of Medicine, Chongqing University, Chongqing, China
| | - Dongping Jiang
- School of Medicine, Chongqing University, Chongqing, China
| | - Xiaohua Zeng
- Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
5
|
Hu Y, Zhang Y, Shi F, Yang R, Yan J, Han T, Guan L. Reversal of T-cell exhaustion: Mechanisms and synergistic approaches. Int Immunopharmacol 2024; 138:112571. [PMID: 38941674 DOI: 10.1016/j.intimp.2024.112571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
T cells suffer from long-term antigen stimulation and insufficient energy supply, leading to a decline in their effector functions, memory capabilities, and proliferative capacity, ultimately resulting in T cell exhaustion and an inability to perform normal immune functions in the tumor microenvironment. Therefore, exploring how to restore these exhausted T cells to a state with effector functions is of great significance. Exhausted T cells exhibit a spectrum of molecular alterations, such as heightened expression of inhibitory receptors, shifts in transcription factor profiles, and modifications across epigenetic, metabolic, and transcriptional landscapes. This review provides a comprehensive overview of various strategies to reverse T cell exhaustion, including immune checkpoint blockade, and explores the potential synergistic effects of combining multiple approaches to reverse T cell exhaustion. It offers new insights and methods for achieving more durable and effective reversal of T cell exhaustion.
Collapse
Affiliation(s)
- Yang Hu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Yaqi Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, China
| | - Fenfen Shi
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ruihan Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Jiayu Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang 453003, China.
| | - Liping Guan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
6
|
Bertoli RM, Chung YJ, Difilippantonio MJ, Wokasch A, Marasco MR, Klimaszewski H, Gammell S, Zhu YJ, Walker RL, Cao D, Khanna A, Walter MJ, Doroshow JH, Meltzer PS, Aplan PD. The DNA Methyltransferase Inhibitor 5-Aza-4'-thio-2'-Deoxycytidine Induces C>G Transversions and Acute Lymphoid Leukemia Development. Cancer Res 2024; 84:2518-2532. [PMID: 38832931 PMCID: PMC11293964 DOI: 10.1158/0008-5472.can-23-2785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/04/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
DNA methyltransferase inhibitors (DNMTi), most commonly cytidine analogs, are compounds that decrease 5'-cytosine methylation. DNMTi are used clinically based on the hypothesis that cytosine demethylation will lead to re-expression of tumor suppressor genes. 5-Aza-4'-thio-2'-deoxycytidine (Aza-TdCyd or ATC) is a recently described thiol-substituted DNMTi that has been shown to have anti-tumor activity in solid tumor models. In this study, we investigated the therapeutic potential of ATC in a murine transplantation model of myelodysplastic syndrome. ATC treatment led to the transformation of transplanted wild-type bone marrow nucleated cells into lymphoid leukemia, and healthy mice treated with ATC also developed lymphoid leukemia. Whole-exome sequencing revealed 1,000 acquired mutations, almost all of which were C>G transversions in a specific 5'-NCG-3' context. These mutations involved dozens of genes involved in human lymphoid leukemia, such as Notch1, Pten, Pax5, Trp53, and Nf1. Human cells treated in vitro with ATC showed 1,000 acquired C>G transversions in a similar context. Deletion of Dck, the rate-limiting enzyme for the cytidine salvage pathway, eliminated C>G transversions. Taken together, these findings demonstrate a highly penetrant mutagenic and leukemogenic phenotype associated with ATC. Significance: Treatment with a DNA methyltransferase inhibitor generates a distinct mutation signature and triggers leukemic transformation, which has important implications for the research and clinical applications of these inhibitors.
Collapse
Affiliation(s)
- Ryan M. Bertoli
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yang Jo Chung
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael J. Difilippantonio
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Anthony Wokasch
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Madison R.B. Marasco
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Haley Klimaszewski
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Susannah Gammell
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yuelin J. Zhu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Robert L. Walker
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Dengchao Cao
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ajay Khanna
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Matthew J. Walter
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - James H. Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Paul S. Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Peter D. Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD
| |
Collapse
|
7
|
Tseng YH, Pan SW, Huang JR, Lee CC, Hung JJ, Hsu PK, Chen NJ, Su WJ, Chen YM, Feng JY. Promoter methylation and increased expression of PD-L1 in patients with active tuberculosis. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:278. [PMID: 39081906 PMCID: PMC11287217 DOI: 10.15698/mic2024.07.832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024]
Abstract
The PD-1/PD-L1 pathway plays a pivotal role in T cell activity and is involved in the pathophysiology of Mycobacterium tuberculosis (MTB) infection. DNA methylation is a mechanism that modulates PD-L1 expression in cancer cells. However, its effect on PD-L1 expression in macrophages after MTB infection remains unknown. We prospectively enrolled patients with active tuberculosis (TB) and non-TB subjects. The expression of PD-L1 and methylation-related genes in peripheral blood mononuclear cells (PBMCs) were investigated and their correlation with disease severity and treatment outcomes were examined. PD-L1 promoter methylation status was evaluated using bisulfite sequencing. Immunohistochemistry (IHC) and immunofluorescence (IF) staining were used to visualize PD-L1- and TET-1-expressing cells in lung tissues from patients with TB and in macrophage cell lines with MTB-related stimulation. In total, 80 patients with active TB and 40 non-TB subjects were enrolled in the analysis. Patients with active TB had significantly higher expression of PD-L1, DNMT3b, TET1, TET2, and lower expression of DNMT1, compared to that in the non-TB subjects. The expression of PD-L1 and TET-1 was significantly associated with 1-month smear and culture non-conversion. IHC and IF staining demonstrated the co-localization of PD-L1- and TET-1-expressing macrophages in patients with pulmonary TB and in human macrophage cell lines after MTB-related stimulation. DNMT inhibition and TET-1 knockdown in human macrophages increased and decreased PD-L1 expression, respectively. Overall, PD-L1 expression is increased in patients with active TB and is correlated with treatment outcomes. DNA methylation is involved in modulating PD-L1 expression in human macrophages.
Collapse
Affiliation(s)
- Yen-Han Tseng
- Department of Chest Medicine, Taipei Veterans General HospitalTaipei, 112Taiwan
- School of Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
| | - Sheng-Wei Pan
- Department of Chest Medicine, Taipei Veterans General HospitalTaipei, 112Taiwan
- School of Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
- Institute of Public Health, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
| | - Jhong-Ru Huang
- School of Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
- Division of Chest Medicine, Department of Internal Medicine, Taichung Hospital, Ministry of Health and WelfareTaichungTaiwan
| | - Chang-Ching Lee
- Department of Chest Medicine, Taipei Veterans General HospitalTaipei, 112Taiwan
| | - Jung-Jyh Hung
- School of Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General HospitalTaipei, 112Taiwain
| | - Po-Kuei Hsu
- School of Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General HospitalTaipei, 112Taiwain
| | - Nien-Jung Chen
- Institute of Microbiology and Immunology, School of Life Sciences, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
| | - Wei-Juin Su
- School of Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
- Division of Chest Medicine, China Medical University Hospital, Taipei BranchTaipei, 114Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General HospitalTaipei, 112Taiwan
- School of Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General HospitalTaipei, 112Taiwan
- School of Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung UniversityTaipei, 112Taiwan
| |
Collapse
|
8
|
Chandra DJ, Alber B, Saultz JN. The Immune Resistance Signature of Acute Myeloid Leukemia and Current Immunotherapy Strategies. Cancers (Basel) 2024; 16:2615. [PMID: 39123343 PMCID: PMC11311077 DOI: 10.3390/cancers16152615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is a complex hematopoietic clonal disorder with limited curative options beyond stem cell transplantation. The success of transplant is intimately linked with the graft versus leukemia effect from the alloreactive donor immune cells including, T and NK cells. The immune system plays a dynamic role in leukemia survival and resistance. Despite our growing understanding of the immune microenvironment, responses to immune-based therapies differ greatly between patients. Herein, we review the biology of immune evasion mechanisms in AML, discuss the current landscape of immunotherapeutic strategies, and discuss the implications of therapeutic targets. This review focuses on T and NK cell-based therapy, including modified and non-modified NK cells, CAR-T and CAR-NK cells, antibodies, and checkpoint blockades. Understanding the complex interchange between immune tolerance and the emergence of tumor resistance will improve patient outcomes.
Collapse
Affiliation(s)
- Daniel J. Chandra
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA;
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Bernhard Alber
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Jennifer N. Saultz
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, OR 97239, USA;
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA;
| |
Collapse
|
9
|
Cristalli C, Scotlandi K. Targeting DNA Methylation Machinery in Pediatric Solid Tumors. Cells 2024; 13:1209. [PMID: 39056791 PMCID: PMC11275080 DOI: 10.3390/cells13141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
DNA methylation is a key epigenetic regulatory mechanism that plays a critical role in a variety of cellular processes, including the regulation of cell fate during development, maintenance of cell identity, and genome stability. DNA methylation is tightly regulated by enzymatic reactions and its deregulation plays an important role in the development of cancer. Specific DNA methylation alterations have been found in pediatric solid tumors, providing new insights into the development of these tumors. In addition, DNA methylation profiles have greatly contributed to tune the diagnosis of pediatric solid tumors and to define subgroups of patients with different risks of progression, leading to the reduction in unwanted toxicity and the improvement of treatment efficacy. This review highlights the dysregulated DNA methylome in pediatric solid tumors and how this information provides promising targets for epigenetic therapies, particularly inhibitors of DNMT enzymes (DNMTis). Opportunities and limitations are considered, including the ability of DNMTis to induce viral mimicry and immune signaling by tumors. Besides intrinsic action against cancer cells, DNMTis have the potential to sensitize immune-cold tumors to immunotherapies and may represent a remarkable option to improve the treatment of challenging pediatric solid tumors.
Collapse
Affiliation(s)
- Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| |
Collapse
|
10
|
Guo HZ, Feng RX, Zhang YJ, Yu YH, Lu W, Liu JJ, Yang SX, Zhao C, Zhang ZL, Yu SH, Jin H, Qian SX, Li JY, Zhu J, Shi J. A CD36-dependent non-canonical lipid metabolism program promotes immune escape and resistance to hypomethylating agent therapy in AML. Cell Rep Med 2024; 5:101592. [PMID: 38843841 PMCID: PMC11228649 DOI: 10.1016/j.xcrm.2024.101592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/05/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Environmental lipids are essential for fueling tumor energetics, but whether these exogenous lipids transported into cancer cells facilitate immune escape remains unclear. Here, we find that CD36, a transporter for exogenous lipids, promotes acute myeloid leukemia (AML) immune evasion. We show that, separately from its established role in lipid oxidation, CD36 on AML cells senses oxidized low-density lipoprotein (OxLDL) to prime the TLR4-LYN-MYD88-nuclear factor κB (NF-κB) pathway, and exogenous palmitate transfer via CD36 further potentiates this innate immune pathway by supporting ZDHHC6-mediated MYD88 palmitoylation. Subsequently, NF-κB drives the expression of immunosuppressive genes that inhibit anti-tumor T cell responses. Notably, high-fat-diet or hypomethylating agent decitabine treatment boosts the immunosuppressive potential of AML cells by hijacking CD36-dependent innate immune signaling, leading to a dampened therapeutic effect. This work is of translational interest because lipid restriction by US Food and Drug Administration (FDA)-approved lipid-lowering statin drugs improves the efficacy of decitabine therapy by weakening leukemic CD36-mediated immunosuppression.
Collapse
MESH Headings
- CD36 Antigens/metabolism
- CD36 Antigens/genetics
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Lipid Metabolism/drug effects
- Decitabine/pharmacology
- Decitabine/therapeutic use
- Lipoproteins, LDL/metabolism
- Animals
- NF-kappa B/metabolism
- Cell Line, Tumor
- Myeloid Differentiation Factor 88/metabolism
- Myeloid Differentiation Factor 88/genetics
- Mice
- Signal Transduction/drug effects
- Tumor Escape/drug effects
- Drug Resistance, Neoplasm/drug effects
- Toll-Like Receptor 4/metabolism
- Acyltransferases/genetics
- Immunity, Innate/drug effects
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- He-Zhou Guo
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China; Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Rui-Xue Feng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Yan-Jie Zhang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Ye-Hua Yu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Wei Lu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jia-Jia Liu
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shao-Xin Yang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Chong Zhao
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Zhao-Li Zhang
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shan-He Yu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China
| | - Hui Jin
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Si-Xuan Qian
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jian-Yong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| | - Jiang Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao-Tong University, Shanghai, China.
| | - Jun Shi
- Department of Hematology, Shanghai Ninth People's Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Grundy EE, Shaw LC, Wang L, Powell DJ, Ostrowski M, Jones RB, Cruz CRY, Gordish-Dressman H, Bollard CM, Chiappinelli KB. Limited Immunogenicity of an HLA-A*03:01-restricted Epitope of Erv-k-env in Non-hiv-1 Settings: Implications for Adoptive Cell Therapy in Cancer. RESEARCH SQUARE 2024:rs.3.rs-4432372. [PMID: 38854052 PMCID: PMC11160923 DOI: 10.21203/rs.3.rs-4432372/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Repetitive elements (REs) are often expressed at higher levels in tumor cells than normal cells, implicating these genomic regions as an untapped pool of tumor-associated antigens. In ovarian cancer (OC), protein from the RE ERV-K is frequently expressed by tumor cells. Here we determined whether the targeting of a previously identified immunogenic epitope in the envelope gene (env) of ERV-K resulted in target antigen specificity in non-HIV-1 settings. We found that transducing healthy donor T cells with an ERV-K-Env-specific T cell receptor construct resulted in antigen specificity only when co-cultured with HLA-A*03:01 B lymphoblastoid cells. Furthermore, these transduced T cells were not specific for HLA-A*03:01 + OC cells nor for the cognate peptide in HLA-matched systems from multiple healthy donors. These data suggest that the ERV-K-Env epitope recognized by this T cell receptor is of low immunogenicity and has limited potential as a T cell target for OC.
Collapse
Affiliation(s)
| | | | | | | | | | - R Brad Jones
- Weill Cornell Graduate School of Medical Medical Sciences
| | | | | | | | | |
Collapse
|
12
|
Yang X, Sun Y, Zhang H, Liu F, Chen Q, Shen Q, Kong Z, Wei Q, Shen JW, Guo Y. CaCO 3 nanoplatform for cancer treatment: drug delivery and combination therapy. NANOSCALE 2024; 16:6876-6899. [PMID: 38506154 DOI: 10.1039/d3nr05986c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The use of nanocarriers for drug delivery has opened up exciting new possibilities in cancer treatment. Among them, calcium carbonate (CaCO3) nanocarriers have emerged as a promising platform due to their exceptional biocompatibility, biosafety, cost-effectiveness, wide availability, and pH-responsiveness. These nanocarriers can efficiently encapsulate a variety of small-molecule drugs, proteins, and nucleic acids, as well as co-encapsulate multiple drugs, providing targeted and sustained drug release with minimal side effects. However, the effectiveness of single-drug therapy using CaCO3 nanocarriers is limited by factors such as multidrug resistance, tumor metastasis, and recurrence. Combination therapy, which integrates multiple treatment modalities, offers a promising approach for tackling these challenges by enhancing efficacy, leveraging synergistic effects, optimizing therapy utilization, tailoring treatment approaches, reducing drug resistance, and minimizing side effects. CaCO3 nanocarriers can be employed for combination therapy by integrating drug therapy with photodynamic therapy, photothermal therapy, sonodynamic therapy, immunotherapy, radiation therapy, radiofrequency ablation therapy, and imaging. This review provides an overview of recent advancements in CaCO3 nanocarriers for drug delivery and combination therapy in cancer treatment over the past five years. Furthermore, insightful perspectives on future research directions and development of CaCO3 nanoparticles as nanocarriers in cancer treatment are discussed.
Collapse
Affiliation(s)
- Xiaorong Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Yue Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Hong Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Fengrui Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Qin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhe Kong
- Center for Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yong Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
13
|
Chaudhri A, Lizee G, Hwu P, Rai K. Chromatin Remodelers Are Regulators of the Tumor Immune Microenvironment. Cancer Res 2024; 84:965-976. [PMID: 38266066 DOI: 10.1158/0008-5472.can-23-2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Immune checkpoint inhibitors show remarkable responses in a wide range of cancers, yet patients develop adaptive resistance. This necessitates the identification of alternate therapies that synergize with immunotherapies. Epigenetic modifiers are potent mediators of tumor-intrinsic mechanisms and have been shown to regulate immune response genes, making them prime targets for therapeutic combinations with immune checkpoint inhibitors. Some success has been observed in early clinical studies that combined immunotherapy with agents targeting DNA methylation and histone modification; however, less is known about chromatin remodeler-targeted therapies. Here, we provide a discussion on the regulation of tumor immunogenicity by the chromatin remodeling SWI/SNF complex through multiple mechanisms associated with immunotherapy response that broadly include IFN signaling, DNA damage, mismatch repair, regulation of oncogenic programs, and polycomb-repressive complex antagonism. Context-dependent targeting of SWI/SNF subunits can elicit opportunities for synthetic lethality and reduce T-cell exhaustion. In summary, alongside the significance of SWI/SNF subunits in predicting immunotherapy outcomes, their ability to modulate the tumor immune landscape offers opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Russo S, Feola S, Feodoroff M, Chiaro J, Antignani G, Fusciello M, D’Alessio F, Hamdan F, Pellinen T, Mölsä R, Tripodi L, Pastore L, Grönholm M, Cerullo V. Low-dose decitabine enhances the efficacy of viral cancer vaccines for immunotherapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200766. [PMID: 38596301 PMCID: PMC10869747 DOI: 10.1016/j.omton.2024.200766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/16/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024]
Abstract
Cancer immunotherapy requires a specific antitumor CD8+ T cell-driven immune response; however, upon genetic and epigenetic alterations of the antigen processing and presenting components, cancer cells escape the CD8+ T cell recognition. As a result, poorly immunogenic tumors are refractory to conventional immunotherapy. In this context, the use of viral cancer vaccines in combination with hypomethylating agents represents a promising strategy to prevent cancer from escaping immune system recognition. In this study, we evaluated the sensitivity of melanoma (B16-expressing ovalbumin) and metastatic triple-negative breast cancer (4T1) cell lines to FDA-approved low-dose decitabine in combination with PeptiCRAd, an adenoviral anticancer vaccine. The two models showed different sensitivity to decitabine in vitro and in vivo when combined with PeptiCRAd. In particular, mice bearing syngeneic 4T1 cancer showed higher tumor growth control when receiving the combinatorial treatment compared to single controls in association with a higher expression of MHC class I on cancer cells and reduction in Tregs within the tumor microenvironment. Furthermore, remodeling of the CD8+ T cell infiltration and cytotoxic activity toward cancer cells confirmed the effect of decitabine in enhancing anticancer vaccines in immunotherapy regimens.
Collapse
Affiliation(s)
- Salvatore Russo
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Sara Feola
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Michaela Feodoroff
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Gabriella Antignani
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Manlio Fusciello
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Federica D’Alessio
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University, 24 Federico II, 80131 Naples, Italy
| | - Firas Hamdan
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Teijo Pellinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Riikka Mölsä
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Lorella Tripodi
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University, 24 Federico II, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.a.r.l, 80131 Naples, Italy
| | - Lucio Pastore
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University, 24 Federico II, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore s.c.a.r.l, 80131 Naples, Italy
| | - Mikaela Grönholm
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research Program (DRP), ImmunoViroTherapy Lab (IVT), Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, 00790 Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, 00710 Helsinki, Finland
- Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
- Digital Precision Cancer Medicine Flagship (iCAN), University of Helsinki, 00014 Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Medical Biotechnology and CEINGE, Naples University, 24 Federico II, 80131 Naples, Italy
| |
Collapse
|
15
|
Ibrahim ML, Zheng H, Barlow ML, Latif Y, Chen Z, Yu X, Beg AA. Histone Deacetylase Inhibitors Directly Modulate T Cell Gene Expression and Signaling and Promote Development of Effector-Exhausted T Cells in Murine Tumors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:737-747. [PMID: 38169329 PMCID: PMC10872871 DOI: 10.4049/jimmunol.2300475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Epigenetic regulation plays a crucial role in the development and progression of cancer, including the regulation of antitumor immunity. The reversible nature of epigenetic modifications offers potential therapeutic avenues for cancer treatment. In particular, histone deacetylase (HDAC) inhibitors (HDACis) have been shown to promote antitumor T cell immunity by regulating myeloid cell types, enhancing tumor Ag presentation, and increasing expression of chemokines. HDACis are currently being evaluated to determine whether they can increase the response rate of immune checkpoint inhibitors in cancer patients. Although the potential direct effect of HDACis on T cells likely impacts antitumor immunity, little is known about how HDAC inhibition alters the transcriptomic profile of T cells. In this article, we show that two clinical-stage HDACis profoundly impact gene expression and signaling networks in CD8+ and CD4+ T cells. Specifically, HDACis promoted T cell effector function by enhancing expression of TNF-α and IFN-γ and increasing CD8+ T cell cytotoxicity. Consistently, in a murine tumor model, HDACis led to enrichment of CD8+ T cell subsets with high expression of effector molecules (Prf1, Ifng, Gzmk, and Grmb) but also molecules associated with T cell exhaustion (Tox, Pdcd1, Lag3, and Havcr2). HDACis further generated a tumor microenvironment dominated by myeloid cells with immune suppressive signatures. These results indicate that HDACis directly and favorably augment T cell effector function but also increase their exhaustion signal in the tumor microenvironment, which may add a layer of complexity for achieving clinical benefit in combination with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Mohammed L Ibrahim
- Department of Immunology, Moffitt Cancer Center, Tampa, FL
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hong Zheng
- Department of Immunology, Moffitt Cancer Center, Tampa, FL
| | | | - Yousuf Latif
- Department of Immunology, Moffitt Cancer Center, Tampa, FL
| | - Zhihua Chen
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL
| | - Amer A Beg
- Department of Immunology, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
16
|
Geissler F, Nesic K, Kondrashova O, Dobrovic A, Swisher EM, Scott CL, J. Wakefield M. The role of aberrant DNA methylation in cancer initiation and clinical impacts. Ther Adv Med Oncol 2024; 16:17588359231220511. [PMID: 38293277 PMCID: PMC10826407 DOI: 10.1177/17588359231220511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 02/01/2024] Open
Abstract
Epigenetic alterations, including aberrant DNA methylation, are now recognized as bone fide hallmarks of cancer, which can contribute to cancer initiation, progression, therapy responses and therapy resistance. Methylation of gene promoters can have a range of impacts on cancer risk, clinical stratification and therapeutic outcomes. We provide several important examples of genes, which can be silenced or activated by promoter methylation and highlight their clinical implications. These include the mismatch DNA repair genes MLH1 and MSH2, homologous recombination DNA repair genes BRCA1 and RAD51C, the TERT oncogene and genes within the P15/P16/RB1/E2F tumour suppressor axis. We also discuss how these methylation changes might occur in the first place - whether in the context of the CpG island methylator phenotype or constitutional DNA methylation. The choice of assay used to measure methylation can have a significant impact on interpretation of methylation states, and some examples where this can influence clinical decision-making are presented. Aberrant DNA methylation patterns in circulating tumour DNA (ctDNA) are also showing great promise in the context of non-invasive cancer detection and monitoring using liquid biopsies; however, caution must be taken in interpreting these results in cases where constitutional methylation may be present. Thus, this review aims to provide researchers and clinicians with a comprehensive summary of this broad, but important subject, illustrating the potentials and pitfalls of assessing aberrant DNA methylation in cancer.
Collapse
Affiliation(s)
- Franziska Geissler
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ksenija Nesic
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alexander Dobrovic
- University of Melbourne Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | | | - Clare L. Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
- Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Matthew J. Wakefield
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Aplan P, Bertoli R, Chung YJ, Difilippantonio M, Wokasch A, Marasco M, Klimaszewski H, Garber S, Zhu Y, Walker R, Cao D, Doroshow J, Meltzer P. 5-Aza-4'-thio-2'-deoxycytidine induces C>G transversions in a specific trinucleotide context and leads to acute lymphoid leukemia. RESEARCH SQUARE 2023:rs.3.rs-3186246. [PMID: 38168433 PMCID: PMC10760231 DOI: 10.21203/rs.3.rs-3186246/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
DNA methyltransferase inhibitors (DNMTi), most commonly cytidine analogs, are compounds that are used clinically to decrease 5'-cytosine methylation, with the aim of re-expression of tumor suppressor genes. We used a murine pre-clinical model of myelodysplastic syndrome based on transplantation of cells expressing a NUP98::HOXD13 transgene to investigate 5-Aza-4'-thio-2'-deoxycytidine (Aza TdCyd or ATC), a thiol substituted DNMTi, as a potential therapy. We found that ATC treatment led to lymphoid leukemia in wild-type recipient cells; further study revealed that healthy mice treated with ATC also developed lymphoid leukemia. Whole exome sequencing revealed thousands of acquired mutations, almost all of which were C > G transversions in a previously unrecognized, specific 5'-NCG-3' context. These mutations involved dozens of genes well-known to be involved in human lymphoid leukemia, such as Notch1, Pten, Pax5, Trp53 , and Nf1 . Treatment of human cells in vitro showed thousands of acquired C > G transversions in a similar context. Deletion of Dck , the rate-limiting enzyme for the cytidine salvage pathway, eliminated C > G transversions. Taken together, these findings demonstrate that DNMTi can be potent mutagens in human and mouse cells, both in vitro and in vivo .
Collapse
|
18
|
Stip MC, Teeuwen L, Dierselhuis MP, Leusen JHW, Krijgsman D. Targeting the myeloid microenvironment in neuroblastoma. J Exp Clin Cancer Res 2023; 42:337. [PMID: 38087370 PMCID: PMC10716967 DOI: 10.1186/s13046-023-02913-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Myeloid cells (granulocytes and monocytes/macrophages) play an important role in neuroblastoma. By inducing a complex immunosuppressive network, myeloid cells pose a challenge for the adaptive immune system to eliminate tumor cells, especially in high-risk neuroblastoma. This review first summarizes the pro- and anti-tumorigenic functions of myeloid cells, including granulocytes, monocytes, macrophages, and myeloid-derived suppressor cells (MDSC) during the development and progression of neuroblastoma. Secondly, we discuss how myeloid cells are engaged in the current treatment regimen and explore novel strategies to target these cells in neuroblastoma. These strategies include: (1) engaging myeloid cells as effector cells, (2) ablating myeloid cells or blocking the recruitment of myeloid cells to the tumor microenvironment and (3) reprogramming myeloid cells. Here we describe that despite their immunosuppressive traits, tumor-associated myeloid cells can still be engaged as effector cells, which is clear in anti-GD2 immunotherapy. However, their full potential is not yet reached, and myeloid cell engagement can be enhanced, for example by targeting the CD47/SIRPα axis. Though depletion of myeloid cells or blocking myeloid cell infiltration has been proven effective, this strategy also depletes possible effector cells for immunotherapy from the tumor microenvironment. Therefore, reprogramming of suppressive myeloid cells might be the optimal strategy, which reverses immunosuppressive traits, preserves myeloid cells as effectors of immunotherapy, and subsequently reactivates tumor-infiltrating T cells.
Collapse
Affiliation(s)
- Marjolein C Stip
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Loes Teeuwen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | | | - Jeanette H W Leusen
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands
| | - Daniëlle Krijgsman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX, Utrecht, The Netherlands.
- Center for Molecular Medicine, University Medical Center Utrecht, 3584 CX, Utrecht, the Netherlands.
| |
Collapse
|
19
|
Karlow JA, Pehrsson EC, Xing X, Watson M, Devarakonda S, Govindan R, Wang T. Non-small Cell Lung Cancer Epigenomes Exhibit Altered DNA Methylation in Smokers and Never-smokers. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:991-1013. [PMID: 37742993 PMCID: PMC10928376 DOI: 10.1016/j.gpb.2023.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 02/11/2023] [Accepted: 03/14/2023] [Indexed: 09/26/2023]
Abstract
Epigenetic alterations are widespread in cancer and can complement genetic alterations to influence cancer progression and treatment outcome. To determine the potential contribution of DNAmethylation alterations to tumor phenotype in non-small cell lung cancer (NSCLC) in both smoker and never-smoker patients, we performed genome-wide profiling of DNA methylation in 17 primary NSCLC tumors and 10 matched normal lung samples using the complementary assays, methylated DNA immunoprecipitation sequencing (MeDIP-seq) and methylation sensitive restriction enzyme sequencing (MRE-seq). We reported recurrent methylation changes in the promoters of several genes, many previously implicated in cancer, including FAM83A and SEPT9 (hypomethylation), as well as PCDH7, NKX2-1, and SOX17 (hypermethylation). Although many methylation changes between tumors and their paired normal samples were shared across patients, several were specific to a particular smoking status. For example, never-smokers displayed a greater proportion of hypomethylated differentially methylated regions (hypoDMRs) and a greater number of recurrently hypomethylated promoters, including those of ASPSCR1, TOP2A, DPP9, and USP39, all previously linked to cancer. Changes outside of promoters were also widespread and often recurrent, particularly methylation loss over repetitive elements, highly enriched for ERV1 subfamilies. Recurrent hypoDMRs were enriched for several transcription factor binding motifs, often for genes involved in signaling and cell proliferation. For example, 71% of recurrent promoter hypoDMRs contained a motif for NKX2-1. Finally, the majority of DMRs were located within an active chromatin state in tissues profiled using the Roadmap Epigenomics data, suggesting that methylation changes may contribute to altered regulatory programs through the adaptation of cell type-specific expression programs.
Collapse
Affiliation(s)
- Jennifer A Karlow
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Erica C Pehrsson
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mark Watson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Siddhartha Devarakonda
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramaswamy Govindan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA.
| |
Collapse
|
20
|
Huang C, Arbiser JL. MAVS is a double-edged sword. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:869-870. [PMID: 37680981 PMCID: PMC10481148 DOI: 10.1016/j.omtn.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Affiliation(s)
- Christina Huang
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jack L. Arbiser
- Metroderm/United Dermatology Partners, 875 Johnson Ferry Road, Atlanta, GA, USA
| |
Collapse
|
21
|
Kerdivel G, Amrouche F, Calmejane MA, Carallis F, Hamroune J, Hantel C, Bertherat J, Assié G, Boeva V. DNA hypermethylation driven by DNMT1 and DNMT3A favors tumor immune escape contributing to the aggressiveness of adrenocortical carcinoma. Clin Epigenetics 2023; 15:121. [PMID: 37528470 PMCID: PMC10394822 DOI: 10.1186/s13148-023-01534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/16/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Adrenocortical carcinoma is rare and aggressive endocrine cancer of the adrenal gland. Within adrenocortical carcinoma, a recently described subtype characterized by a CpG island methylator phenotype (CIMP) has been associated with an especially poor prognosis. However, the drivers of CIMP remain unknown. Furthermore, the functional relation between CIMP and poor clinical outcomes of patients with adrenocortical carcinoma stays elusive. RESULTS Here, we show that CIMP in adrenocortical carcinoma is linked to the increased expression of DNA methyltransferases DNMT1 and DNMT3A driven by a gain of gene copy number and cell hyperproliferation. Importantly, we demonstrate that CIMP contributes to tumor aggressiveness by favoring tumor immune escape. This effect could be at least partially reversed by treatment with the demethylating agent 5-azacytidine. CONCLUSIONS In sum, our findings suggest that co-treatment with demethylating agents might enhance the efficacy of immunotherapy and could represent a novel therapeutic approach for patients with high CIMP adrenocortical carcinoma.
Collapse
Affiliation(s)
- Gwenneg Kerdivel
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | - Floriane Amrouche
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | - Marie-Ange Calmejane
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | | | - Juliette Hamroune
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Jérôme Bertherat
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | - Guillaume Assié
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France
| | - Valentina Boeva
- INSERM, U1016, Cochin Institute, CNRS UMR8104, University of Paris, 24 rue du Faubourg Saint-Jacques, Paris, France.
- Department of Computer Science, Institute for Machine Learning, ETH Zurich, Universitätstrasse 6, 8092, Zurich, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Zurich, Switzerland.
| |
Collapse
|
22
|
Luke JJ, Fakih M, Schneider C, Chiorean EG, Bendell J, Kristeleit R, Kurzrock R, Blagden SP, Brana I, Goff LW, O'Hayer K, Geschwindt R, Smith M, Zhou F, Naing A. Phase I/II sequencing study of azacitidine, epacadostat, and pembrolizumab in advanced solid tumors. Br J Cancer 2023; 128:2227-2235. [PMID: 37087488 PMCID: PMC10241827 DOI: 10.1038/s41416-023-02267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/24/2023] Open
Abstract
BACKGROUND Indoleamine 2,3-dioxygenase 1 (IDO1), an interferon-inducible enzyme, contributes to tumor immune intolerance. Immune checkpoint inhibition may increase interferon levels; combining IDO1 inhibition with immune checkpoint blockade represents an attractive strategy. Epigenetic agents trigger interferon responses and may serve as an immunotherapy priming method. We evaluated whether epigenetic therapy plus IDO1 inhibition and immune checkpoint blockade confers clinical benefit to patients with advanced solid tumors. METHODS ECHO-206 was a Phase I/II study where treatment-experienced patients with advanced solid tumors (N = 70) received azacitidine plus an immunotherapy doublet (epacadostat [IDO1 inhibitor] and pembrolizumab). Sequencing of treatment was also assessed. Primary endpoints were safety/tolerability (Phase I), maximum tolerated dose (MTD) or pharmacologically active dose (PAD; Phase I), and investigator-assessed objective response rate (ORR; Phase II). RESULTS In Phase I, no dose-limiting toxicities were reported, the MTD was not reached; a PAD was not determined. ORR was 5.7%, with four partial responses. The most common treatment-related adverse events (AEs) were fatigue (42.9%) and nausea (42.9%). Twelve (17.1%) patients experienced ≥1 fatal AE, one of which (asthenia) was treatment-related. CONCLUSIONS Although the azacitidine-epacadostat-pembrolizumab regimen was well tolerated, it was not associated with substantial clinical response in patients with advanced solid tumors previously exposed to immunotherapy.
Collapse
Affiliation(s)
- Jason J Luke
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Marwan Fakih
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Charles Schneider
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - E Gabriela Chiorean
- University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Johanna Bendell
- Sarah Cannon Research Institute/Tennessee Oncology, Nashville, TN, USA
| | | | - Razelle Kurzrock
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Sarah P Blagden
- Early Phase Clinical Trials Unit, University of Oxford, Oxford, England, UK
| | - Irene Brana
- Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Laura W Goff
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | - Feng Zhou
- Incyte Corporation, Wilmington, DE, USA
| | - Aung Naing
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
23
|
Larsen TV, Dybdal N, Daugaard TF, Lade-Keller J, Lin L, Sorensen BS, Nielsen AL. Examination of the Functional Relationship between PD-L1 DNA Methylation and mRNA Expression in Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:cancers15061909. [PMID: 36980795 PMCID: PMC10047551 DOI: 10.3390/cancers15061909] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Immunotherapy targeting the interaction between programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) is a treatment option for patients with non-small-cell lung cancer (NSCLC). The expression of PD-L1 by the NSCLC cells determines treatment effectiveness, but the relationship between PD-L1 DNA methylation and expression has not been clearly described. We investigated PD-L1 DNA methylation, mRNA expression, and protein expression in NSCLC cell lines and tumor biopsies. We used clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) to modify PD-L1 genetic contexts and endonuclease deficient Cas9 (dCas9) fusions with ten-eleven translocation methylcytosine dioxygenase 1 (TET1) and DNA (cytosine-5)-methyltransferase 3A (DNMT3A) to manipulate PD-L1 DNA methylation. In NSCLC cell lines, we identified specific PD-L1 CpG sites with methylation levels inversely correlated with PD-L1 mRNA expression. However, inducing PD-L1 mRNA expression with interferon-γ did not decrease the methylation level for these CpG sites, and using CRISPR-Cas9, we found that the CpG sites did not directly confer a negative regulation. dCas9-TET1 and dCas9-DNMT3A could induce PD-L1 hypo- and hyper-methylation, respectively, with the latter conferring a decrease in expression showing the functional impact of methylation. In NSCLC biopsies, the inverse correlation between the methylation and expression of PD-L1 was weak. We conclude that there is a regulatory link between PD-L1 DNA methylation and expression. However, since these measures are weakly associated, this study highlights the need for further research before PD-L1 DNA methylation can be implemented as a biomarker and drug target for measures to improve the effectiveness of PD-1/PD-L1 immunotherapy in NSCLC.
Collapse
Affiliation(s)
- Trine V Larsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Nina Dybdal
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Tina F Daugaard
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | | | - Lin Lin
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Boe S Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8000 Aarhus, Denmark
| | - Anders L Nielsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
24
|
Feld J, Tremblay D, Navada SC, Silverman LR. Ascertaining QUAZARs: slow-motion and light-speed development of oral azacitidine and decitabine. Leuk Lymphoma 2023; 64:525-539. [PMID: 36370098 DOI: 10.1080/10428194.2022.2142051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are devastating diseases that frequently rely on the use of parenteral hypomethylating agents (HMAs), either as monotherapy or in combination, as first-line treatment for many patients. Two new oral HMAs, decitabine/cedazuridine (DC) for use in place of azacitidine or decitabine in MDS, and azacitidine (CC-486) for use as maintenance treatment in AML, were recently approved by the FDA. We will discuss the development of these oral HMAs, including the advantages/disadvantages in transitioning to oral HMAs and an in depth look at the pivotal phase III trials that led to their FDA approval - ASCERTAIN for DC and QUAZAR-AML-001 for CC-486. We also review how these agents have been and are being studied in other malignancies, and examine the future role that these exciting novel agents will play in both MDS and AML.
Collapse
Affiliation(s)
- Jonathan Feld
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas Tremblay
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shyamala C Navada
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lewis R Silverman
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
25
|
Tien FM, Lu HH, Lin SY, Tsai HC. Epigenetic remodeling of the immune landscape in cancer: therapeutic hurdles and opportunities. J Biomed Sci 2023; 30:3. [PMID: 36627707 PMCID: PMC9832644 DOI: 10.1186/s12929-022-00893-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
The tumor immune microenvironment represents a sophisticated ecosystem where various immune cell subtypes communicate with cancer cells and stromal cells. The dynamic cellular composition and functional characteristics of the immune landscape along the trajectory of cancer development greatly impact the therapeutic efficacy and clinical outcome in patients receiving systemic antitumor therapy. Mounting evidence has suggested that epigenetic mechanisms are the underpinning of many aspects of antitumor immunity and facilitate immune state transitions during differentiation, activation, inhibition, or dysfunction. Thus, targeting epigenetic modifiers to remodel the immune microenvironment holds great potential as an integral part of anticancer regimens. In this review, we summarize the epigenetic profiles and key epigenetic modifiers in individual immune cell types that define the functional coordinates of tumor permissive and non-permissive immune landscapes. We discuss the immunomodulatory roles of current and prospective epigenetic therapeutic agents, which may open new opportunities in enhancing cancer immunotherapy or overcoming existing therapeutic challenges in the management of cancer.
Collapse
Affiliation(s)
- Feng-Ming Tien
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Hsuan-Hsuan Lu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Center for Frontier Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
| | - Shu-Yung Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan
| | - Hsing-Chen Tsai
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, 100233, Taiwan.
- Center for Frontier Medicine, National Taiwan University Hospital, Taipei, 100225, Taiwan.
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No. 1 Jen Ai Road Section 1, Rm542, Taipei, 100233, Taiwan.
- Department of Medical Research, National Taiwan University Hospital, Taipei, 100225, Taiwan.
| |
Collapse
|
26
|
Targeting Epigenetic Mechanisms: A Boon for Cancer Immunotherapy. Biomedicines 2023; 11:biomedicines11010169. [PMID: 36672677 PMCID: PMC9855697 DOI: 10.3390/biomedicines11010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Immunotherapy is rapidly emerging as a promising approach against cancer. In the last decade, various immunological mechanisms have been targeted to induce an increase in the immune response against cancer cells. However, despite promising results, many patients show partial response, resistance, or serious toxicities. A promising way to overcome this is the use of immunotherapeutic approaches, in combination with other potential therapeutic approaches. Aberrant epigenetic modifications play an important role in carcinogenesis and its progression, as well as in the functioning of immune cells. Thus, therapeutic approaches targeting aberrant epigenetic mechanisms and the immune response might provide an effective antitumor effect. Further, the recent development of potent epigenetic drugs and immunomodulators gives hope to this combinatorial approach. In this review, we summarize the synergy mechanism between epigenetic therapies and immunotherapy for the treatment of cancer, and discuss recent advancements in the translation of this approach.
Collapse
|
27
|
Cheng B, Yu Q, Wang W. Intimate communications within the tumor microenvironment: stromal factors function as an orchestra. J Biomed Sci 2023; 30:1. [PMID: 36600243 DOI: 10.1186/s12929-022-00894-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/18/2022] [Indexed: 01/06/2023] Open
Abstract
Extensive studies of the tumor microenvironment (TME) in the last decade have reformed the view of cancer as a tumor cell-centric disease. The tumor microenvironment, especially termed the "seed and soil" theory, has emerged as the key determinant in cancer development and therapeutic resistance. The TME mainly consists of tumor cells, stromal cells such as fibroblasts, immune cells, and other noncellular components. Within the TME, intimate communications among these components largely determine the fate of the tumor. The pivotal roles of the stroma, especially cancer-associated fibroblasts (CAFs), the most common component within the TME, have been revealed in tumorigenesis, tumor progression, therapeutic response, and tumor immunity. A better understanding of the function of the TME sheds light on tumor therapy. In this review, we summarize the emerging understanding of stromal factors, especially CAFs, in cancer progression, drug resistance, and tumor immunity with an emphasis on their functions in epigenetic regulation. Moreover, the importance of epigenetic regulation in reshaping the TME and the basic biological principles underpinning the synergy between epigenetic therapy and immunotherapy will be further discussed.
Collapse
Affiliation(s)
- Bing Cheng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qiang Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- Cancer Precision Medicine, Genome Institute of Singapore, Agency for Science, Technology, and Research, Biopolis, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Cancer and Stem Cell Biology, DUKE-NUS Graduate Medical School of Singapore, Singapore, Singapore.
| | - Wenyu Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
28
|
Jie C, Li R, Cheng Y, Wang Z, Wu Q, Xie C. Prospects and feasibility of synergistic therapy with radiotherapy, immunotherapy, and DNA methyltransferase inhibitors in non-small cell lung cancer. Front Immunol 2023; 14:1122352. [PMID: 36875059 PMCID: PMC9981667 DOI: 10.3389/fimmu.2023.1122352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
The morbidity and mortality of lung cancer are increasing, seriously threatening human health and life. Non-small cell lung cancer (NSCLC) has an insidious onset and is not easy to be diagnosed in its early stage. Distant metastasis often occurs and the prognosis is poor. Radiotherapy (RT) combined with immunotherapy, especially with immune checkpoint inhibitors (ICIs), has become the focus of research in NSCLC. The efficacy of immunoradiotherapy (iRT) is promising, but further optimization is necessary. DNA methylation has been involved in immune escape and radioresistance, and becomes a game changer in iRT. In this review, we focused on the regulation of DNA methylation on ICIs treatment resistance and radioresistance in NSCLC and elucidated the potential synergistic effects of DNA methyltransferases inhibitors (DNMTis) with iRT. Taken together, we outlined evidence suggesting that a combination of DNMTis, RT, and immunotherapy could be a promising treatment strategy to improve NSCLC outcomes.
Collapse
Affiliation(s)
- Chen Jie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Rumeng Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yajie Cheng
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhihao Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiuji Wu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Wu Y, Yuan M, Wang C, Chen Y, Zhang Y, Zhang J. T lymphocyte cell: A pivotal player in lung cancer. Front Immunol 2023; 14:1102778. [PMID: 36776832 PMCID: PMC9911803 DOI: 10.3389/fimmu.2023.1102778] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Lung cancer is responsible for the leading cause of cancer-related death worldwide, which lacks effective therapies. In recent years, accumulating evidence on the understanding of the antitumor activity of the immune system has demonstrated that immunotherapy is one of the powerful alternatives in lung cancer therapy. T cells are the core of cellular immunotherapy, which are critical for tumorigenesis and the treatment of lung cancer. Based on the different expressions of surface molecules and functional points, T cells can be subdivided into regulatory T cells, T helper cells, cytotoxic T lymphocytes, and other unconventional T cells, including γδ T cells, nature killer T cells and mucosal-associated invariant T cells. Advances in our understanding of T cells' functional mechanism will lead to a number of clinical trials on the discovery and development of new treatment strategies. Thus, we summarize the biological functions and regulations of T cells on tumorigenesis, progression, metastasis, and prognosis in lung cancer. Furthermore, we discuss the current advancements of technologies and potentials of T-cell-oriented therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Yanan Wu
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Meng Yuan
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Chenlin Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Yanfei Chen
- Department of Oncology, Shandong First Medical University, Jinan, China.,Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| | - Yan Zhang
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
| |
Collapse
|
30
|
Zhang G, Wang Z, Song P, Zhan X. DNA and histone modifications as potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine. EPMA J 2022; 13:649-669. [PMID: 36505890 PMCID: PMC9727004 DOI: 10.1007/s13167-022-00300-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/11/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer has a very high mortality in females and males. Most (~ 85%) of lung cancers are non-small cell lung cancers (NSCLC). When lung cancer is diagnosed, most of them have either local or distant metastasis, with a poor prognosis. In order to achieve better outcomes, it is imperative to identify the molecular signature based on genetic and epigenetic variations for different NSCLC subgroups. We hypothesize that DNA and histone modifications play significant roles in the framework of predictive, preventive, and personalized medicine (PPPM; 3P medicine). Epigenetics has a significant impact on tumorigenicity, tumor heterogeneity, and tumor resistance to chemotherapy, targeted therapy, and immunotherapy. An increasing interest is that epigenomic regulation is recognized as a potential treatment option for NSCLC. Most attention has been paid to the epigenetic alteration patterns of DNA and histones. This article aims to review the roles DNA and histone modifications play in tumorigenesis, early detection and diagnosis, and advancements and therapies of NSCLC, and also explore the connection between DNA and histone modifications and PPPM, which may provide an important contribution to improve the prognosis of NSCLC. We found that the success of targeting DNA and histone modifications is limited in the clinic, and how to combine the therapies to improve patient outcomes is necessary in further studies, especially for predictive diagnostics, targeted prevention, and personalization of medical services in the 3P medicine approach. It is concluded that DNA and histone modifications are potent diagnostic and therapeutic targets to advance non-small cell lung cancer management from the perspective of 3P medicine.
Collapse
Affiliation(s)
- Guodong Zhang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Zhengdan Wang
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Pingping Song
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| | - Xianquan Zhan
- Thoracic Surgery Department, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, 440 Jiyan Road, Shandong 250117 Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong 250117 People’s Republic of China
| |
Collapse
|
31
|
Symeonidou V, Metzner M, Usukhbayar B, Jackson AE, Fox S, Craddock CF, Vyas P. Heterogeneous genetic and non-genetic mechanisms contribute to response and resistance to azacitidine monotherapy. EJHAEM 2022; 3:794-803. [PMID: 36051087 PMCID: PMC9421974 DOI: 10.1002/jha2.527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
Acute myeloid leukaemia is prevalent in older patients that are often ineligible for intensive chemotherapy and treatment options remain limited with azacitidine being at the forefront. Azacitidine has been used in the clinic for decades, however, we still lack a complete understanding of the mechanisms by which the drug exerts its anti-tumour effect. To gain insight into the mechanism of action, we defined the mutational profile of sequential samples of patients treated with azacitidine. We did not identify any mutations that could predict response and observed lack of a uniform pattern of clonal evolution. Focusing on responders, at remission, we observed three types of response: (1) an almost complete elimination of mutations (33%), (2) no change (17%), and (3) change with no discernible pattern (50%). Heterogeneous patterns were also observed at relapse, with no clonal evolution between remission and relapse in some patients. Lack of clonal evolution suggests that non-genetic mechanisms might be involved. Towards understanding such mechanisms, we investigated the immune microenvironment in a number of patients and we observed lack of a uniform response following therapy. We identified a higher frequency of cytotoxic T cells in responders and higher frequency of naïve helper T cells in non-responders.
Collapse
Affiliation(s)
- Vasiliki Symeonidou
- MRC Molecular Haematology Unit, Oxford Biomedical Research Centre Haematology Theme, Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Marlen Metzner
- MRC Molecular Haematology Unit, Oxford Biomedical Research Centre Haematology Theme, Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Batchimeg Usukhbayar
- MRC Molecular Haematology Unit, Oxford Biomedical Research Centre Haematology Theme, Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Aimee E. Jackson
- Cancer Research UK Clinical Trials UnitUniversity of BirminghamBirminghamUK
| | - Sonia Fox
- Centre for Clinical HaematologyQueen Elizabeth HospitalBirminghamUK
| | | | - Paresh Vyas
- MRC Molecular Haematology Unit, Oxford Biomedical Research Centre Haematology Theme, Oxford Centre for Haematology, Weatherall Institute of Molecular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
32
|
Tryambake SR, Gawande JP, Wategaonkar RN. Retrospective Study of Clinical Outcomes and Toxicity Profile in Patients Treated with Immune Checkpoint Inhibitors. ASIAN JOURNAL OF ONCOLOGY 2022. [DOI: 10.1055/s-0042-1751116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
Abstract
Introduction Immune checkpoint inhibitors (ICIs) are rapidly being utilized as treatment option either alone or in combination with chemotherapy in most of the solid tumors.
Objectives Our single-center retrospective study aimed to present our experience with the effectiveness and safety of these agents in Indian set of patients with various advanced solid tumors.
Material and Methods Twenty-five adult patients with stage IV solid tumors of varying sites treated with ICIs at Aditya Birla Memorial Hospital, Pune, Maharashtra, India, between October 2017 and September 2020 were included in the study. Overall survival (OS), progression-free survival (PFS), overall response rate (ORR), disease control rate (DCR), and toxicity profiles were evaluated. All statistical calculations were performed using IBM SPSS version 25.
Results Total of 25 patients (median age 61) was evaluated. Histological evaluation revealed adenocarcinoma (48%), squamous cell carcinoma (40%), and one each (4%) of others. Eastern Cooperative Oncology Group performance status score was I in 16 (64%) and II in 9 (36%) patients. Average of 10 cycles ICIs were received by each patient. Majority were males with 11 (44%) having some comorbidities. Lung (48%) was the most common primary followed by head and neck cancers (32%). Most (76%) were treated with nivolumab, followed by pembrolizumab (20%) while only one patient was given atezolizumab. Median follow-up was 18 months. Median OS was 24 months (95% confidence interval [CI]: 9–NA) and 2-year OS rate in the study was 38.4% (95% CI: 18.8–78.3), while median PFS was 9 months (95% CI: 6–NA) and 1-year PFS rate was 22.3% (95% CI: 9.7–51.2). One patient (4%) had complete response, 6 (24%) had partial response while 12 (48%) had stable disease response at first follow-up. Mean and median time to progression were 5.7 and 9 months, respectively. ORR was 28% (95% CI: 12.07–49.4) while the DCR was 76% (95% CI: 54.87–90.64). PS II patients were associated with significantly poor median OS and PFS. There was no significant difference in survival with respect to age, gender, site, histology, and comorbidities; however, 4/25 patients had undergone biomarker assessment and were associated with a trend toward better median PFS (8 vs. 11 months, hazard ratio 0.53, 95% CI: 0.12–2.34, p = 0.38). Two of 25 patients developed autoimmune conditions namely ophthalmoplegia and hypothyroidism each. Fatigue (36%) and nausea (12%) were the most common toxicities.
Conclusion Real-world data from our study depicts our own experience with ICIs to suggest that these agents are well-tolerated and equally effective in Indian set of patients with advanced metastatic solid tumors. ICIs could be safely used even in patients with PS II and biomarker assessment in adjunction needs to be encouraged wherever feasible for better patient selection, prognostication, and clinical outcomes.
Collapse
Affiliation(s)
| | - Jayant Pundlik Gawande
- Department of Medical Oncology, Aditya Birla Memorial Hospital, Pune, Maharashtra, India
| | | |
Collapse
|
33
|
Primary and Acquired Resistance against Immune Check Inhibitors in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14143294. [PMID: 35884355 PMCID: PMC9316464 DOI: 10.3390/cancers14143294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary NSCLC accounts for approximately 84% of lung malignancies and the clinical application of ICIs provides a novel and promising strategy. However, approximately 80% of NSCLC patients do not benefit from ICIs due to drug resistance complicated by disciplines and diverse mechanisms. Through this review, we provide a whole map of current understanding of primary and acquired resistance mechanisms in NSCLC. In the first part, resistance mechanisms of 6 FDA-approved ICIs-related primary resistance are collected and arranged into 7 steps of the well-known cancer-immunity cycle. Acquired resistance induced by ICIs are summarized in the second part. In the third part, we discuss the future direction, including the deeper understanding of tumor microenvironment and the combinational treatment. Through this review, clinicians can get clear and direct clues to find the underlying mechanisms in patients and translational researchers can acquire several directions to overcome resistance and apply new combinational treatment. Abstract Immune checkpoint inhibitors have emerged as the treatment landscape of advanced non-small cell lung cancer (NSCLC) in recent years. However, approximately 80% of NSCLC patients do not benefit from ICIs due to primary resistance (no initial response) or acquired resistance (tumor relapse after an initial response). In this review, we highlight the mechanisms of primary and secondary resistance. Furthermore, we provide a future direction of the potential predictive biomarkers and the tumor microenvironmental landscape and suggest treatment strategies to overcome these mechanisms.
Collapse
|
34
|
Kogan AA, Topper MJ, Dellomo AJ, Stojanovic L, McLaughlin LJ, Creed TM, Eberly CL, Kingsbury TJ, Baer MR, Kessler MD, Baylin SB, Rassool FV. Activating STING1-dependent immune signaling in TP53 mutant and wild-type acute myeloid leukemia. Proc Natl Acad Sci U S A 2022; 119:e2123227119. [PMID: 35759659 PMCID: PMC9271208 DOI: 10.1073/pnas.2123227119] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/05/2022] [Indexed: 12/30/2022] Open
Abstract
DNA methyltransferase inhibitors (DNMTis) reexpress hypermethylated genes in cancers and leukemias and also activate endogenous retroviruses (ERVs), leading to interferon (IFN) signaling, in a process known as viral mimicry. In the present study we show that in the subset of acute myeloid leukemias (AMLs) with mutations in TP53, associated with poor prognosis, DNMTis, important drugs for treatment of AML, enable expression of ERVs and IFN and inflammasome signaling in a STING-dependent manner. We previously reported that in solid tumors poly ADP ribose polymerase inhibitors (PARPis) combined with DNMTis to induce an IFN/inflammasome response that is dependent on STING1 and is mechanistically linked to generation of a homologous recombination defect (HRD). We now show that STING1 activity is actually increased in TP53 mutant compared with wild-type (WT) TP53 AML. Moreover, in TP53 mutant AML, STING1-dependent IFN/inflammatory signaling is increased by DNMTi treatment, whereas in AMLs with WT TP53, DNMTis alone have no effect. While combining DNMTis with PARPis increases IFN/inflammatory gene expression in WT TP53 AML cells, signaling induced in TP53 mutant AML is still several-fold higher. Notably, induction of HRD in both TP53 mutant and WT AMLs follows the pattern of STING1-dependent IFN and inflammatory signaling that we have observed with drug treatments. These findings increase our understanding of the mechanisms that underlie DNMTi + PARPi treatment, and also DNMTi combinations with immune therapies, suggesting a personalized approach that statifies by TP53 status, for use of such therapies, including potential immune activation of STING1 in AML and other cancers.
Collapse
Affiliation(s)
- Aksinija A. Kogan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael J. Topper
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
| | - Anna J. Dellomo
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Lora Stojanovic
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Lena J. McLaughlin
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - T. Michael Creed
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Christian L. Eberly
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Tami J. Kingsbury
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Maria R. Baer
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Michael D. Kessler
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
| | - Stephen B. Baylin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231
- Van Andel Research Institute, Grand Rapids, MI 49503
| | - Feyruz V. Rassool
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
35
|
Xu Y, Li P, Liu Y, Xin D, Lei W, Liang A, Han W, Qian W. Epi-immunotherapy for cancers: rationales of epi-drugs in combination with immunotherapy and advances in clinical trials. Cancer Commun (Lond) 2022; 42:493-516. [PMID: 35642676 PMCID: PMC9198339 DOI: 10.1002/cac2.12313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/03/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022] Open
Abstract
Over the last two decades, several epi-drugs, immune checkpoint inhibitors (ICIs) and adoptive cell therapies have received clinical approval for use in certain types of cancer. However, monotherapy with epi-drugs or ICIs has shown limited efficacy in most cancer patients. Epigenetic agents have been shown to regulate the crosstalk between the tumor and host immunity to alleviate immune evasion, suggesting that epi-drugs can potentially synergize with immunotherapy. In this review, we discuss recent insights into the rationales of incorporating epigenetic therapy into immunotherapy, called epi-immunotherapy, and focus on an update of current clinical trials in both hematological and solid malignancies. Furthermore, we outline the future challenges and strategies in the field of cancer epi-immunotherapy.
Collapse
Affiliation(s)
- Yang Xu
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Ping Li
- Department of HematologyTongji Hospital of Tongji UniversityShanghai200065P. R. China
| | - Yang Liu
- Department of Bio‐Therapeuticthe First Medical CentreChinese PLA General HospitalBeijing100853P. R. China
| | - Dijia Xin
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Wen Lei
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058P. R. China
| | - Aibin Liang
- Department of HematologyTongji Hospital of Tongji UniversityShanghai200065P. R. China
| | - Weidong Han
- Department of Bio‐Therapeuticthe First Medical CentreChinese PLA General HospitalBeijing100853P. R. China
| | - Wenbin Qian
- Department of Hematologythe Second Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouZhejiang310009P. R. China
| |
Collapse
|
36
|
Brown M. Engaging Pattern Recognition Receptors in Solid Tumors to Generate Systemic Antitumor Immunity. Cancer Treat Res 2022; 183:91-129. [PMID: 35551657 DOI: 10.1007/978-3-030-96376-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Malignant tumors frequently exploit innate immunity to evade immune surveillance. The priming, function, and polarization of antitumor immunity fundamentally depends upon context provided by the innate immune system, particularly antigen presenting cells. Such context is determined in large part by sensing of pathogen specific and damage associated features by pathogen recognition receptors (PRRs). PRR activation induces the delivery of T cell priming cues (e.g. chemokines, co-stimulatory ligands, and cytokines) from antigen presenting cells, playing a decisive role in the cancer immunity cycle. Indeed, endogenous PRR activation within the tumor microenvironment (TME) has been shown to generate spontaneous antitumor T cell immunity, e.g., cGAS-STING mediated activation of antigen presenting cells after release of DNA from dying tumor cells. Thus, instigating intratumor PRR activation, particularly with the goal of generating Th1-promoting inflammation that stokes endogenous priming of antitumor CD8+ T cells, is a growing area of clinical investigation. This approach is analogous to in situ vaccination, ultimately providing a personalized antitumor response against relevant tumor associated antigens. Here I discuss clinical stage intratumor modalities that function via activation of PRRs. These approaches are being tested in various solid tumor contexts including melanoma, colorectal cancer, glioblastoma, head and neck squamous cell carcinoma, bladder cancer, and pancreatic cancer. Their mechanism (s) of action relative to other immunotherapy approaches (e.g., antigen-defined cancer vaccines, CAR T cells, dendritic cell vaccines, and immune checkpoint blockade), as well as their potential to complement these approaches are also discussed. Examples to be reviewed include TLR agonists, STING agonists, RIG-I agonists, and attenuated or engineered viruses and bacterium. I also review common key requirements for effective in situ immune activation, discuss differences between various strategies inclusive of mechanisms that may ultimately limit or preclude antitumor efficacy, and provide a summary of relevant clinical data.
Collapse
Affiliation(s)
- Michael Brown
- Department of Neurosurgery, Duke University, Durham, NC, USA.
| |
Collapse
|
37
|
Tang Y, Zhou Z, Yan H, You Y. Case Report: Preemptive Treatment With Low-Dose PD-1 Blockade and Azacitidine for Molecular Relapsed Acute Myeloid Leukemia With RUNX1-RUNX1T1 After Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2022; 13:810284. [PMID: 35185899 PMCID: PMC8847388 DOI: 10.3389/fimmu.2022.810284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/17/2022] [Indexed: 11/25/2022] Open
Abstract
Acute myeloid leukemia (AML) patients who develop hematological relapse (HR) after allogeneic hematopoietic stem cell transplantation (allo-HSCT) generally have dismal clinical outcomes. Measurable residual disease (MRD)-directed preemptive interventions are effective approaches to prevent disease progression and improve prognosis for molecular relapsed patients with warning signs of impending HR. In this situation, boosting the graft-vs-leukemia (GVL) effect with immune checkpoint inhibitors (ICIs) might be a promising prevention strategy, despite the potential for causing severe graft-vs-host disease (GVHD). In the present study, we reported for the first time an AML patient with RUNX1-RUNX1T1 who underwent preemptive treatment with the combined application of tislelizumab (an anti-PD-1 antibody) and azacitidine to avoid HR following allo-HSCT. On day +81, molecular relapse with MRD depicted by RUNX1-RUN1T1-positivity as well as mixed donor chimerism occurred in the patient. On day +95, with no signs of GVHD and an excellent eastern cooperative oncology group performance status (ECOG PS), the patient thus was administered with 100 mg of tislelizumab on day 1 and 100 mg of azacitidine on days 1-7. After the combination therapy, complete remission was successfully achieved with significant improvement in hematologic response, and the MRD marker RUNX1-RUNX1T1 turned negative, along with a complete donor chimerism in bone marrow. Meanwhile, the patient experienced moderate GVHD and immune-related adverse events (irAEs), successively involving the lung, liver, lower digestive tract and urinary system, which were well controlled by immunosuppressive therapies. As far as we know, this case is the first one to report the use of tislelizumab in combination with azacitidine to prevent post-transplant relapse in AML. In summary, the application of ICIs in MRD positive patients might be an attractive strategy for immune modulation in the future to reduce the incidence of HR in the post-transplant setting, but safer clinical application schedules need to be explored.
Collapse
Affiliation(s)
- Yutong Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyang Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Han Yan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Yang X, Ma L, Zhang X, Huang L, Wei J. Targeting PD-1/PD-L1 pathway in myelodysplastic syndromes and acute myeloid leukemia. Exp Hematol Oncol 2022; 11:11. [PMID: 35236415 PMCID: PMC8889667 DOI: 10.1186/s40164-022-00263-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases arising from the bone marrow (BM), and approximately 30% of MDS eventually progress to AML, associated with increasingly aggressive neoplastic hematopoietic clones and poor survival. Dysregulated immune microenvironment has been recognized as a key pathogenic driver of MDS and AML, causing high rate of intramedullary apoptosis in lower-risk MDS to immunosuppression in higher-risk MDS and AML. Immune checkpoint molecules, including programmed cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1), play important roles in oncogenesis by maintaining an immunosuppressive tumor microenvironment. Recently, both molecules have been examined in MDS and AML. Abnormal inflammatory signaling, genetic and/or epigenetic alterations, interactions between cells, and treatment of patients all have been involved in dysregulating PD-1/PD-L1 signaling in these two diseases. Furthermore, with the PD-1/PD-L1 pathway activated in immune microenvironment, the milieu of BM shift to immunosuppressive, contributing to a clonal evolution of blasts. Nevertheless, numerous preclinical studies have suggested a potential response of patients to PD-1/PD-L1 blocker. Current clinical trials employing these drugs in MDS and AML have reported mixed clinical responses. In this paper, we focus on the recent preclinical advances of the PD-1/PD-L1 signaling in MDS and AML, and available and ongoing outcomes of PD-1/PD-L1 inhibitor in patients. We also discuss the novel PD-1/PD-L1 blocker-based immunotherapeutic strategies and challenges, including identifying reliable biomarkers, determining settings, and exploring optimal combination therapies.
Collapse
Affiliation(s)
- Xingcheng Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Ling Ma
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaoying Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China
| | - Liang Huang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China. .,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China. .,Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
39
|
Martin P, Bartlett NL, Chavez JC, Reagan JL, Smith SM, LaCasce AS, Jones J, Drew J, Wu C, Mulvey E, Revuelta MV, Cerchietti L, Leonard JP. Phase 1 study of oral azacitidine (CC-486) plus R-CHOP in previously untreated intermediate- to high-risk DLBCL. Blood 2022; 139:1147-1159. [PMID: 34428285 PMCID: PMC9211445 DOI: 10.1182/blood.2021011679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022] Open
Abstract
Resistance to standard immunochemotherapy remains an unmet challenge in diffuse large B-cell lymphoma (DLBCL), and aberrant DNA methylation may contribute to chemoresistance. Promising early-phase results were reported with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) plus subcutaneous azacitidine, a hypomethylating agent. In this phase 1 study, we evaluated CC-486 (oral azacitidine) plus 6 cycles of R-CHOP in patients with previously untreated intermediate- to high-risk DLBCL or grade 3B/transformed follicular lymphoma. CC-486 doses of 100, 150, 200, or 300 mg given 7 days before cycle 1 and on days 8-21 of cycles 1-5 were evaluated; additional patients were enrolled in the expansion phase to examine preliminary efficacy. The primary objectives were to determine the safety and the maximum tolerated dose (MTD) of CC-486 in combination with R-CHOP. The most common grade 3/4 toxicities were hematologic, including neutropenia (62.7%) and febrile neutropenia (25.4%); grade 3/4 nonhematologic toxicities were uncommon (<7%). The MTD was not established; 2 patients had dose-limiting toxicities (1 with grade 4 febrile neutropenia; 1 with grade 4 prolonged neutropenia). The recommended phase 2 dose was established as 300 mg. The overall response rate was 94.9%, with 52 patients (88.1%) achieving complete responses. With a median follow-up of 28.9 months, estimated 1- and 2-year progression-free survival rates were 84.1% and 78.6%, respectively. Overall, epigenetic priming with CC-486 before R-CHOP can be delivered with acceptable safety to patients with previously untreated intermediate- to high-risk DLBCL or grade 3B/transformed follicular lymphoma. ClinicalTrials.gov: NCT02343536.
Collapse
Affiliation(s)
| | | | | | - John L Reagan
- The Warren Alpert Medical School of Brown University, Providence, RI
| | - Sonali M Smith
- University of Chicago Comprehensive Cancer Center, Chicago, IL
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lohinai Z, Dora D, Caldwell C, Rivard CJ, Suda K, Yu H, Rivalland G, Ellison K, Rozeboom L, Dziadziuszko R, Mitchell P, John T, Millan IS, Ren S, Hirsch FR. Loss of STING expression is prognostic in non-small cell lung cancer. J Surg Oncol 2022; 125:1042-1052. [PMID: 35099823 PMCID: PMC9304565 DOI: 10.1002/jso.26804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/08/2021] [Accepted: 01/13/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Stimulator of interferon (IFN) genes (STING) is a protein that promotes type I IFN production essential for T-cell activation. In this study, we aim to characterize STING expression comprehensively using The Cancer Genome Atlas (TCGA) database, cell lines, and patient tumor samples stained with immunohistochemistry. METHODS Two cohorts were evaluated comprising 721 non-small cell lung cancer (NSCLC) patients and 55 NSCLC cell lines for STING and cyclic GMP-AMP synthase (cGAS) expression using immunohistochemistry. Moreover, an independent cohort of n = 499 patients from the TCGA database was analyzed. Methylation was evaluated on STING and cGAS in five STING-negative NSCLC cell lines. RESULTS STING RNA expression positively correlates with T cell function and development genes, negatively correlates with cell proliferation and associated with increased survival (5-year-overall survival [OS] 47.3% vs. 38.8%, p = 0.033). STING protein expression is significantly higher in adenocarcinoma (AC) and is lost with increasing stages of AC. STING-positivity is significantly higher in mutant EGFR and KRAS tumors. STING-positive NSCLC patients identified with immunohistochemistry (H-score > 50) have increased survival (median OS: 58 vs. 35 months, p = 0.02). Treatment of STING-negative cell lines with a demethylating agent restores STING expression. CONCLUSIONS STING is ubiquitously expressed in NSCLC and associated with T cell function genes, AC histology, EGFR, and KRAS mutations and improved overall survival.
Collapse
Affiliation(s)
- Zoltan Lohinai
- National Korányi Institute of Pulmonology, Budapest, Hungary
| | - David Dora
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Charles Caldwell
- Departments of Medicine and Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher J Rivard
- Departments of Medicine and Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kenichi Suda
- Division of Thoracic Surgery, Department of Surgery, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Hui Yu
- Departments of Medicine and Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gareth Rivalland
- Olivia Newton-John Cancer and Wellness Centre, Austin Hospital, Heidelberg, Victoria, Australia
| | - Kim Ellison
- Departments of Medicine and Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Leslie Rozeboom
- Departments of Medicine and Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rafal Dziadziuszko
- Department of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Paul Mitchell
- Olivia Newton-John Cancer and Wellness Centre, Austin Hospital, Heidelberg, Victoria, Australia
| | - Thomas John
- Olivia Newton-John Cancer and Wellness Centre, Austin Hospital, Heidelberg, Victoria, Australia
| | - Inigo S Millan
- Department of Medicine, Metabolism, and Diabetes, University of Colorado School of Medicine, Aurora, CO, USA.,Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, Colorado, USA
| | - Shengxiang Ren
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fred R Hirsch
- Tisch Cancer Institute, Center for Thoracic Oncology, Mount Sinai Health System, New York, New York, USA
| |
Collapse
|
41
|
Ciotti G, Marconi G, Martinelli G. Hypomethylating Agent-Based Combination Therapies to Treat Post-Hematopoietic Stem Cell Transplant Relapse of Acute Myeloid Leukemia. Front Oncol 2022; 11:810387. [PMID: 35071015 PMCID: PMC8770807 DOI: 10.3389/fonc.2021.810387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/10/2021] [Indexed: 12/23/2022] Open
Abstract
Allogeneic stem cell transplantation still represents the best curative option for most patients with acute myeloid leukemia, but relapse is still dramatically high. Due to their immunologic activity and safety profile, hypomethylating agents (HMAs) represent an interesting backbone for combination therapies. This review reports mechanism of action, safety, and efficacy data on combination strategies based on HMAs in the setting of post-allogeneic stem cell transplant relapse. Several studies highlighted how HMAs and donor lymphocyte infusion (DLI) combination may be advantageous. The combination strategy of HMA with venetoclax, possibly in association with DLI, is showing excellent results in terms of response rate, including molecular responses. Lenalidomide, despite its well-known high rates of severe graft-versus-host disease in post-transplant settings, is showing an acceptable safety profile in association with HMAs with a competitive response rate. Regarding FLT3 internal tandem duplication (ITD) mutant AML, tyrosine kinase inhibitors and particularly sorafenib have promising results as monotherapy and in combination with HMAs. Conversely, combination strategies with gemtuzumab ozogamicin or immune checkpoint inhibitors did not show competitive response rates and seem to be currently less attractive strategies. Associations with histone deacetylase inhibitors and isocitrate dehydrogenase 1 and 2 (IDH1/2) inhibitors represent new possible strategies that need to be better investigated.
Collapse
Affiliation(s)
- Giulia Ciotti
- Ematologia, Dipartimento di Medicina Traslazionale e di Precisione, Università La Sapienza, Azienda Ospedaliera Policlinico Umberto I, Rome, Italy
| | - Giovanni Marconi
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| |
Collapse
|
42
|
Liu Z, Ren Y, Weng S, Xu H, Li L, Han X. A New Trend in Cancer Treatment: The Combination of Epigenetics and Immunotherapy. Front Immunol 2022; 13:809761. [PMID: 35140720 PMCID: PMC8818678 DOI: 10.3389/fimmu.2022.809761] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022] Open
Abstract
In recent years, immunotherapy has become a hot spot in the treatment of tumors. As an emerging treatment, it solves many problems in traditional cancer treatment and has now become the main method for cancer treatment. Although immunotherapy is promising, most patients do not respond to treatment or develop resistance. Therefore, in order to achieve a better therapeutic effect, combination therapy has emerged. The combination of immune checkpoint inhibition and epigenetic therapy is one such strategy. In this review, we summarize the current understanding of the key mechanisms of how epigenetic mechanisms affect cancer immune responses and reveal the key role of epigenetic processes in regulating immune cell function and mediating anti-tumor immunity. In addition, we highlight the outlook of combined epigenetic and immune regimens, particularly the combination of immune checkpoint blockade with epigenetic agents, to address the limitations of immunotherapy alone.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China
- Medical School, Huanghe Science and Technology University, Zhengzhou, China
- *Correspondence: Xinwei Han, ; Lifeng Li,
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Interventional Institute of Zhengzhou University, Zhengzhou, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, China
- *Correspondence: Xinwei Han, ; Lifeng Li,
| |
Collapse
|
43
|
Liang Y, Turcan S. Epigenetic Drugs and Their Immune Modulating Potential in Cancers. Biomedicines 2022; 10:biomedicines10020211. [PMID: 35203421 PMCID: PMC8868629 DOI: 10.3390/biomedicines10020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 11/19/2022] Open
Abstract
Epigenetic drugs are used for the clinical treatment of hematologic malignancies; however, their therapeutic potential in solid tumors is still under investigation. Current evidence suggests that epigenetic drugs may lead to antitumor immunity by increasing antigen presentation and may enhance the therapeutic effect of immune checkpoint inhibitors. Here, we highlight their impact on the tumor epigenome and discuss the recent evidence that epigenetic agents may optimize the immune microenvironment and promote antiviral response.
Collapse
|
44
|
Xu J, Wei L, Liu H, Lei Y, Zhu Y, Liang C, Sun G. CD274 (PD-L1) Methylation is an Independent Predictor for Bladder Cancer Patients' Survival. Cancer Invest 2022; 40:228-233. [PMID: 35020560 DOI: 10.1080/07357907.2022.2028805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study was carried out to demonstrate the prognostic value of CD274 (PD-L1 promoter gene) methylation in bladder cancer patients. UCSC Xena database was searched for relevant information of PD-L1 (CD274) methylation and PD-L1 mRNA expression in bladder cancer. 407 bladder patients were included in our analyses. Multivariate analysis revealed that PD-L1 methylation was an independent predictor for OS (P = 0.037). Moreover, PD-L1 methylation might be a prognostic biomarker for immunotherapy response. However, PD-L1 methylation and PD-L1 mRNA expression were not statistically associated with chemotherapy response. In conclusion, PD-L1 methylation was an independent prognostic factor for bladder cancer patients.
Collapse
Affiliation(s)
- Jing Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Laiming Wei
- School of Advanced Manufacturing Engineering, Hefei University, Hefei, Anhui Province, China
| | - Hao Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yu Lei
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Yanzhe Zhu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Chaozhao Liang
- Department of Urology, the Geriatric Research Institute, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
45
|
Haddad F, Daver N. An Update on Immune Based Therapies in Acute Myeloid Leukemia: 2021 and Beyond! ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:273-295. [PMID: 34972969 DOI: 10.1007/978-3-030-79308-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite advances in the treatment of acute myeloid leukemia (AML), relapse is still widely observed and represents the major cause of death among patients with AML. Treatment options in the relapse setting are limited, still relying predominantly on allogeneic hematopoietic stem cell transplantation (allo-HSCT) and cytotoxic chemotherapy, with poor outcomes. Novel targeted and venetoclax-based combinations are being investigated and have shown encouraging results. Immune checkpoint inhibitors in combination with low-intensity chemotherapy demonstrated encouraging response rates and survival among patients with relapsed and/or refractory (R/R) AML, especially in the pre- and post-allo-HSCT setting. Blocking the CD47/SIRPα pathway is another strategy that showed robust anti-leukemic activity, with a response rate of around 70% and an encouraging median overall survival in patients with newly diagnosed, higher-risk myelodysplastic syndrome and patients with AML with a TP53 mutation. One approach that was proven to be very effective in the relapsed setting of lymphoid malignancies is chimeric antigen receptor (CAR) T cells. It relies on the infusion of genetically engineered T cells capable of recognizing specific epitopes on the surface of leukemia cells. In AML, different CAR constructs with different target antigens have been evaluated and demonstrated safety and feasibility in the R/R setting. However, the difficulty of potently targeting leukemic blasts in AML while sparing normal cells represents a major limitation to their use, and strategies are being tested to overcome this obstacle. A different approach is based on endogenously redirecting the patient's system cells to target and destroy leukemic cells via bispecific T-cell engagers (BiTEs) or dual antigen receptor targeting (DARTs). Early results have demonstrated the safety and feasibility of these agents, and research is ongoing to develop BiTEs with longer half-life, allowing for less frequent administration schedules and developing them in earlier and lower disease burden settings.
Collapse
Affiliation(s)
- Fadi Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
46
|
Checkpoint Inhibitors and Other Immune-Based Therapies in Acute Myeloid Leukemia. Cancer J 2022; 28:43-50. [DOI: 10.1097/ppo.0000000000000573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
The Role of DNA Methylation and DNA Methyltransferases in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1389:317-348. [DOI: 10.1007/978-3-031-11454-0_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
HDAC Inhibition to Prime Immune Checkpoint Inhibitors. Cancers (Basel) 2021; 14:cancers14010066. [PMID: 35008230 PMCID: PMC8750966 DOI: 10.3390/cancers14010066] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has made a breakthrough in medical oncology with the approval of several immune checkpoint inhibitors in clinical routine, improving overall survival of advanced cancer patients with refractory disease. However only a minority of patients experience a durable response with these agents, which has led to the development of combination strategies and novel immunotherapy drugs to further counteract tumor immune escape. Epigenetic regulations can be altered in oncogenesis, favoring tumor progression. The development of epidrugs has allowed targeting successfully these altered epigenetic patterns in lymphoma and leukemia patients. It has been recently shown that epigenetic alterations can also play a key role in tumor immune escape. Epidrugs, like HDAC inhibitors, can prime the anti-tumor immune response, therefore constituting interesting partners to develop combination strategies with immunotherapy agents. In this review, we will discuss epigenetic regulations involved in oncogenesis and immune escape and describe the clinical development of combining HDAC inhibitors with immunotherapies.
Collapse
|
49
|
Azacitidine and Durvalumab in First-line Treatment of Elderly Patients With Acute Myeloid Leukemia. Blood Adv 2021; 6:2219-2229. [PMID: 34933333 PMCID: PMC9006260 DOI: 10.1182/bloodadvances.2021006138] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022] Open
Abstract
This is the first reported randomized trial of immune checkpoint inhibitor therapy in older patients with AML. Azacitidine combined with the PD-L1 inhibitor durvalumab was feasible but did not improve outcomes over azacitidine alone.
Evidence suggests that combining immunotherapy with hypomethylating agents may enhance antitumor activity. This phase 2 study investigated the activity and safety of durvalumab, a programmed death-ligand 1 (PD-L1) inhibitor, combined with azacitidine for patients aged ≥65 years with acute myeloid leukemia (AML), including analyses to identify biomarkers of treatment response. Patients were randomized to first-line therapy with azacitidine 75 mg/m2 on days 1 through 7 with (Arm A, n = 64) or without (Arm B, n = 65) durvalumab 1500 mg on day 1 every 4 weeks. Overall response rate (complete response [CR] + CR with incomplete blood recovery) was similar in both arms (Arm A, 31.3%; Arm B, 35.4%), as were overall survival (Arm A, 13.0 months; Arm B, 14.4 months) and duration of response (Arm A, 24.6 weeks; Arm B, 51.7 weeks; P = .0765). No new safety signals emerged with combination treatment. The most frequently reported treatment-emergent adverse events were constipation (Arm A, 57.8%; Arm B, 53.2%) and thrombocytopenia (Arm A, 42.2%; Arm B, 45.2%). DNA methylation, mutational status, and PD-L1 expression were not associated with response to treatment. In this study, first-line combination therapy with durvalumab and azacitidine in older patients with AML was feasible but did not improve clinical efficacy compared with azacitidine alone. ClinicalTrials.gov: NCT02775903.
Collapse
|
50
|
Lofiego MF, Cannito S, Fazio C, Piazzini F, Cutaia O, Solmonese L, Marzani F, Chiarucci C, Di Giacomo AM, Calabrò L, Coral S, Maio M, Covre A. Epigenetic Immune Remodeling of Mesothelioma Cells: A New Strategy to Improve the Efficacy of Immunotherapy. EPIGENOMES 2021; 5:epigenomes5040027. [PMID: 34968251 PMCID: PMC8715476 DOI: 10.3390/epigenomes5040027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive malignancy with a severe prognosis, and with a long-standing need for more effective therapeutic approaches. However, treatment with immune checkpoint inhibitors is becoming an increasingly effective strategy for MPM patients. In this scenario, epigenetic modifications may negatively regulate the interplay between immune and malignant cells within the tumor microenvironment, thus contributing to the highly immunosuppressive contexture of MPM that may limit the efficacy of immunotherapy. Aiming to further improve prospectively the clinical efficacy of immunotherapeutic approaches in MPM, we investigated the immunomodulatory potential of different classes of epigenetic drugs (i.e., DNA hypomethylating agent (DHA) guadecitabine, histone deacetylase inhibitors VPA and SAHA, or EZH2 inhibitors EPZ-6438) in epithelioid, biphasic, and sarcomatoid MPM cell lines, by cytofluorimetric and real-time PCR analyses. We also characterized the effects of the DHA, guadecitabine, on the gene expression profiles (GEP) of the investigated MPM cell lines by the nCounter platform. Among investigated drugs, exposure of MPM cells to guadecitabine, either alone or in combination with VPA, SAHA and EPZ-6438 demonstrated to be the main driver of the induction/upregulation of immune molecules functionally crucial in host-tumor interaction (i.e., HLA class I, ICAM-1 and cancer testis antigens) in all three MPM subtypes investigated. Additionally, GEP demonstrated that treatment with guadecitabine led to the activation of genes involved in several immune-related functional classes mainly in the sarcomatoid subtype. Furthermore, among investigated MPM subtypes, DHA-induced CDH1 expression that contributes to restoring the epithelial phenotype was highest in sarcomatoid cells. Altogether, our results contribute to providing the rationale to develop new epigenetically-based immunotherapeutic approaches for MPM patients, potentially tailored to the specific histologic subtypes.
Collapse
Affiliation(s)
- Maria Fortunata Lofiego
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Epigen Therapeutics S.R.L., 53100 Siena, Italy;
| | - Sara Cannito
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Carolina Fazio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Francesca Piazzini
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Ornella Cutaia
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Laura Solmonese
- Epigen Therapeutics S.R.L., 53100 Siena, Italy;
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Francesco Marzani
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Carla Chiarucci
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Anna Maria Di Giacomo
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Luana Calabrò
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
| | - Sandra Coral
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Epigen Therapeutics S.R.L., 53100 Siena, Italy;
| | - Michele Maio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Alessia Covre
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, Department of Oncology, University Hospital of Siena, 53100 Siena, Italy; (M.F.L.); (S.C.); (C.F.); (F.P.); (O.C.); (F.M.); (C.C.); (A.M.D.G.); (L.C.); (S.C.); (M.M.)
- Medical Oncology, Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Correspondence:
| | | |
Collapse
|