1
|
Młynarska E, Hajdys J, Czarnik W, Fularski P, Leszto K, Majchrowicz G, Lisińska W, Rysz J, Franczyk B. The Role of Antioxidants in the Therapy of Cardiovascular Diseases-A Literature Review. Nutrients 2024; 16:2587. [PMID: 39203723 PMCID: PMC11357572 DOI: 10.3390/nu16162587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Antioxidants are endogenous and exogenous substances with the ability to inhibit oxidation processes by interacting with reactive oxygen species (ROS). ROS, in turn, are small, highly reactive substances capable of oxidizing a wide range of molecules in the human body, including nucleic acids, proteins, lipids, carbohydrates, and even small inorganic compounds. The overproduction of ROS leads to oxidative stress, which constitutes a significant factor contributing to the development of disease, not only markedly diminishing the quality of life but also representing the most common cause of death in developed countries, namely, cardiovascular disease (CVD). The aim of this review is to demonstrate the effect of selected antioxidants, such as coenzyme Q10 (CoQ10), flavonoids, carotenoids, and resveratrol, as well as to introduce new antioxidant therapies utilizing miRNA and nanoparticles, in reducing the incidence and progression of CVD. In addition, new antioxidant therapies in the context of the aforementioned diseases will be considered. This review emphasizes the pleiotropic effects and benefits stemming from the presence of the mentioned substances in the organism, leading to an overall reduction in cardiovascular risk, including coronary heart disease, dyslipidaemia, hypertension, atherosclerosis, and myocardial hypertrophy.
Collapse
Affiliation(s)
- Ewelina Młynarska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Joanna Hajdys
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Witold Czarnik
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Piotr Fularski
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Klaudia Leszto
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Gabriela Majchrowicz
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Wiktoria Lisińska
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland;
| | - Beata Franczyk
- Department of Nephrocardiology, Medical University of Lodz, Ul. Zeromskiego 113, 90-549 Lodz, Poland; (J.H.); (W.C.); (P.F.); (K.L.); (G.M.); (W.L.)
| |
Collapse
|
2
|
Florek K, Mendyka D, Gomułka K. Vascular Endothelial Growth Factor (VEGF) and Its Role in the Cardiovascular System. Biomedicines 2024; 12:1055. [PMID: 38791016 PMCID: PMC11117514 DOI: 10.3390/biomedicines12051055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Cardiovascular diseases remain the leading cause of death worldwide, with ischemic heart disease (IHD) as the most common. Ischemia-induced angiogenesis is a process in which vascular endothelial growth factor (VEGF) plays a crucial role. To conduct research in the field of VEGF's association in cardiovascular diseases, it is vital to understand its role in the physiological and pathological processes in the heart. VEGF-based therapies have demonstrated a promising role in preclinical studies. However, their potential in human therapies is currently under discussion. Furthermore, VEGF is considered a potential biomarker for collateral circulation assessment and heart failure (HF) mortality. Additionally, as VEGF is involved in angiogenesis, there is a need to elucidate the impact of VEGF-targeted therapies in terms of cardiovascular side effects.
Collapse
Affiliation(s)
- Kamila Florek
- Student Scientific Group of Internal Medicine and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Dominik Mendyka
- Student Scientific Group of Internal Medicine and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Krzysztof Gomułka
- Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
3
|
Carnwath TP, Demel SL, Prestigiacomo CJ. Genetics of ischemic stroke functional outcome. J Neurol 2024; 271:2345-2369. [PMID: 38502340 PMCID: PMC11055934 DOI: 10.1007/s00415-024-12263-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/21/2024]
Abstract
Ischemic stroke, which accounts for 87% of cerebrovascular accidents, is responsible for massive global burden both in terms of economic cost and personal hardship. Many stroke survivors face long-term disability-a phenotype associated with an increasing number of genetic variants. While clinical variables such as stroke severity greatly impact recovery, genetic polymorphisms linked to functional outcome may offer physicians a unique opportunity to deliver personalized care based on their patient's genetic makeup, leading to improved outcomes. A comprehensive catalogue of the variants at play is required for such an approach. In this review, we compile and describe the polymorphisms associated with outcome scores such as modified Rankin Scale and Barthel Index. Our search identified 74 known genetic polymorphisms spread across 48 features associated with various poststroke disability metrics. The known variants span diverse biological systems and are related to inflammation, vascular homeostasis, growth factors, metabolism, the p53 regulatory pathway, and mitochondrial variation. Understanding how these variants influence functional outcome may be helpful in maximizing poststroke recovery.
Collapse
Affiliation(s)
- Troy P Carnwath
- University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| | - Stacie L Demel
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Charles J Prestigiacomo
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| |
Collapse
|
4
|
Ahmed I, John P, Bhatti A. Association analysis of Vascular Endothelial Growth Factor-A (VEGF-A) polymorphism in rheumatoid arthritis using computational approaches. Sci Rep 2023; 13:21957. [PMID: 38081836 PMCID: PMC10713577 DOI: 10.1038/s41598-023-47780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Rheumatoid arthritis (RA), is marked by joint inflammation leading to pannus formation which results in cartilage destruction promoting bone erosion. The pathological hallmark of RA includes synovial hyperplasia and synovial angiogenesis. Active tissue neovascularization is observed in RA. Vascular endothelial Growth factor A (VEGFA), an endothelial cell-specific proangiogenic molecule is triggered by hypoxic cells and its levels are upregulated in RA. The aim of this study was to investigate functional and pathogenic VEGFA variants and to identify the impact of point mutation in VEGFA's interaction with VEGFR2 and how these polymorphisms affect the susceptibility and severity of RA. We investigated impact of these point mutations on the stability of VEGFA using various computational tools. These mutations were further identified by conservational profile as they are highly involved as structural and functional mutations. Furthermore, these selected variants were modelled and docked against targeted domain regions IGD2 and IGD3 of VEGFR2. Further molecular dynamic simulations were performed using Gromacs. Out of 168 nsSNPS, 19 were highlighted as highly pathogenic using insilico prediction tools. InterPro and ConSurf revealed domains and conserved variants respectively. After stability analysis, we concluded that almost all the mutations were responsible for decreasing the protein stability. HOPE predicted that all the selected damaging nsSNPs were present in the domain which is essential for the functioning of VEGFA protein. Constructed Ramachandran plot and ERRAT validated the quality of all the models. Based on the interactions predicted by STRING database, we performed Protein-Protein docking between VEGFA and VEGFR2. We found few conserved interactions and new polar contacts among wild-type and mutants with VEGFR2. From the simulations, we concluded that mutant R108Q was the most stabilizing mutant among all others whereas R82Q, C86Y, and R108W complexed with VEGFR2 were comparatively less stabilizing as compared to the wild type. This study provides insight into pathogenic nsSNPs that can affect VEGFA protein structure and function. These high-risk variants must be taken into consideration for genetic screening of patients suffering from RA.
Collapse
Affiliation(s)
- Iraj Ahmed
- Atta-Ur-Rehman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Peter John
- Faculty of Applied Biosciences, ASAB, NUST, Islamabad, Pakistan.
| | - Attya Bhatti
- Faculty of Applied Biosciences, ASAB, NUST, Islamabad, Pakistan
| |
Collapse
|
5
|
Niemiec P, Jarosz A, Balcerzyk-Matić A, Iwanicka J, Nowak T, Iwanicki T, Gierek M, Kalita M, Garczorz W, Francuz T, Górczyńska-Kosiorz S, Kania W, Szyluk K. Genetic Variability in VEGFA Gene Influences the Effectiveness of Tennis Elbow Therapy with PRP: A Two-Year Prospective Cohort Study. Int J Mol Sci 2023; 24:17292. [PMID: 38139123 PMCID: PMC10743422 DOI: 10.3390/ijms242417292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) is implicated in both the etiology of tendinopathy and its healing process. Polymorphic variants of the VEGFA gene exhibit varied expression, which can influence the phenotype and treatment effectiveness. The aim of the present study was to analyze the influence of VEGFA gene variants on the effectiveness of tennis elbow therapy using platelet-rich plasma (PRP), measured through common patient-reported outcome measures (PROMs). A cohort of 107 patients (132 elbows) with tennis elbow was prospectively analyzed, with a two-year follow-up (at weeks 2, 4, 8, 12, 24, 52, and 104 after PRP injection). PROMs values were compared between variants of five VEGFA gene polymorphisms (rs699947 A>C, rs2010963 C>G, rs1413711 C>T, rs3024998 C>T and rs3025021 C>T) at each follow-up point. Patients with genotypes GG (rs2010963) and CC (rs3024998) had better response to PRP therapy (significantly fewer symptoms and limitations in the upper limb compared to carriers of alleles C and T, respectively). Polymorphisms influenced also selected hematological parameters. VEGFA gene polymorphisms (rs2010963 and rs3024998) appear to be significant treatment modifiers for tendinopathy, and their genotyping may serve as an effective tool for personalized patient selection for PRP therapy.
Collapse
Affiliation(s)
- Paweł Niemiec
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, the Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland; (P.N.); (A.B.-M.); (J.I.); (T.N.); (T.I.)
| | - Alicja Jarosz
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, the Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland; (P.N.); (A.B.-M.); (J.I.); (T.N.); (T.I.)
| | - Anna Balcerzyk-Matić
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, the Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland; (P.N.); (A.B.-M.); (J.I.); (T.N.); (T.I.)
| | - Joanna Iwanicka
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, the Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland; (P.N.); (A.B.-M.); (J.I.); (T.N.); (T.I.)
| | - Tomasz Nowak
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, the Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland; (P.N.); (A.B.-M.); (J.I.); (T.N.); (T.I.)
| | - Tomasz Iwanicki
- Department of Biochemistry and Medical Genetics, School of Health Sciences in Katowice, the Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland; (P.N.); (A.B.-M.); (J.I.); (T.N.); (T.I.)
| | - Marcin Gierek
- Center for Burns Treatment, Jana Pawła II Str., 41-100 Siemianowice Śląskie, Poland;
| | - Marcin Kalita
- District Hospital of Orthopaedics and Trauma Surgery, Bytomska 62 Str., 41-940 Piekary Śląskie, Poland; (M.K.); (K.S.)
| | - Wojciech Garczorz
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland; (W.G.); (T.F.)
| | - Tomasz Francuz
- Department of Biochemistry, School of Medicine in Katowice, Medical University of Silesia in Katowice, Medyków 18 Str., 40-752 Katowice, Poland; (W.G.); (T.F.)
| | - Sylwia Górczyńska-Kosiorz
- Department of Internal Medicine, Diabetology and Nephrology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland;
| | - Wojciech Kania
- Department of Trauma and Orthopedic Surgery, Multidisciplinary Hospital in Jaworzno, Chełmońskiego 28 Str., 43-600 Jaworzno, Poland;
| | - Karol Szyluk
- District Hospital of Orthopaedics and Trauma Surgery, Bytomska 62 Str., 41-940 Piekary Śląskie, Poland; (M.K.); (K.S.)
- Department of Physiotherapy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 12 Str., 40-752 Katowice, Poland
| |
Collapse
|
6
|
Arolkar G, Kumar SK, Wang H, Gonzalez KM, Kumar S, Bishnoi B, Rios Coronado PE, Woo YJ, Red-Horse K, Das S. Dedifferentiation and Proliferation of Artery Endothelial Cells Drive Coronary Collateral Development in Mice. Arterioscler Thromb Vasc Biol 2023; 43:1455-1477. [PMID: 37345524 PMCID: PMC10364966 DOI: 10.1161/atvbaha.123.319319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Collateral arteries act as natural bypasses which reroute blood flow to ischemic regions and facilitate tissue regeneration. In an injured heart, neonatal artery endothelial cells orchestrate a systematic series of cellular events, which includes their outward migration, proliferation, and coalescence into fully functional collateral arteries. This process, called artery reassembly, aids complete cardiac regeneration in neonatal hearts but is absent in adults. The reason for this age-dependent disparity in artery cell response is completely unknown. In this study, we investigated if regenerative potential of coronary arteries is dictated by their ability to dedifferentiate. METHODS Single-cell RNA sequencing of coronary endothelial cells was performed to identify differences in molecular profiles of neonatal and adult endothelial cells in mice. Findings from this in silico analyses were confirmed with in vivo experiments using genetic lineage tracing, whole organ immunostaining, confocal imaging, and cardiac functional assays in mice. RESULTS Upon coronary occlusion, neonates showed a significant increase in actively cycling artery cells and expressed prominent dedifferentiation markers. Data from in silico pathway analyses and in vivo experiments suggested that upon myocardial infarction, cell cycle reentry of preexisting neonatal artery cells, the subsequent collateral artery formation, and recovery of cardiac function are dependent on arterial VegfR2 (vascular endothelial growth factor receptor-2). This subpopulation of dedifferentiated and proliferating artery cells was absent in nonregenerative postnatal day 7 or adult hearts. CONCLUSIONS These data indicate that adult artery endothelial cells fail to drive collateral artery development due to their limited ability to dedifferentiate and proliferate.
Collapse
Affiliation(s)
- Gauri Arolkar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India (G.A., S.K.K., S.K., B.B., S.D.)
| | - Sneha K. Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India (G.A., S.K.K., S.K., B.B., S.D.)
| | - Hanjay Wang
- Department of Cardiothoracic Surgery (H.W., Y.J.W.), Stanford University School of Medicine, CA
| | - Karen M. Gonzalez
- Institute for Stem Cell Biology and Regenerative Medicine (K.M.G., K.R.-H.), Stanford University School of Medicine, CA
- Department of Biology (K.M.G., K.R.-H.), Stanford University, CA
| | - Suraj Kumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India (G.A., S.K.K., S.K., B.B., S.D.)
| | - Bhavnesh Bishnoi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India (G.A., S.K.K., S.K., B.B., S.D.)
| | | | - Y. Joseph Woo
- Department of Cardiothoracic Surgery (H.W., Y.J.W.), Stanford University School of Medicine, CA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology and Regenerative Medicine (K.M.G., K.R.-H.), Stanford University School of Medicine, CA
- Department of Biology (K.M.G., K.R.-H.), Stanford University, CA
- Howard Hughes Medical Institute, Chevy Chase, MD (K.R.-H.)
| | - Soumyashree Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India (G.A., S.K.K., S.K., B.B., S.D.)
| |
Collapse
|
7
|
Elfaki I, Mir R, Duhier FMA, Alotaibi MA, Alalawy AI, Barnawi J, Babakr AT, Mir MM, Altayeb F, Mirghani H, Frah EAM. Clinical Implications of MiR128, Angiotensin I Converting Enzyme and Vascular Endothelial Growth Factor Gene Abnormalities and Their Association with T2D. Curr Issues Mol Biol 2021; 43:1859-1875. [PMID: 34889890 PMCID: PMC8928978 DOI: 10.3390/cimb43030130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023] Open
Abstract
Type 2 DM (T2D) results from the interaction of the genetic and environmental risk factors. Vascular endothelial growth factor (VEGF), angiotensin I-converting enzyme (ACE), and MicroRNAs (MiRNAs) are involved in important physiological processes. Gene variations in VEGF, ACE and MiRNA genes are associated with diseases. In this study we investigated the associations of the VEGF-2578 C/A (rs699947), VEGF-2549 insertion/deletion (I/D), and ACE I/D rs4646994 and Mir128a (rs11888095) gene variations with T2D using the amplification refractory mutation system PCR (ARMS-PCR) and mutation specific PCR (MSP). We screened 122 T2D cases and 126 healthy controls (HCs) for the rs699947, and 133 T2D cases and 133 HCs for the VEGF I/D polymorphism. For the ACE I/D we screened 152 cases and 150 HCs, and we screened 129 cases and 112 HCs for the Mir128a (rs11888095). The results showed that the CA genotype of the VEGF rs699947 and D allele of the VEGF I/D polymorphisms were associated with T2D with OR =2.01, p-value = 0.011, and OR = 2.42, p-value = 0.010, respectively. The result indicated the D allele of the ACE ID was protective against T2D with OR = 0.10, p-value = 0.0001, whereas the TC genotype and the T allele of the Mir128a (rs11888095) were associated with increased risk to T2D with OR = 3.16, p-value = 0.0001, and OR = 1.68, p-value = 0.01, respectively. We conclude that the VEGF (rs699947), VEGF I/D and Mir128a (rs11888095) are potential risk loci for T2D, and that the D allele of the ACE ID polymorphism may be protective against T2D. These results help in identification and stratification for the individuals that at risk for T2D. However, future well-designed studies in different populations and with larger sample sizes are required. Moreover, studies to examine the effects of these polymorphisms on VEGF and ACE proteins are recommended.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Rashid Mir
- Prince and Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (F.M.A.D.); (J.B.); (F.A.)
| | - Faisel M. Abu Duhier
- Prince and Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (F.M.A.D.); (J.B.); (F.A.)
| | - Maeidh A. Alotaibi
- King Faisal Medical Complex Laboratory, Ministry of Health, Taif 26521, Saudi Arabia;
| | - Adel Ibrahim Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Jameel Barnawi
- Prince and Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (F.M.A.D.); (J.B.); (F.A.)
| | - Abdullatif Taha Babakr
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah 57039, Saudi Arabia;
| | - Mohammad Muzaffar Mir
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha 61992, Saudi Arabia;
| | - Faris Altayeb
- Prince and Fahd Bin Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia; (R.M.); (F.M.A.D.); (J.B.); (F.A.)
| | - Hyder Mirghani
- Internal Medicine and Endocrine, Medical Department, Faculty of Medicine, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ehab A. M. Frah
- Department of Statistics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
| |
Collapse
|
8
|
Wang RT, Miao RC, Zhang X, Yang GH, Mu YP, Zhang ZY, Qu K, Liu C. Fork head box M1 regulates vascular endothelial growth factor-A expression to promote the angiogenesis and tumor cell growth of gallbladder cancer. World J Gastroenterol 2021; 27:692-707. [PMID: 33716448 PMCID: PMC7934001 DOI: 10.3748/wjg.v27.i8.692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gallbladder cancer (GBC) is an aggressive type of biliary tract cancer that lacks effective therapeutic targets. Fork head box M1 (FoxM1) is an emerging molecular target associated with tumor progression in GBC, and accumulating evidence suggests that vascular endothelial growth factor (VEGF) promotes various tumors by inducing neoangiogenesis.
AIM To investigate the role of FoxM1 and the angiogenesis effects of VEGF-A in primary GBC.
METHODS Using immunohistochemistry, we investigated FoxM1 and VEGF-A expression in GBC tissues, paracarcinoma tissues and cholecystitis tissues. Soft agar, cell invasion, migration and apoptosis assays were used to analyze the malignant phenotype influenced by FoxM1 in GBC. Kaplan-Meier survival analysis was performed to evaluate the impact of FoxM1 and VEGF-A expression in GBC patients. We investigated the relationship between FoxM1 and VEGF-A by regulating the level of FoxM1. Next, we performed MTT assays and Transwell invasion assays by knocking out or overexpressing VEGF-A to evaluate its function in GBC cells. The luciferase assay was used to reveal the relationship between FoxM1 and VEGF-A. BALB/c nude mice were used to establish the xenograft tumor model.
RESULTS FoxM1 expression was higher in GBC tissues than in paracarcinoma tissues. Furthermore, the high expression of Foxm1 in GBC was significantly correlated with a malignant phenotype and worse overall survival. Meanwhile, high expression of FoxM1 influenced angiogenesis; high expression of FoxM1 combined with high expression of VEGF-A was related to poor prognosis. Attenuated FoxM1 significantly suppressed cell proliferation, transfer and invasion in vitro. Knockdown of FoxM1 in GBC cells reduced the expression of VEGF-A. Luciferase assay showed that FoxM1 was the transcription factor of VEGF-A, and knockdown VEGF-A in FoxM1 overexpressed cells could partly reverse the malignancy phenotype of GBC cells. In this study, we found that FoxM1 was involved in regulation of VEGF-A expression.
CONCLUSION FoxM1 and VEGF-A overexpression were associated with the prognosis of GBC patients. FoxM1 regulated VEGF-A expression, which played an important role in the progression of GBC.
Collapse
Affiliation(s)
- Rui-Tao Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Run-Chen Miao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of SICU, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Xing Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Gang-Hua Yang
- Department of Geriatric Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Yi-Ping Mu
- Department of Medical Information Management Office, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Zi-Yun Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Kai Qu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Chang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
- Department of SICU, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
9
|
Shukla M, Gupta R, Pandey V, Rochette J, Dhandapany PS, Tiwari PK, Amrathlal RS. VEGFA Promoter Polymorphisms rs699947 and rs35569394 Are Associated With the Risk of Anterior Cruciate Ligament Ruptures Among Indian Athletes: A Cross-sectional Study. Orthop J Sports Med 2020; 8:2325967120964472. [PMID: 33344666 PMCID: PMC7731703 DOI: 10.1177/2325967120964472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Associations of genetic variants within certain fibril-forming genes have previously been observed with anterior cruciate ligament (ACL) injuries. Evidence suggests a significant role of angiogenesis-associated cytokines in remodeling the ligament fibril matrix after mechanical loading and maintaining structural and functional integrity of the ligament. Functional polymorphisms within the vascular endothelial growth factor A (VEGFA) gene have emerged as plausible candidates owing to their role in the regulation of angiogenic responses. Hypothesis: VEGFA promoter polymorphisms rs699947 and rs35569394 are associated with ACL injury risk among athletes. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 90 Indian athletes with radiologically confirmed or surgically proven isolated ACL tears and 76 matched-control athletes were selected for the present cross-sectional genetic association study. Oral mouthwash samples were collected from all the case and control athletes and genotyped for VEGFA rs699947 and rs35569394 using the polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) method. Results: The A allele (rs699947) was significantly overrepresented in the ACL group (C vs A allele: odds ratio [OR], 1.68 [95% CI, 1.08-2.60]; P = .021) (CC vs CA + AA: OR, 2.69 [95% CI, 1.37-5.26]; P = .004). There was a greater frequency of the AA genotype in the ACL group in comparison with the control group (OR, 3.38 [95% CI, 1.23-9.28]; P = .016) when only male athletes were compared. Likewise, there was a greater frequency of the I allele (rs35569394) in the ACL group (D vs I allele: OR, 1.64 [95% CI, 1.06-2.55]; P = .025) (DD vs ID + II: OR, 2.61 [95% CI, 1.31-5.21]; P = .006). The A-I haplotype was overrepresented in the ACL group compared with the control group (OR, 1.68 [95% CI, 1.08-2.60]; χ2 = 5.320; P = .021), and both the polymorphisms were found to be in complete linkage disequilibrium (r2 = 0.929; logarithm of the odds score = 63.74; D′ = 1.0). Female athletes did not show any difference in genotype or allele frequency. Conclusion: This is the first study to investigate the association of VEGFA promoter polymorphisms in ACL tears among Indian athletes. Increased frequencies of the A allele (rs699947) and I allele (rs35569394) were observed in the ACL group. These results suggest that sequence variants in the VEGF gene are associated with ACL injury risk among athletes. Further research with long-term follow-ups measuring VEGF expression levels during recovery is warranted to establish its role in ACL injuries and healing.
Collapse
Affiliation(s)
- Manish Shukla
- Department of Exercise Physiology, Lakshmibai National Institute of Physical Education, Gwalior, India.,Centre for Genomics, Molecular & Human Genetics, Jiwaji University, Gwalior, India
| | - Rahul Gupta
- Centre for Genomics, Molecular & Human Genetics, Jiwaji University, Gwalior, India
| | - Vivek Pandey
- Department of Exercise Physiology, Lakshmibai National Institute of Physical Education, Gwalior, India
| | - Jacques Rochette
- HEMATIM Unit 4666, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Perundurai S Dhandapany
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Pramod Kumar Tiwari
- Centre for Genomics, Molecular & Human Genetics, Jiwaji University, Gwalior, India
| | | |
Collapse
|
10
|
Yang Y, Zhang Y, Ren M, Wang Y, Cairang Z, Lin R, Sun H, Liu J. Association of cytochrome P450 2C19 polymorphisms with coronary heart disease risk: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020; 99:e23652. [PMID: 33327349 PMCID: PMC7738024 DOI: 10.1097/md.0000000000023652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Polymorphisms in the cytochrome P450 2C19 (CYP2C19) gene have been reported to be associated with coronary heart disease (CHD), but the results were not consistently analyzed among different patient groups. To derive a more precise estimation of these associations, we will conduct a meta-analysis to investigate the polymorphisms of CYP2C19 in all published studies. METHODS Electronic databases (Google Scholar, ISI Web of Science, Pubmed, Embase, China National Knowledge Infrastructure, Wanfang, and China Biological Medicine) will be used to search clinical case-control or cohort studies about CYP2C19 polymorphism and CHD published until November 2020. Two reviewers will independently select the study, extract the data, and evaluate the quality of the study. Odds ratios with 95% confidence interval will be used to evaluate the strength of the association between the CYP2C19 polymorphism and CHD susceptibility under 4 genetic models. Subgroup analysis will be conducted by different ethnicity and genotyping method. Sensitivity analysis will be performed via sequentially omitting each of the included studies 1 at a time. Begg funnel plots and Egger test will be used to examine the potential publication bias. All the statistical analyses will be performed using Review Manager 5.3 and Stata 12.0. RESULTS This study will provide a better understanding of the association between CYP2C19 polymorphisms and coronary heart disease risk. CONCLUSION The publication of this protocol will minimize the possibility of bias due to post hoc changes to the analysis protocol, thus helping to obtain reliable evidence. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/R7U93.
Collapse
Affiliation(s)
- Yongxin Yang
- Department of Cardiology, The People's Hospital of Qinghai Province
| | - Yaping Zhang
- Department of Cardiology, The People's Hospital of Qinghai Province
| | - Ming Ren
- Department of Cardiology, Qinghai University Affiliated Hospital
| | - Yonglan Wang
- Department of Cardiology, The People's Hospital of Qinghai Province
| | - Zhuoma Cairang
- Department of Cardiology, The People's Hospital of Qinghai Province
| | - Rongxiang Lin
- Department of Cardiology, The People's Hospital of Qinghai Province
| | - Haixia Sun
- Echocardiography Room, The People's Hospital of Qinghai Province, Xining, China
| | - Jianju Liu
- Department of Cardiology, The People's Hospital of Qinghai Province
| |
Collapse
|
11
|
Medvedeva MV, Solodilova MA, Bykanova MA, Ivanova NV, Polonikov AV. Polymorphism of the VEGFA Gene and Coronary Artery Disease: Sex Dimorphism in Relationship between the Gene and Disease Predisposition. RUSS J GENET+ 2020; 56:1512-1519. [DOI: 10.1134/s1022795420120108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/10/2020] [Accepted: 03/29/2020] [Indexed: 07/28/2024]
|
12
|
Punyte V, Vilkeviciute A, Gedvilaite G, Kriauciuniene L, Liutkeviciene R. Association of VEGFA, TIMP-3, and IL-6 gene polymorphisms with predisposition to optic neuritis and optic neuritis with multiple sclerosis. Ophthalmic Genet 2020; 42:35-44. [PMID: 33121296 DOI: 10.1080/13816810.2020.1839916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The etiology of the inflammatory ON is multifactorial. Much attention is paid to the inflammatory and immune processes that are likely to contribute to the demyelination and MS development. IL-6, VEGFA, and TIMP-3 genes are thought to be involved in the inflammatory processes and manifestation of CNS demyelination, so we aimed to determine the relationship between VEGFA rs1413711, TIMP-3 rs9621532, IL-6 rs1800796 gene polymorphisms and ON, and ON with MS. MATERIALS AND METHODS Patients with ON, ON with MS, and a random sample of healthy population were enrolled. The genotyping of VEGFA rs1413711, TIMP-3 rs9621532, and IL-6 rs1800796 polymorphisms was carried out using the real-time polymerase chain reaction method. RESULTS T/C and C/C genotypes of VEGFA rs1413711 were associated with about threefold increased odds of developing ON in the dominant and codominant models. Each allele C at VEGFA rs1413711 was associated with 1.7-fold increased odds of ON development. IL-6 rs1800796 allele C was more frequent in the ON with MS group compared to the control: 17.6% vs. 7.5%, respectively (p = .040). No statistically significant associations were found between TIMP-3 rs9621532 and the ON development. CONCLUSION: VEGFA rs1413711 is associated with the ON development.
Collapse
Affiliation(s)
- Vaida Punyte
- Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania
| | - Alvita Vilkeviciute
- Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania.,Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania
| | - Greta Gedvilaite
- Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania.,Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania
| | - Loresa Kriauciuniene
- Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania.,Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania
| | - Rasa Liutkeviciene
- Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania.,Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy , Kaunas, Lithuania
| |
Collapse
|
13
|
De Pascale MR, Della Mura N, Vacca M, Napoli C. Useful applications of growth factors for cardiovascular regenerative medicine. Growth Factors 2020; 38:35-63. [PMID: 33028111 DOI: 10.1080/08977194.2020.1825410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Novel advances for cardiovascular diseases (CVDs) include regenerative approaches for fibrosis, hypertrophy, and neoangiogenesis. Studies indicate that growth factor (GF) signaling could promote heart repair since most of the evidence is derived from preclinical models. Observational studies have evaluated GF serum/plasma levels as feasible biomarkers for risk stratification of CVDs. Noteworthy, two clinical interventional published studies showed that the administration of growth factors (GFs) induced beneficial effect on left ventricular ejection fraction (LVEF), myocardial perfusion, end-systolic volume index (ESVI). To date, large scale ongoing studies are in Phase I-II and mostly focussed on intramyocardial (IM), intracoronary (IC) or intravenous (IV) administration of vascular endothelial growth factor (VEGF) and fibroblast growth factor-23 (FGF-23) which result in the most investigated GFs in the last 10 years. Future data of ongoing randomized controlled studies will be crucial in understanding whether GF-based protocols could be in a concrete way effective in the clinical setting.
Collapse
Affiliation(s)
| | | | - Michele Vacca
- Division of Immunohematology and Transfusion Medicine, Cardarelli Hospital, Naples, Italy
| | - Claudio Napoli
- IRCCS Foundation SDN, Naples, Italy
- Clinical Department of Internal Medicine and Specialistics, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
14
|
Wang F, Liu Y, Xu H, Qian Y, Zou J, Yi H, Guan J, Yin S. Association between Upper-airway Surgery and Ameliorative Risk Markers of Endothelial Function in Obstructive Sleep Apnea. Sci Rep 2019; 9:20157. [PMID: 31882827 PMCID: PMC6934655 DOI: 10.1038/s41598-019-56601-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/13/2019] [Indexed: 12/01/2022] Open
Abstract
The objective of our study was to evaluate the effects of upper-airway surgery on improvement of endothelial function-related markers in patients with obstructive sleep apnea (OSA). Subjects with moderate to severe OSA who underwent upper-airway surgery, with a follow-up duration of at least 6 months, were included. Pre- and postoperative polysomnographic variables and endothelial function-related markers were compared. Subgroup and correlation analyses were conducted to find possible indicators for better endothelial function-related markers after upper-airway surgery. In total, 44 patients with OSA were included. The mean follow-up duration was 1.72 ± 0.92 years. Serum VEGFA [-20.29 (CI: -35.27, -5.31), p < 0.05], Ang2 [-0.06 (CI: -0.16, 0.03), p < 0.05], E-selectin [-7.21 (CI: -11.01, -3.41), p < 0.001], VWF [-58.83 (CI: -103.93, -13.73), p < 0.05], VWFCP [-33.52 (CI: -66.34, -0.70), p < 0.05], and TM [-0.06 (CI: -0.09, -0.03), p < 0.05] were significantly lower after upper-airway surgery. However, other risk markers of endothelial function, such as Ang1, ICAM1, VEGFR1, and VCAM, did not change significantly. Correlations between improved endothelial function-related markers and ameliorated oxyhemoglobin saturation and glucolipid metabolism were established. Upper-airway surgery might be associated with an improvement in endothelial function in patients with OSA. These changes may be associated with improved oxygen saturation after upper-airway surgery.
Collapse
Affiliation(s)
- Fan Wang
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai, 200233, China
| | - Yuenan Liu
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai, 200233, China
| | - Huajun Xu
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai, 200233, China.
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, South Chongqing Road 225, 200020, Shanghai, China.
| | - Yingjun Qian
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai, 200233, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, South Chongqing Road 225, 200020, Shanghai, China
| | - Jianyin Zou
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China.
- Shanghai Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai, 200233, China.
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, South Chongqing Road 225, 200020, Shanghai, China.
| | - Hongliang Yi
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai, 200233, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, South Chongqing Road 225, 200020, Shanghai, China
| | - Jian Guan
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai, 200233, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, South Chongqing Road 225, 200020, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology Head and Neck Surgery & Center of Sleep Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Road 600, Shanghai, 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Yishan Road 600, Shanghai, 200233, China
- Clinical Research Center, Shanghai Jiao Tong University School of Medicine, South Chongqing Road 225, 200020, Shanghai, China
| |
Collapse
|
15
|
Zhang Y, Zhu M, Zhang F, Zhang S, Du W, Xiao X. Integrating Pharmacokinetics Study, Network Analysis, and Experimental Validation to Uncover the Mechanism of Qiliqiangxin Capsule Against Chronic Heart Failure. Front Pharmacol 2019; 10:1046. [PMID: 31619994 PMCID: PMC6759796 DOI: 10.3389/fphar.2019.01046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
Objectives: The purpose of this study was to propose an integrated strategy for investigating the mechanism of Qiliqiangxin capsule (QLQX) to treat chronic heart failure (CHF). Methods: Pharmacokinetics analysis was performed to screen the active components of QLQX using high-performance liquid chromatography-tandem mass spectrometry techniques. We then constructed the component-target network between the targets of active components in QLQX and CHF using Cytoscape. A network analysis, including topological parameters, clustering, and pathway enrichment, was established to identify the hub targets and pathways. Finally, some of the predicted hub targets were validated experimentally in human cardiac microvascular endothelial cell (HCMEC). Results: We identified 29 active components in QLQX, and 120 consensus potential targets were determined by the pharmacokinetics analysis and network pharmacology approach. Further network analysis indicated that 6 target genes, namely, VEGFA, CYP1A1, CYP2B6, ATP1A1, STAT3, and STAT4, and 10 predicted functional genes, namely, KDR, FLT1, NRP2, JAK2, EGFR, IL-6, AHR, ATP1B1, JAK1, and HIF1A, may be the primary targets regulated by QLQX for the treatment of CHF. Among these targets, VEGFA, IL-6, p-STAT3, and p-JAK2 were selected for validation in the HCMEC. The results indicated that QLQX may inhibit inflammatory processes and promote angiogenesis in CHF via the JAK/STAT signaling pathway. Conclusions: This study provides a strategy for understanding the mechanism of QLQX against CHF by combining pharmacokinetics study, network pharmacology, and experimental validation.
Collapse
Affiliation(s)
- Yu Zhang
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingdan Zhu
- The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fugeng Zhang
- Department of Pharmacy, Tianjin Huanhu Hospital, Tianjin, China
| | - Shaoqiang Zhang
- The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wuxun Du
- The Second Affiliated Hospital, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xuefeng Xiao
- School of Graduate, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
16
|
Babadjanov OA, Karimov HY, Arifov SS, Boboev KT. Evaluation into the Role of the VEGF Gene Polymorphism rs2010963 in the Development of Rosacea and its Relationship with Clinical Subtypes of the Disease. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719030083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Ryan KM, McLoughlin DM. Vascular endothelial growth factor plasma levels in depression and following electroconvulsive therapy. Eur Arch Psychiatry Clin Neurosci 2018; 268:839-848. [PMID: 29968119 DOI: 10.1007/s00406-018-0919-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023]
Abstract
Both animal and human studies have implicated the neurotrophic and angiogenic mediator vascular endothelial growth factor (VEGF) in depression, with meta-analyses, indicating that protein levels are raised in patients with depression. In line with this, we have previously shown that VEGFA mRNA levels are higher in whole blood from patients with depression compared to controls, in particular in patients with psychotic unipolar depression, and that treatment with electroconvulsive therapy (ECT) alters VEGFA mRNA levels. The aim of the present study was, therefore, to extend this previous work by assessing plasma VEGF protein levels in patients with depression compared to healthy controls, and in patients following treatment with ECT. We found that there was no difference between controls and patients with depression with regard to plasma VEGF (p = 0.59), and that VEGF levels were unaltered by ECT (p = 0.09) after correction for potential covariates. We found no correlation between VEGF protein and mRNA levels. Within the subgroup of patients receiving treatment with bitemporal ECT (n = 34), we identified a moderate negative correlation (ρ = - 0.54, p = 0.001) between the change in VEGF and the change in depression severity following treatment; however, no other association between VEGF and mood, responder/remitter status, polarity of depression, or presence of psychosis were found. Overall, our results indicate that the measurement of VEGF protein is not a useful marker for depression or response to treatment, and suggest that the measurement of VEGFA mRNA may prove more useful.
Collapse
Affiliation(s)
- Karen M Ryan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.,Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, Dublin 8, Ireland
| | - Declan M McLoughlin
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland. .,Department of Psychiatry, St. Patrick's University Hospital, Trinity College Dublin, Dublin 8, Ireland.
| |
Collapse
|
18
|
Williamson G, Kay CD, Crozier A. The Bioavailability, Transport, and Bioactivity of Dietary Flavonoids: A Review from a Historical Perspective. Compr Rev Food Sci Food Saf 2018; 17:1054-1112. [DOI: 10.1111/1541-4337.12351] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 12/27/2022]
Affiliation(s)
| | - Colin D. Kay
- Food Bioprocessing and Nutrition Sciences, Plants for Human Health Inst. North Carolina State Univ. North Carolina Research Campus Kannapolis NC 28081 U.S.A
| | - Alan Crozier
- Dept. of Nutrition Univ. of California Davis CA 95616 U.S.A
- School of Medicine Dentistry and Nursing, Univ. Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
19
|
Impact of continuous positive airway pressure on vascular endothelial growth factor in patients with obstructive sleep apnea: a meta-analysis. Sleep Breath 2018; 23:5-12. [PMID: 29671205 DOI: 10.1007/s11325-018-1660-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/05/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Cumulative evidence supports the clear relationship of obstructive sleep apnea (OSA) with cardiovascular disease (CVD). And, adherence to continuous positive airway pressure (CPAP) treatment alleviates the risk of CVD in subjects with OSA. Vascular endothelial growth factor (VEGF), a potent angiogenic cytokine regulated by hypoxia-inducible factor, stimulates the progression of CVD. Thus, whether treatment with CPAP can actually decrease VEGF in patients with OSA remains inconclusive. The purpose of the present study was to quantitatively evaluate the impact of CPAP therapy on VEGF levels in OSA patients. METHODS We systematically searched Web of Science, Cochrane Library, PubMed, and Embase databases that examined the impact of CPAP on VEGF levels in OSA patients prior to May 1, 2017. Related searching terms were "sleep apnea, obstructive," "sleep disordered breathing," "continuous positive airway pressure," "positive airway pressure," and "vascular endothelial growth factor." We used standardized mean difference (SMD) to analyze the summary estimates for CPAP therapy. RESULTS Six studies involving 392 patients were eligible for the meta-analysis. Meta-analysis of the pooled effect showed that levels of VEGF were significantly decreased in patients with OSA before and after CPAP treatment (SMD = - 0.440, 95% confidence interval (CI) = - 0.684 to - 0.196, z = 3.53, p = 0.000). Further, results demonstrated that differences in age, body mass index, apnea-hypopnea index, CPAP therapy duration, sample size, and racial differences also affected CPAP efficacy. CONCLUSIONS Improved endothelial function measured by VEGF may be associated with CPAP therapy in OSA patients. The use of VEGF levels may be clinically important in evaluating CVD for OSA patients. Further large-scale, well-designed long-term interventional investigations are needed to clarify this issue.
Collapse
|
20
|
The VEGFA156b isoform is dysregulated in senescent endothelial cells and may be associated with prevalent and incident coronary heart disease. Clin Sci (Lond) 2018; 132:313-325. [PMID: 29330351 DOI: 10.1042/cs20171556] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/15/2017] [Accepted: 01/08/2018] [Indexed: 12/19/2022]
Abstract
Coronary heart disease (CHD) is a leading cause of morbidity in people over 65 years of age; >40% of all deaths are due to this condition. The association between increasing age and CHD is well documented; the accumulation of senescent cells in cardiac and vascular tissues may represent one factor underpinning this observation. We aimed to identify senescence-related expression changes in primary human senescent cardiomyocytes and endothelial cells and to relate transcript expression in peripheral blood leucocytes to prevalent and incident CHD in the InCHIANTI study of aging. We quantified splicing factor expression and splicing patterns of candidate transcripts in proliferative and senescent later passage endothelial cells and cardiomyocytes using qRTPCR. Senescence-associated isoforms also expressed in peripheral blood leucocytes were then examined for associations with CHD status in 134 pairs of age, sex and BMI-matched CHD cases and controls. Splicing factor expression was dysregulated in senescent cardiomyocytes, as previously reported for endothelial cells, as was the expression of alternatively expressed cardiac and vascular candidate genes in both cell types. We found nominal associations between the expression of VEGFA156b and FNI-EIIIIA isoforms in peripheral blood mRNA and CHD status. Dysregulated splicing factor expression is a key feature of senescent cardiomyocytes and endothelial cells. Altered splicing of key cardiac or endothelial genes may contribute to the risk of CHD in the human population.
Collapse
|
21
|
Wang YT, Wang YH, Ma YT, Fu ZY, Yang YN, Ma X, Li XM, Adi D, Liu F, Chen BD. ACAT-1 gene polymorphism is associated with increased susceptibility to coronary artery disease in Chinese Han population: a case-control study. Oncotarget 2017; 8:89055-89063. [PMID: 29179498 PMCID: PMC5687668 DOI: 10.18632/oncotarget.21649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/27/2017] [Indexed: 02/06/2023] Open
Abstract
Several studies suggest an important role of Acyl-CoA: cholesterol acyltransferase-1(ACAT-1) in the development of atherosclerosis. The aim of present study was to investigate whether there exists a possible correlation between genetic variations in ACAT-1 genes and coronary artery disease (CAD) risk. Four polymorphisms (rs1044925, rs11545566, rs12121758 and rs10913733) were finally selected and genotyped in 750 CAD patients and 580 health controls, using the improved multiplex ligation detection reaction (iMLDR) method. We found that the rs11545566 G allele was associated with a significantly elevated CAD risk [GG vs. AA: adjusted odds ratio (AOR) = 1.62, 95% confidence interval (CI) = 1.13-2.32, P = 0.008; GA/GG vs. AA: AOR = 1.67, 95% CI = 1.22-2.29, P = 0.001]. The rs10913733 G allele was also associated with a significantly elevated CAD risk (GG vs. TT: AOR = 1.57, 95% CI = 1.08-2.28, P = 0.018; GT/GG vs. TT: AOR = 1.39, 95% CI = 1.07-1.79, P = 0.013). Multivariate linear regression analysis showed that the rs11545566 polymorphism was independently associated with the Gensini scores (P = 0.005). The Gensini score of subjects in the variant GG genotype group and the GG/GA genotype group were higher than the score of subjects in the AA genotype group (32.49 ± 26.60 and 31.26 ± 26.96 vs. 23.45 ± 21.64; P = 0.001 and 0.002, respectively). Our results demonstrate that ACAT-1 rs1154556 and rs10913733 polymorphism are novel genetic factors in the development of CAD. Rs11545566 was also associated with the severity of CAD.
Collapse
Affiliation(s)
- Yong-Tao Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Ying-Hong Wang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Zhen-Yan Fu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Yi-Ning Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Xiao-Mei Li
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Dilare Adi
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, P.R. China.,Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Fen Liu
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| | - Bang-Dang Chen
- Xinjiang Key Laboratory of Cardiovascular Disease Research, Urumqi 830054, P.R. China
| |
Collapse
|
22
|
PPARG c.1347C>T polymorphism is associated with cancer susceptibility: from a case-control study to a meta-analysis. Oncotarget 2017; 8:102277-102290. [PMID: 29254243 PMCID: PMC5731953 DOI: 10.18632/oncotarget.20925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/27/2017] [Indexed: 12/19/2022] Open
Abstract
Recently, several studies suggested that PPARG c.1347C>T polymorphism was correlated with cancer risk. However, past results remained controversial. In this study, we performed a case-control study on the relationship of PPARG c.1347C>T polymorphism with risk of non-small cell lung cancer (NSCLC) and subsequently carried out a meta-analysis to further assess the association between PPARG c.1347C>T and overall cancer. In our case-control study, after adjusting by age, sex, body mass index (BMI), smoking and drinking, a tendency to increased NSCLC risk was noted (CT/TT vs. CC: adjusted OR, 1.21; 95% CI, 0.97–1.51; P = 0.097). In the meta-analysis, we found a significant association between PPARG c.1347C>T polymorphism and overall cancer risk (T vs. C: OR, 1.13; 95% CI, 1.03–1.23; P = 0.006; TT vs. CC: OR, 1.29; 95% CI, 1.07–1.56; P = 0.008, CT/TT vs. CC: OR, 1.11; 95% CI, 1.02–1.21; P = 0.014 and TT vs. CT/CC: OR, 1.26; 95% CI, 1.04–1.52; P = 0.016). In a subgroup analysis by ethnicity, evidence of significant association between PPARG c.1347C>T polymorphism and cancer risk was found among Asians and mixed populations. In a subgroup analysis by cancer type, PPARG c.1347C>T polymorphism was associated with risk of esophageal cancer and glioblastoma. In addition, in a subgroup analysis by origin of cancer cell, evidence of significant association between PPARG c.1347C>T polymorphism and cancer risk was also found among epithelial tumor. In conclusion, the findings indicate PPARG c.1347C>T polymorphism may increase the susceptibility of cancer.
Collapse
|
23
|
Farías JG, Molina VM, Carrasco RA, Zepeda AB, Figueroa E, Letelier P, Castillo RL. Antioxidant Therapeutic Strategies for Cardiovascular Conditions Associated with Oxidative Stress. Nutrients 2017; 9:nu9090966. [PMID: 28862654 PMCID: PMC5622726 DOI: 10.3390/nu9090966] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress (OS) refers to the imbalance between the generation of reactive oxygen species (ROS) and the ability to scavenge these ROS by endogenous antioxidant systems, where ROS overwhelms the antioxidant capacity. Excessive presence of ROS results in irreversible damage to cell membranes, DNA, and other cellular structures by oxidizing lipids, proteins, and nucleic acids. Oxidative stress plays a crucial role in the pathogenesis of cardiovascular diseases related to hypoxia, cardiotoxicity and ischemia-reperfusion. Here, we describe the participation of OS in the pathophysiology of cardiovascular conditions such as myocardial infarction, anthracycline cardiotoxicity and congenital heart disease. This review focuses on the different clinical events where redox factors and OS are related to cardiovascular pathophysiology, giving to support for novel pharmacological therapies such as omega 3 fatty acids, non-selective betablockers and microRNAs.
Collapse
Affiliation(s)
- Jorge G Farías
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Víctor M Molina
- Unidad de Cuidados Intensivos, Hospital de Niños Roberto del Río, Santiago 7500922, Chile.
- Unidad de Cuidados Intensivos Pediátricos, Hospital Clínico Pontificia Universidad Católica de Chile, Santiago 7500922, Chile.
| | - Rodrigo A Carrasco
- Laboratorio de Investigación Biomédica, Departamento de Medicina Interna, Hospital del Salvador, Santiago 7500922, Chile.
- Departamento de Cardiología, Clínica Alemana, Santiago 7500922, Chile.
| | - Andrea B Zepeda
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile.
| | - Elías Figueroa
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile.
- Núcleo de Investigación en Producción Alimentaria, BIOACUI, Escuela de Acuicultura, Universidad Católica de Temuco, Temuco 4780000, Chile.
| | - Pablo Letelier
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4780000, Chile.
- School of Health Sciences, Universidad Católica de Temuco, Temuco 4780000, Chile.
| | - Rodrigo L Castillo
- Laboratorio de Investigación Biomédica, Departamento de Medicina Interna, Hospital del Salvador, Santiago 7500922, Chile.
- Programa de Fisiopatología Oriente, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 7500922, Chile.
| |
Collapse
|
24
|
The Relationship between VEGFA and TGFB1 Polymorphisms and Target Lesion Revascularization after Elective Percutaneous Coronary Intervention. DISEASE MARKERS 2017; 2017:8165219. [PMID: 28811677 PMCID: PMC5546133 DOI: 10.1155/2017/8165219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/10/2017] [Accepted: 06/14/2017] [Indexed: 12/31/2022]
Abstract
Background and Aim The specific association between genetic variation and in-stent restenosis is still only partly understood. The aim of this study is to analyze the relationship between functional polymorphisms in the genes encoding vascular endothelial growth factor A (VEGF-A; rs699947) and transforming growth factor beta 1 (TGF-β1; rs1800470) and target lesion revascularization (TLR) risk. Methods A total of 676 patients (805 lesions) with stable coronary artery disease (SCAD) who received elective percutaneous coronary intervention (PCI) with at least one bare-metal stent implantation were included. The primary study endpoint was TLR at a 4-year follow-up. Results The TLR rate was higher in patients with the VEGFA A/A genotype (15.4%) than in patients with the VEGFA A/C (7.9%) and C/C (8.9%) genotypes (p = 0.009). The VEGFA A/A genotype, after adjustment for clinical and procedural covariates, remained significantly and independently associated with the TLR (hazard ratio—2.09 [95% confidence interval 1.32–3.33, p = 0.0017]). However, we found no association between TLR and the TGFB1 genotype. Conclusion The VEGFA A/A genotype is significantly and independently associated with TLR risk in Polish SCAD patients who received elective PCI with bare-metal stent implantation.
Collapse
|