1
|
Xu X, Liu J, Fang C, Deng X, Zhu D, Jiang J, Wu C. NAALADL2-AS2 functions as a competing endogenous RNA to regulate apoptosis and drug resistance in DLBCL. Cancer Biol Ther 2024; 25:2432690. [PMID: 39575888 PMCID: PMC11587827 DOI: 10.1080/15384047.2024.2432690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024] Open
Abstract
To explore role of NAALADL2-AS2 as ceRNA in DLBCL. Fluorescence in situ hybridization was used to determine location of NAALADL2-AS2 in cells and to verify its expression in DLBCL tissues. The miRNAs interacting with NAALADL2-AS2 and related regulatory genes were identified by small interfering RNA (siRNA) assay, luciferase reporter assay, fluorescent quantitative polymerase chain reaction, western blotting. DLBCL cells transfected with NAALADL2-AS2 siRNA or control siRNA were treated with doxorubicin, rituximab at different concentrations alone or in combination. The growth curves, drug sensitivity changes of cells before and after transfection were detected by MTT assay, ATP-TCA drug sensitivity test. Cell proliferation was detected by BrdU cell proliferation assay, and apoptosis was detected by Annexin V-fluorescein isothiocyanate/propidium iodide staining. The effects and mechanisms of NAALADL2-AS2 on proliferation, apoptosis, drug resistance of DLBCL cells were studied at cellular level. We confirmed expression of NAALADL2-AS2 in both cytoplasm and nuclei of DLBCL cells. Additionally, we observed elevated levels of NAALADL2-AS2 in DLBCL tissues. We discovered that NAALADL2-AS2 functions as ceRNA to inhibit expression of miR-34a, miR-125a, whereas overexpression of NAALADL2-AS2 indirectly upregulates expression of BCL-2. Interfering with NAALADL2-AS2 promoted apoptosis in DLBCL cells, resulting in approximately a 40% increase in sensitivity to doxorubicin and rituximab. In vivo experiments further confirmed that targeting NAALADL2-AS2 effectively suppressed tumor growth, leading to upregulation of miR-34a and miR-125a, downregulation of BCL-2, and enhanced apoptosis in DLBCL cells, which significantly improved their sensitivity to doxorubicin and rituximab by approximately 50%. These results indicate that NAALADL2-AS2/miR-34a, miR-125a/BCL-2 networks hold promise as therapeutic targets for treatment of DLBCL.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Apoptosis/drug effects
- Drug Resistance, Neoplasm/genetics
- Animals
- Cell Line, Tumor
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Mice
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Cell Proliferation/drug effects
- Rituximab/pharmacology
- Rituximab/therapeutic use
- Gene Expression Regulation, Neoplastic/drug effects
- Xenograft Model Antitumor Assays
- RNA, Competitive Endogenous
Collapse
Affiliation(s)
- Xiaoli Xu
- Department of Integrated Chinese and Western Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Juan Liu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Cheng Fang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xu Deng
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Danxia Zhu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Changping Wu
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
2
|
Zhuang S, Yang Z, Cui Z, Zhang Y, Che F. Epigenetic alterations and advancement of lymphoma treatment. Ann Hematol 2024; 103:1435-1454. [PMID: 37581713 DOI: 10.1007/s00277-023-05395-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023]
Abstract
Lymphomas, complex and heterogeneous malignant tumors, originate from the lymphopoietic system. These tumors are notorious for their high recurrence rates and resistance to treatment, which leads to poor prognoses. As ongoing research has shown, epigenetic modifications like DNA methylation, histone modifications, non-coding RNA regulation, and RNA modifications play crucial roles in lymphoma pathogenesis. Epigenetic modification-targeting drugs have exhibited therapeutic efficacy and tolerability in both monotherapy and combination lymphoma therapy. This review discusses pathogenic mechanisms and potential epigenetic therapeutic targets in common lymphomas, offering new avenues for lymphoma diagnosis and treatment. We also discuss the shortcomings of current lymphoma treatments, while suggesting potential areas for future research, in order to improve the prediction and prognosis of lymphoma.
Collapse
Affiliation(s)
- Shuhui Zhuang
- Affiliated Hospital of Weifang Medical University, School of Clinical Medicine, Weifang Medical University, Weifang, China
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhaobo Yang
- Spine Surgery, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Zhuangzhuang Cui
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China
| | - Yuanyuan Zhang
- Department of Hematology, Linyi People's Hospital, Shandong University, Linyi, 276000, Shandong, China.
- Department of Hematology, Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, People's Republic of China.
| | - Fengyuan Che
- Department of Neurology, Central Laboratory and Key Laboratory of Neurophysiology, Linyi People's Hospital, Shandong University, Linyi, 276000, China.
| |
Collapse
|
3
|
Stewart JA, Bhagwat AS. A redox-sensitive iron-sulfur cluster in murine FAM72A controls its ability to degrade the nuclear form of uracil-DNA glycosylase. DNA Repair (Amst) 2022; 118:103381. [PMID: 35908367 PMCID: PMC10996437 DOI: 10.1016/j.dnarep.2022.103381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
Murine FAM72A, mFAM72A, binds the nuclear form of uracil-DNA glycosylase, mUNG2, inhibits its activity and causes its degradation. In immunoprecipitation assays the human paralog, hFAM72A, binds hUNG2 and is a potential anti-cancer drug target because of its high expression in many cancers. Using purified mFAM72A, and mUNG2 proteins we show that mFAM72A binds mUNG2, and the N-terminal 25 amino acids of mUNG2 bind mFAM72A at a nanomolar dissociation constant. We also show that mFAM72A is present throughout the cells, and mUNG2 helps localize it to nuclei. Based on in silico models of mFAM72A-mUNG2 interactions, we constructed several mutants of mFAM72A and found that while they have reduced ability to deplete mUNG2, the mutations also destabilized the former protein. We confirmed that Withaferin A, a predicted lead molecule for the design of FAM72A inhibitors, binds mFAM72A with micromolar affinity but has little affinity to mUNG2. We identified two potential metal-binding sites in mFAM72A and show that one of the sites contains an Fe-S cluster. This redox-sensitive cluster is involved in the mFAM72A-mUNG2 interaction and modulates mFAM72A activity. Hydrogen peroxide treatment of cells increases mUNG2 depletion in a FAM72A-dependent fashion suggesting that mFAM72A activity is redox-sensitive.
Collapse
Affiliation(s)
- Jessica A Stewart
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | - Ashok S Bhagwat
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
4
|
Gholami A, Farhadi K, Sayyadipour F, Soleimani M, Saba F. Long noncoding RNAs (lncRNAs) in human lymphomas. Genes Dis 2022; 9:900-914. [PMID: 35685474 PMCID: PMC9170579 DOI: 10.1016/j.gendis.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 01/17/2023] Open
Abstract
Lymphomas are a diverse group of haematologic malignancies, which occur in infection-fighting cells of the lymphatic system. Long non-coding RNAs (lncRNAs) are non-coding RNAs, which have recently received significant attention as the main mediators of gene expression. In this review, we summarize the current knowledge on lncRNAs involved in lymphomas, their molecular functions, as well as their potential clinical value. Relevant literature was identified by a PubMed search of English language papers using the following terms: Lymphoma, LncRNA, leukemia, proliferation, apoptosis, and prognosis. LncRNAs are imperative for lymphoma carcinogenesis through affecting apoptosis, cell proliferation, invasion, and response to chemotherapy. The expression level of lncRNAs can affect chemotherapy-induced apoptosis. Taken together, lncRNA dysregulation in lymphoma cells is not only an epiphenomenon but also lncRNA transcription is critically related to the initiation and progression of lymphomas. Aberrant expression of lncRNAs can lead to the transformation of normal lymphocytes into lymphoma cells.
Collapse
Affiliation(s)
- Ali Gholami
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 671568-5420, Iran
| | - Khosro Farhadi
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 671568-5420, Iran
| | - Fatemeh Sayyadipour
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 671568-5420, Iran
| | - Masoud Soleimani
- Department of Haematology, Tarbiat Modares University, Tehran 146899-5513, Iran
| | - Fakhredin Saba
- Department of Medical Laboratory Science, School of Paramedical, Kermanshah University of Medical Sciences, Kermanshah 671568-5420, Iran
| |
Collapse
|
5
|
Lift the curtain on long non-coding RNAs in hematological malignancies: Pathogenic elements and potential targets. Cancer Lett 2022; 536:215645. [DOI: 10.1016/j.canlet.2022.215645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 12/19/2022]
|
6
|
MicroRNA and Other Non-Coding RNAs in Epstein-Barr Virus-Associated Cancers. Cancers (Basel) 2021; 13:cancers13153909. [PMID: 34359809 PMCID: PMC8345394 DOI: 10.3390/cancers13153909] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022] Open
Abstract
EBV is a direct causative agent in around 1.5% of all cancers. The oncogenic properties of EBV are related to its ability to activate processes needed for cellular proliferation, survival, migration, and immune evasion. The EBV latency program is required for the immortalization of infected B cells and involves the expression of non-coding RNAs (ncRNAs), including viral microRNAs. These ncRNAs have different functions that contribute to virus persistence in the asymptomatic host and to the development of EBV-associated cancers. In this review, we discuss the function and potential clinical utility of EBV microRNAs and other ncRNAs in EBV-associated malignancies. This review is not intended to be comprehensive, but rather to provide examples of the importance of ncRNAs.
Collapse
|
7
|
β-Elemene suppresses tumor growth of diffuse large B-cell lymphoma through regulating lncRNA HULC-mediated apoptotic pathway. Biosci Rep 2021; 40:222028. [PMID: 32010942 PMCID: PMC7012654 DOI: 10.1042/bsr20190804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 01/04/2023] Open
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is considered the most common aggressive subtype of lymphoma. A number of DLBCL patients fail to achieve a response to currently available therapies or develop resistance. β-Elemene is derived from herb Curcuma wenyujin, and exhibits anti-tumor activity in both solid and non-solid tumors through modulating several molecular signaling pathways. We aimed to explore the role of β-elemene in DLBCL treatment and elucidate the involved mechanism. Materials and methods: Cell viability, apoptosis and expressions of related proteins were assessed and in vivo study were performed to determine the tumor suppressive effect of β-elemene and explore the molecular mechanisms. Results: β-Elemene significantly suppressed the viability of DLBCL cells, and β-elemene down-regulated the lncRNA HULC expression and regulated key pro-apoptotic and anti-apoptotic proteins to induce significant apoptosis of DLBCL cells. HULC overexpression could decrease the β-elemene induced apoptosis, while HULC knockdown increased the apoptosis in DLBCL cells. In vivo study further confirmed that β-elemene could suppress the growth of DLBCL xenograft and regulate the HULC expression and the critical proteins of the apoptotic pathway. Conclusion: β-Elemene performs as a tumor suppressor and modulator of HULC-mediated apoptotic pathway in DLBCL and will be an alternative candidate for clinical application.
Collapse
|
8
|
Ho NTT, Rahane CS, Pramanik S, Kim PS, Kutzner A, Heese K. FAM72, Glioblastoma Multiforme (GBM) and Beyond. Cancers (Basel) 2021; 13:cancers13051025. [PMID: 33804473 PMCID: PMC7957592 DOI: 10.3390/cancers13051025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is a serious and aggressive cancer disease that has not allowed scientists to rest for decades. In this review, we consider the new gene pair |-SRGAP2–FAM72-| and discuss its role in the cell cycle and the possibility of defining new therapeutic approaches for the treatment of GBM and other cancers via this gene pair |-SRGAP2–FAM72-|. Abstract Neural stem cells (NSCs) offer great potential for regenerative medicine due to their excellent ability to differentiate into various specialized cell types of the brain. In the central nervous system (CNS), NSC renewal and differentiation are under strict control by the regulation of the pivotal SLIT-ROBO Rho GTPase activating protein 2 (SRGAP2)—Family with sequence similarity 72 (FAM72) master gene (i.e., |-SRGAP2–FAM72-|) via a divergent gene transcription activation mechanism. If the gene transcription control unit (i.e., the intergenic region of the two sub-gene units, SRGAP2 and FAM72) gets out of control, NSCs may transform into cancer stem cells and generate brain tumor cells responsible for brain cancer such as glioblastoma multiforme (GBM). Here, we discuss the surveillance of this |-SRGAP2–FAM72-| master gene and its role in GBM, and also in light of FAM72 for diagnosing various types of cancers outside of the CNS.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Ho
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
| | - Chinmay Satish Rahane
- Maharashtra Institute of Medical Education and Research, Talegaon Dabhade, Maharashtra 410507, India;
| | - Subrata Pramanik
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany;
| | - Pok-Son Kim
- Department of Mathematics, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Korea;
| | - Arne Kutzner
- Department of Information Systems, College of Computer Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea;
- Correspondence:
| |
Collapse
|
9
|
Circulating long non-coding RNAs HOTAIR, Linc-p21, GAS5 and XIST expression profiles in diffuse large B-cell lymphoma: association with R-CHOP responsiveness. Sci Rep 2021; 11:2095. [PMID: 33483590 PMCID: PMC7822898 DOI: 10.1038/s41598-021-81715-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
The reliable identification of diffuse large B-cell lymphoma (DLBCL)-specific targets owns huge implications for its diagnosis and treatment. Long non-coding RNAs (lncRNAs) are implicated in DLBCL pathogenesis; however, circulating DLBCL-related lncRNAs are barely investigated. We investigated plasma lncRNAs; HOTAIR, Linc-p21, GAS5 and XIST as biomarkers for DLBCL diagnosis and responsiveness to R-CHOP therapy. Eighty-four DLBCL patients and thirty-three healthy controls were included. Only plasma HOTAIR, XIST and GAS5 were differentially expressed in DLBCL patients compared to controls. Pretreatment plasma HOTAIR was higher, whereas GAS5 was lower in non-responders than responders to R-CHOP. Plasma GAS5 demonstrated superior diagnostic accuracy (AUC = 0.97) whereas a panel of HOTAIR + GAS5 superiorly discriminated responders from non-responders by ROC analysis. In multivariate analysis, HOTAIR was an independent predictor of non-response. Among patients, plasma HOTAIR, Linc-p21 and XIST were correlated. Plasma GAS5 negatively correlated with International Prognostic Index, whereas HOTAIR positively correlated with performance status, denoting their prognostic potential. We constructed the lncRNAs-related protein-protein interaction networks linked to drug response via bioinformatics analysis. In conclusion, we introduce plasma HOTAIR, GAS5 and XIST as potential non-invasive diagnostic tools for DLBCL, and pretreatment HOTAIR and GAS5 as candidates for evaluating therapy response, with HOTAIR as a predictor of R-CHOP failure. We provide novel surrogates for future predictive studies in personalized medicine.
Collapse
|
10
|
Karstensen KT, Schein A, Petri A, Bøgsted M, Dybkær K, Uchida S, Kauppinen S. Long Non-Coding RNAs in Diffuse Large B-Cell Lymphoma. Noncoding RNA 2020; 7:1. [PMID: 33379241 PMCID: PMC7838888 DOI: 10.3390/ncrna7010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy in adults. Although significant progress has been made in recent years to treat DLBCL patients, 30%-40% of the patients eventually relapse or are refractory to first line treatment, calling for better therapeutic strategies for DLBCL. Long non-coding RNAs (lncRNAs) have emerged as a highly diverse group of non-protein coding transcripts with intriguing molecular functions in human disease, including cancer. Here, we review the current understanding of lncRNAs in the pathogenesis and progression of DLBCL to provide an overview of the field. As the current knowledge of lncRNAs in DLBCL is still in its infancy, we provide molecular signatures of lncRNAs in DLBCL cell lines to assist further lncRNA research in DLBCL.
Collapse
Affiliation(s)
- Kasper Thystrup Karstensen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Aleks Schein
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Martin Bøgsted
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (M.B.); (K.D.)
- Department of Haematology, Clinical Cancer Research Center, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Karen Dybkær
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (M.B.); (K.D.)
- Department of Haematology, Clinical Cancer Research Center, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| |
Collapse
|
11
|
Shi Y, Ding D, Qu R, Tang Y, Hao S. Non-Coding RNAs in Diffuse Large B-Cell Lymphoma. Onco Targets Ther 2020; 13:12097-12112. [PMID: 33262609 PMCID: PMC7699984 DOI: 10.2147/ott.s281810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma worldwide. The molecular mechanisms underlying DLBCL have not been fully elucidated, and approximately 40% of patients who undergo standard chemoimmunotherapy still present with primary refractory disease or relapse. Non-coding RNAs (ncRNAs), a group of biomolecules functioning at the RNA level, are increasingly recognized as vital components of molecular biology. With the development of RNA-sequencing (RNA-Seq) technology, accumulating evidence shows that ncRNAs are important mediators of diverse biological processes such as cell proliferation, differentiation, and apoptosis. They are also considered promising biomarkers and better candidates than proteins and genes for the early recognition of disease onset, as they are associated with relative stability, specificity, and reproducibility. In this review, we provide the first comprehensive description of the current knowledge regarding three groups of ncRNAs-microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs)-focusing on their characteristics, molecular functions, as well as diagnostic and therapeutic potential in DLBCL. This review provides an exhaustive account for researchers to explore novel biomarkers for the diagnosis and prognosis of DLBCL and therapeutic targets.
Collapse
Affiliation(s)
- Yan Shi
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Daihong Ding
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Rongfeng Qu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yan Tang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shuhong Hao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
12
|
An Overview of Non-coding RNAs and Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:3-45. [PMID: 32285403 DOI: 10.1007/978-981-15-1671-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease management and timely diagnosis remain a major dilemma. Delineating molecular mechanisms of cardiovascular diseases is opening horizon in the field of molecular medicines and in the development of early diagnostic markers. Non-coding RNAs are the highly functional and vibrant nucleic acids and are known to be involved in the regulation of endothelial cells, vascular and smooth muscles cells, cardiac metabolism, ischemia, inflammation and many processes in cardiovascular system. This chapter is comprehensively focusing on the overview of the non-coding RNAs including their discovery, generation, classification and functional regulation. In addition, overview regarding different non-coding RNAs as long non-coding, siRNAs and miRNAs involvement in the cardiovascular diseases is also addressed. Detailed functional analysis of this vast group of highly regulatory molecules will be promising for shaping future drug discoveries.
Collapse
|
13
|
Huang X, Qian W, Ye X. Long Noncoding RNAs in Diffuse Large B-Cell Lymphoma: Current Advances and Perspectives. Onco Targets Ther 2020; 13:4295-4303. [PMID: 32547063 PMCID: PMC7244244 DOI: 10.2147/ott.s253330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a complex and aggressive malignancy originating from B lymphocytes and characterized by extensive clinical, phenotypic and molecular heterogeneity. Although research conducted over the past decades has substantially improved our understanding of DLBCL, its pathogenesis has not yet been fully elucidated. The development of RNA sequencing technology has allowed the identification of numerous long noncoding RNAs (lncRNAs) that exhibit aberrant expression in DLBCL. These lncRNAs play crucial roles in DLBCL development and pathogenesis and are thus good candidates for use as diagnostic biomarkers or therapeutic targets. In this review, we describe the lncRNAs associated with DLBCL, summarize their characteristics and molecular functions, and discuss their relationships with clinical practice.
Collapse
Affiliation(s)
- Xianbo Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xiujin Ye
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| |
Collapse
|
14
|
Wang Y, Wang X, Ma Y, Wang YX, Di Y. Expression profiles of long noncoding RNAs in retinopathy of prematurity. Neural Regen Res 2020; 15:1962-1968. [PMID: 32246647 PMCID: PMC7513972 DOI: 10.4103/1673-5374.280328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Long noncoding RNA (lncRNA) regulates the proliferation and migration of human retinal endothelial cells, as well as retinal neovascularization in diabetic retinopathy. Based on similarities between the pathogenesis of retinopathy of prematurity (ROP) and diabetic retinopathy, lncRNA may also play a role in ROP. Seven-day-old mice were administered 75 ± 2% oxygen for 5 days and normoxic air for another 5 days to establish a ROP model. Expression of lncRNA and mRNA in the retinal tissue of mice was detected by high-throughput sequencing technology, and biological functions of the resulted differentially expressed RNAs were evaluated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses. The results showed that compared with the control group, 57 lncRNAs were differentially expressed, including 43 upregulated and 14 downregulated, in the retinal tissue of ROP mice. Compared with control mice, 42 mRNAs were differentially expressed in the retinal tissue of ROP mice, including 24 upregulated and 18 downregulated mRNAs. Differentially expressed genes were involved in ocular development and related metabolic pathways. The differentially expressed lncRNAs may regulate ROP in mice via microRNAs and multiple signaling pathways. Our results revealed that these differentially expressed lncRNAs may be therapeutic targets for ROP treatment. This study was approved by the Medical Ethics Committee of Shengjing Hospital of China Medical University on February 25, 2016 (approval No. 2016PS074K).
Collapse
Affiliation(s)
- Yue Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Xue Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yuan Ma
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yue-Xia Wang
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yu Di
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
15
|
Sallam T, Sandhu J, Tontonoz P. Long Noncoding RNA Discovery in Cardiovascular Disease: Decoding Form to Function. Circ Res 2019; 122:155-166. [PMID: 29301847 DOI: 10.1161/circresaha.117.311802] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Despite significant improvements during the past 3 decades, cardiovascular disease remains a leading worldwide health epidemic. The recent identification of a fascinating group of mediators known as long noncoding RNAs (lncRNAs) has provided a wealth of new biology to explore for cardiovascular risk mitigation. lncRNAs are expressed in a highly context-specific fashion, and multiple lines of evidence implicated them in diverse biological processes. Indeed, abnormalities of lncRNAs have been directly linked with human ailments, including cardiovascular biology and disease. Of particular interest to the cardiovascular research community, dysregulation in lncRNA regulatory circuits have been associated with cardiac pathological hypertrophy, vascular disease, cell fate programming and development, atherosclerosis, dyslipidemia, and metabolic syndrome. Although techniques in interrogating noncoding RNAs are rapidly evolving, a major challenge in studying lncRNAs remains navigating through multiple technical constraints. In this review, we provide a road map for lncRNA discovery and interrogation in biological systems relevant to cardiovascular disease and highlight approaches to decipher their modes of action.
Collapse
Affiliation(s)
- Tamer Sallam
- From the Division of Cardiology, Department of Medicine (T.S.) and Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute (J.S., P.T.), University of California, Los Angeles.
| | - Jaspreet Sandhu
- From the Division of Cardiology, Department of Medicine (T.S.) and Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute (J.S., P.T.), University of California, Los Angeles
| | - Peter Tontonoz
- From the Division of Cardiology, Department of Medicine (T.S.) and Department of Pathology and Laboratory Medicine, Howard Hughes Medical Institute (J.S., P.T.), University of California, Los Angeles
| |
Collapse
|
16
|
Dahl M, Kristensen LS, Grønbæk K. Long Non-Coding RNAs Guide the Fine-Tuning of Gene Regulation in B-Cell Development and Malignancy. Int J Mol Sci 2018; 19:E2475. [PMID: 30134619 PMCID: PMC6165225 DOI: 10.3390/ijms19092475] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
With the introduction of next generation sequencing methods, such as RNA sequencing, it has become apparent that alterations in the non-coding regions of our genome are important in the development of cancer. Particularly interesting is the class of long non-coding RNAs (lncRNAs), including the recently described subclass of circular RNAs (circRNAs), which display tissue- and cell-type specific expression patterns and exert diverse regulatory functions in the cells. B-cells undergo complex and tightly regulated processes in order to develop from antigen naïve cells residing in the bone marrow to the highly diverse and competent effector cells circulating in peripheral blood. These processes include V(D)J recombination, rapid proliferation, somatic hypermutation and clonal selection, posing a risk of malignant transformation at each step. The aim of this review is to provide insight into how lncRNAs including circRNAs, participate in normal B-cell differentiation, and how deregulation of these molecules is involved in the development of B-cell malignancies. We describe the prognostic value and functional significance of specific deregulated lncRNAs in diseases such as acute lymphoblastic leukemia, chronic lymphocytic leukemia, mantle cell lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, Burkitt lymphoma and multiple myeloma, and we provide an overview of the current knowledge on the role of circRNAs in these diseases.
Collapse
MESH Headings
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/immunology
- Burkitt Lymphoma/pathology
- Cell Differentiation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/pathology
- Gene Expression Regulation, Neoplastic
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/immunology
- Lymphoma, Follicular/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/immunology
- Lymphoma, Mantle-Cell/pathology
- Multiple Myeloma/genetics
- Multiple Myeloma/immunology
- Multiple Myeloma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- RNA/genetics
- RNA/immunology
- RNA, Circular
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/immunology
- Signal Transduction
Collapse
Affiliation(s)
- Mette Dahl
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
- Biotech Research and Innovation Centre, BRIC, Copenhagen University, DK-2100 Copenhagen, Denmark.
| | - Lasse Sommer Kristensen
- Department of Molecular Biology and Genetics (MBG), Aarhus University, DK-8000 Aarhus, Denmark.
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus, Denmark.
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark.
- Biotech Research and Innovation Centre, BRIC, Copenhagen University, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
17
|
Dousti F, Shahrisa A, Ansari H, Hajjari M, Tahmasebi Birgani Y, Mohammadiasl J, Tahmasebi Birgani M. Long non-coding RNAs expression levels in diffuse large B-cell lymphoma: An in silico analysis. Pathol Res Pract 2018; 214:1462-1466. [PMID: 30104077 DOI: 10.1016/j.prp.2018.08.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/28/2018] [Accepted: 08/06/2018] [Indexed: 01/03/2023]
Abstract
Long non-coding RNAs (lncRNAs), are lengthy noncoding transcripts with pivotal roles in biological pathways including cell cycle, apoptosis and chromatin remodeling. Aberrant expression of lncRNAs has been strongly connected with tumor progression and metastasis. However, the prognostic significance of lncRNAs in diffuse large-B-cell lymphoma (DLBCL) remains unclear. In this study, the expression levels of 189 approved lncRNAs were considered in DLBCL patients using several different genomic and transcriptome datasets. The analyses showed that the lncRNA GAS5 allocated the maximum score of RNA dysregulation and can be considered as good choice in DLBCLs' researches.
Collapse
Affiliation(s)
- Fatemeh Dousti
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Arman Shahrisa
- Department of Molecular Genetics, Faculty of Biosciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Ansari
- Departments of Biotechnology, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran.
| | - Mohammadreza Hajjari
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Yaser Tahmasebi Birgani
- Department of Environmental Health Engineering, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Javad Mohammadiasl
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Tahmasebi Birgani
- Department of Medical Genetics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Iran.
| |
Collapse
|
18
|
Luo H, Yang H, Lin Y, Zhang Y, Pan C, Feng P, Yu Y, Chen X. LncRNA and mRNA profiling during activation of tilapia macrophages by HSP70 and Streptococcus agalactiae antigen. Oncotarget 2017; 8:98455-98470. [PMID: 29228702 PMCID: PMC5716742 DOI: 10.18632/oncotarget.21427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022] Open
Abstract
Objectives To investigate the lncRNA profiling during tilapia peritoneal macrophages (TPMs) activation and discuss the relationship between lncRNA and mRNA. Materials and Methods RNA sequencing was used to investigate the lncRNA and mRNA profiles of TPMs activation following stimulation with Streptococcus agalactiae (Sa) antigen, heat shock protein 70 (HSP70) and HSP70+Sa. The expressions of lncRNA and mRNA were confirmed by qPCR. 356 lncRNA, 10173 mRNA and 1782 transcripts of uncertain coding potential (TUCP) were differentially expressed by pairwise comparison. These lncRNAs were shorter in length, fewer in exon number and higher in expression levels as compared with mRNAs. 683 lncRNAs and 4320 mRNAs were co-located, while 316 lncRNAs and 9997 mRNAs were in co-expression networks. Seven mRNAs (ANKRD34A, FMODA, GJA3, CNTN5, BMP10, BAI2 and HS3ST6) were involved in both networks of LNC_00035 and LNC_000466. Differentially expressed genes were involved in signaling pathways, such as "phosphorylation", "cytokine-cytokine receptor interaction", "endocytosis" and "MHC protein complex". LNC_000792, LNC_000215, LNC_000035 and LNC_000310, with cis and/or trans relationships with mRNAs, were also involved in ceRNA network. Conclusions These results might represent the first identified expression profile of lncRNAs and mRNAs in tilapia macrophages activated by HSP70 and Sa.
Collapse
Affiliation(s)
- Honglin Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fishery Sciences, Nanning, P.R. China.,Guangxi Medical University, Nanning, P.R. China
| | - Huizan Yang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fishery Sciences, Nanning, P.R. China.,College of Animal Science and Technology, Guangxi University, Nanning, P.R. China
| | - Yong Lin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fishery Sciences, Nanning, P.R. China
| | - Yongde Zhang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fishery Sciences, Nanning, P.R. China
| | - Chuanyan Pan
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fishery Sciences, Nanning, P.R. China
| | - Pengfei Feng
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fishery Sciences, Nanning, P.R. China
| | - Yanling Yu
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fishery Sciences, Nanning, P.R. China
| | - Xiaohan Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fishery Sciences, Nanning, P.R. China
| |
Collapse
|