1
|
Landa I, Cabanillas ME. Genomic alterations in thyroid cancer: biological and clinical insights. Nat Rev Endocrinol 2024; 20:93-110. [PMID: 38049644 DOI: 10.1038/s41574-023-00920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
Tumours can arise from thyroid follicular cells if they acquire driver mutations that constitutively activate the MAPK signalling pathway. In addition, a limited set of additional mutations in key genes drive tumour progression towards more aggressive and less differentiated disease. Unprecedented insights into thyroid tumour biology have come from the breadth of thyroid tumour sequencing data from patients and the wide range of mutation-specific mechanisms identified in experimental models, in combination with the genomic simplicity of thyroid cancers. This knowledge is gradually being translated into refined strategies to stratify, manage and treat patients with thyroid cancer. This Review summarizes the biological underpinnings of the genetic alterations involved in thyroid cancer initiation and progression. We also provide a rationale for and discuss specific examples of how to implement genomic information to inform both recommended and investigational approaches to improve thyroid cancer prognosis, redifferentiation strategies and targeted therapies.
Collapse
Affiliation(s)
- Iñigo Landa
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Maria E Cabanillas
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
2
|
Yang J, Cheng Y, Nie Y, Tian B, Huang J, Gong R, Li Z, Zhu J, Gong Y. TRPC5 expression promotes the proliferation and invasion of papillary thyroid carcinoma through the HIF-1α/Twist pathway. Transl Oncol 2024; 39:101809. [PMID: 37918167 PMCID: PMC10638037 DOI: 10.1016/j.tranon.2023.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the effect of TRPC5 on PTC (papillary thyroid carcinoma) proliferation and invasion. METHODS Immunofluorescence and western blot were used to evaluate the expression of TRPC5 in paraffin sections and clinical tissues. Overexpression and silencing of TRPC5 to generate the cells for in vitro experiments. Wound-healing assay, transwell invasion assay, MTT assay, and in vivo tumorigenicity assay were used to determine cell proliferation and cell migration in vitro and in vivo. Real-time PCR was used to test the expression of TRPC5. Western blot was used to test the expression of downstream factors: E-cadherin, Vimentin, MMP-9, MMP-2, TRPC5, ZEB, Snail, and Twist. RESULTS The level of TRPC5 protein expression was higher in PTC than in adjacent normal thyroid tissue. TPC-1 cells overexpressing TRPC5 were more proliferative, had longer migration distances, and increased the number of invading cells. TPC-1 cells silenced with TRPC5 had a weaker proliferation capacity, shorter migration distances, and a reduced number of invading cells. Overexpression and silencing of TRPC5 modulated E-cadherin, Vimentin, MMP-9, MMP-2, TRPC5, and Twist, but did not affect ZEB and Snail. The results of tumor formation experiments in nude mice showed that inhibition of TRPC5 expression suppressed the volume and weight of transplanted tumors. CONCLUSION TRPC5 induced papillary thyroid cancer metastasis and progression via up-regulated HIF-1α signaling in vivo and in vitro. High TRPC5 expression is a biomarker for lymph node metastasis at its early stages.
Collapse
Affiliation(s)
- Jing Yang
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Cheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Sichuan Electric Power Hospital, China
| | - Yan Nie
- West China School of Medicine, Sichuan University, China
| | - Bole Tian
- Department of pancreatic Surgery, West China Hospital, Sichuan University, China
| | - Jing Huang
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rixiang Gong
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihui Li
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingqiang Zhu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanping Gong
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Leandro-García LJ, Landa I. Mechanistic Insights of Thyroid Cancer Progression. Endocrinology 2023; 164:bqad118. [PMID: 37503738 PMCID: PMC10403681 DOI: 10.1210/endocr/bqad118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
Differentiated thyroid cancers (DTCs) are primarily initiated by mutations that activate the MAPK signaling cascade, typically at BRAF or RAS oncoproteins. DTCs can evolve to more aggressive forms, specifically, poorly differentiated (PDTC) and anaplastic thyroid cancers (ATC), by acquiring additional genetic alterations which deregulate key pathways. In this review, we focused on bona fide mutations involved in thyroid cancer progression for which consistent mechanistic data exist. Here we summarized the relevant literature, spanning approximately 2 decades, highlighting genetic alterations that are unquestionably enriched in PDTC/ATC. We describe the relevant functional data obtained in multiple in vitro and in vivo thyroid cancer models employed to study genetic alterations in the following genes and functional groups: TP53, effectors of the PI3K/AKT pathway, TERT promoter, members of the SWI/SNF chromatin remodeling complex, NF2, and EIF1AX. In addition, we briefly discuss other genetic alterations that are selected in aggressive thyroid tumors but for which mechanistic data is still either limited or nonexistent. Overall, we argue for the importance conveyed by preclinical studies for the clinical translation of genomic knowledge of thyroid cancers.
Collapse
Affiliation(s)
- Luis Javier Leandro-García
- Hereditary Endocrine Cancer Group, Human Cancer Genetics Program, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Iñigo Landa
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
4
|
Abstract
Background: Several mechanisms likely cooperate with the mitogen-activated protein (MAP)-kinase pathway to promote cancer progression in the thyroid. One putative pathway is NOTCH signaling, which is implicated in several other malignancies. In thyroid cancer, data regarding the role of the NOTCH pathway are insufficient and even contradictory. Methods: A BRAFV600E-driven papillary thyroid carcinoma (PTC) mouse model was subjected to NOTCH pathway genetic alterations, and the tumor burden was followed by ultrasound. Further analyses were performed on PTC cell lines or noncancerous cells transfected with NOTCHIC or BRAFV600E, which were then subjected to pharmacological treatment with MAP-kinase or NOTCH pathway inhibitors. Results: The presence of the BRAFV600E mutation coupled with overexpression of the NOTCH intracellular domain led to significantly bigger thyroid tumors in mice, to a more aggressive carcinoma, and decreased overall survival. Although more cystic, the tumors did not progress into anaplastic thyroid carcinomas. On the contrary, the deletion of RBP-jκ (a major cofactor involved in NOTCH signaling) did not alter the phenotype in mice. BRAFV600E-mutated PTC cell lines were resistant to pharmacological inhibition of the NOTCH pathway. Inhibition of MEK1/2 uncovered a predominant effect on Hes1/Hey1 transcription compared with NOTCH inhibition in BRAFV600E-mutated cell lines. Finally, γ-secretase activity and γ-secretase subunit transcription levels were dependent on ERK activation. Our findings suggest that MAP-kinase activity overrides the NOTCH pathway in the context of thyroid cancer. Conclusions: The interaction between the BRAF and NOTCH pathways demonstrates that the BRAFV600E mutation might bypass NOTCH and exert a strong positive effect on NOTCH downstream targets in thyroid carcinoma.
Collapse
Affiliation(s)
- Florian Traversi
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Amandine Stooss
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | | | - Roch-Philippe Charles
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
Hicks HM, McKenna LR, Espinoza VL, Pozdeyev N, Pike LA, Sams SB, LaBarbera D, Reigan P, Raeburn CD, E Schweppe R. Inhibition of BRAF and ERK1/2 has synergistic effects on thyroid cancer growth in vitro and in vivo. Mol Carcinog 2021; 60:201-212. [PMID: 33595872 DOI: 10.1002/mc.23284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 11/09/2022]
Abstract
Mutations in the BRAF gene are highly prevalent in thyroid cancer. However, the response rate of thyroid tumors to BRAF-directed therapies has been mixed. Increasingly, combination therapies inhibiting the MAPK pathway at multiple nodes have shown promise. Recently developed ERK1/2 inhibitors are of interest for use in combination therapies as they have the advantage of inhibiting the most downstream node of the MAPK pathway, therefore preventing pathway reactivation. Here, we examined the effect of combined BRAF inhibition (dabrafenib) and ERK1/2 inhibition (SCH772984) on the growth and survival of a panel of BRAF-mutant thyroid cancer cell lines using in vitro and in vivo approaches. We found that resistance due to MAPK pathway reactivation occurs quickly with single-agent BRAF inhibition, but can be prevented with combined BRAF and ERK1/2 inhibition. Combined inhibition also results in synergistic growth inhibition, decreased clonogenic survival, and enhanced induction of apoptosis in a subset of BRAF-mutant thyroid cancer cells. Finally, combined inhibition of BRAF and ERK1/2 results in enhanced inhibition of tumor growth in an anaplastic thyroid cancer in vivo model. These results provide key rationale to pursue combined BRAF and ERK1/2 inhibition as an alternative therapeutic strategy for BRAF-mutant advanced thyroid cancer patients.
Collapse
Affiliation(s)
- Hannah M Hicks
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Logan R McKenna
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Surgery, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Veronica L Espinoza
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nikita Pozdeyev
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Bioinformatics and Personalized Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Laura A Pike
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Sharon B Sams
- Department of Pathology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Daniel LaBarbera
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Philip Reigan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher D Raeburn
- Department of Surgery, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rebecca E Schweppe
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Department of Pathology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
6
|
Lai WA, Liu CY, Lin SY, Chen CC, Hang JF. Characterization of Driver Mutations in Anaplastic Thyroid Carcinoma Identifies RAS and PIK3CA Mutations as Negative Survival Predictors. Cancers (Basel) 2020; 12:E1973. [PMID: 32698386 PMCID: PMC7409295 DOI: 10.3390/cancers12071973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is rare but highly aggressive. We investigated the association of selected driver mutations, including BRAF, RAS, PIK3CA, TERT promoter, TP53, POLE, and mismatch repair deficiency (MMR-D) with the clinicopathological features of ATC to identify prognostic and predictive biomarkers. Thirty-nine retrospective cases from pathology archives were enrolled for clinicopathology analysis and immunohistochemistry, and 27 cases had sufficient specimens for further molecular testing using targeted next-generation sequencing and mass spectrometry. BRAFV600E and RAS mutations were identified in 25.9% and 40.7% of ATC, respectively. BRAFV600E mutation was significantly associated with coexisting papillary thyroid carcinoma (p = 0.009) and RAS mutations with female gender (p = 0.012). In univariant analysis, the non-BRAF/RAS tumors were significantly associated with the presence of a sarcomatoid pattern (p = 0.045). PIK3CA, TERT promoter, and TP53 mutations were identified in 14.8%, 81.5%, and 70.4% of cases, respectively. No MMR-D or POLE mutations were detected. In survival analyses, RAS and PIK3CA mutations were significantly associated with inferior outcomes (p = 0.03 and p = 0.006, respectively). In conclusion, driver mutations in ATC are associated with distinct clinicopathological features. RAS and PIK3CA mutations were negative predictors for patient survival. Emerging therapeutic agents targeting BRAF, RAS, and PI3 kinase may benefit a substantial proportion of ATC patients.
Collapse
Affiliation(s)
- Wei-An Lai
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (W.-A.L.); (S.-Y.L.)
| | - Chih-Yi Liu
- Division of Pathology, Sijhih Cathay General Hospital, New Taipei City 221, Taiwan;
| | - Shih-Yao Lin
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (W.-A.L.); (S.-Y.L.)
- Department of Pathology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan;
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Jen-Fan Hang
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan; (W.-A.L.); (S.-Y.L.)
- National Yang-Ming University School of Medicine, Taipei 112, Taiwan
| |
Collapse
|
7
|
Jhiang SM, Konda B, Sipos JA, Nabhan FA. Prospects for Redifferentiating Agents in the Use of Radioactive Iodine Therapy for Thyroid Cancer. Thyroid 2020; 30:471-473. [PMID: 32106791 PMCID: PMC7187962 DOI: 10.1089/thy.2020.0143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sissy M. Jhiang
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, Ohio
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
- Address correspondence to: Sissy M. Jhiang, PhD, Department of Physiology and Cell Biology, The Ohio State University, Room 304, Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210
| | - Bhavana Konda
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Jennifer A. Sipos
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | - Fadi A. Nabhan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
8
|
Laetitia G, Sven S, Fabrice J. Combinatorial Therapies in Thyroid Cancer: An Overview of Preclinical and Clinical Progresses. Cells 2020; 9:E830. [PMID: 32235612 PMCID: PMC7226736 DOI: 10.3390/cells9040830] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Accounting for about 2% of cancers diagnosed worldwide, thyroid cancer has caused about 41,000 deaths in 2018. Despite significant progresses made in recent decades in the treatment of thyroid cancer, many resistances to current monotherapies are observed. In our complete review, we report all treatments that were tested in combination against thyroid cancer. Many preclinical studies investigating the effects of inhibitors of the MAPK and PI3K pathways highlighted the importance of mutations in such signaling pathways and their impacts on the subsequent efficacy of targeted therapies, thus reinforcing the need of more personalized therapeutic strategies. Our review also points out the multiple possibilities of combinatory strategies, particularly using therapies targeting proliferation, survival, angiogenesis, and in combination with conventional treatments such as chemotherapies. In any case, resistances to anticancer therapies always develop through the activation of alternative signaling pathways. Combinatory treatments aim to blockade such mechanisms, which are gradually decrypted, thus offering new perspectives for the future. The preclinical and clinical aspects of our review allow us to have a global opinion of the different therapeutic options currently evaluated in combination and to be aware about new perspectives of treatment of thyroid cancer.
Collapse
Affiliation(s)
- Gheysen Laetitia
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine, Mons University, Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (S.S.); (J.F.)
| | | | | |
Collapse
|
9
|
Belli V, Matrone N, Napolitano S, Migliardi G, Cottino F, Bertotti A, Trusolino L, Martinelli E, Morgillo F, Ciardiello D, De Falco V, Giunta EF, Bracale U, Ciardiello F, Troiani T. Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models. J Exp Clin Cancer Res 2019; 38:236. [PMID: 31164152 PMCID: PMC6549349 DOI: 10.1186/s13046-019-1230-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/13/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Targeting the epidermal growth factor receptor (EGFR) either alone or in combination with chemotherapy is an effective treatment for patients with RAS wild-type metastatic colorectal cancer (mCRC). However, only a small percentage of mCRC patients receive clinical benefits from anti-EGFR therapies, due to the development of resistance mechanisms. In this regard, HER2 has emerged as an actionable target in the treatment of mCRC patients with resistance to anti-EGFR therapy. METHODS We have used SW48 and LIM1215 human colon cancer cell lines, quadruple wild-type for KRAS, NRAS, BRAF and PI3KCA genes, and their HER2-amplified (LIM1215-HER2 and SW48-HER2) derived cells to perform in vitro and in vivo studies in order to identify novel therapeutic strategies in HER2 gene amplified human colorectal cancer. RESULTS LIM1215-HER2 and SW48-HER2 cells showed over-expression and activation of the HER family receptors and concomitant intracellular downstream signaling including the pro-survival PI3KCA/AKT and the mitogenic RAS/RAF/MEK/MAPK pathways. HER2-amplified cells were treated with several agents including anti-EGFR antibodies (cetuximab, SYM004 and MM151); anti-HER2 (trastuzumab, pertuzumab and lapatinib) inhibitors; anti-HER3 (duligotuzumab) inhibitors; and MEK and PI3KCA inhibitors, such as refametinib and pictilisib, as single agents and in combination. Subsequently, different in vivo experiments have been performed. MEK plus PI3KCA inhibitors treatment determined the best antitumor activity. These results were validated in vivo in HER2-amplified patient derived tumor xenografts from three metastatic colorectal cancer patients. CONCLUSIONS These results suggest that combined therapy with MEK and PI3KCA inhibitors could represent a novel and effective treatment option for HER2-amplified colorectal cancer.
Collapse
Affiliation(s)
- Valentina Belli
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| | - Nunzia Matrone
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| | - Stefania Napolitano
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Giorgia Migliardi
- Department of Oncology, University of Torino, 10060 Candiolo, Turin, Italy
- Candiolo Cancer Institute – FPO IRCCS, 10060 Candiolo, Turin, Italy
| | - Francesca Cottino
- Department of Oncology, University of Torino, 10060 Candiolo, Turin, Italy
| | - Andrea Bertotti
- Department of Oncology, University of Torino, 10060 Candiolo, Turin, Italy
- Candiolo Cancer Institute – FPO IRCCS, 10060 Candiolo, Turin, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, 10060 Candiolo, Turin, Italy
- Candiolo Cancer Institute – FPO IRCCS, 10060 Candiolo, Turin, Italy
| | - Erika Martinelli
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| | - Floriana Morgillo
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| | - Davide Ciardiello
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| | - Vincenzo De Falco
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| | - Emilio Francesco Giunta
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| | - Umberto Bracale
- Department of Endocrinology, Gastroenterology and Endoscopic Surgery, Università di Napoli Federico II, 80131 Naples, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
10
|
Lin X, Liao J, Yang Z, Fan X, Cullen KJ, Chen L, Dan H. Inhibition of cisplatin-resistant head and neck squamous cell carcinoma by combination of Afatinib with PD0325901, a MEK inhibitor. Am J Cancer Res 2019; 9:1282-1292. [PMID: 31285959 PMCID: PMC6610054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/15/2019] [Indexed: 06/09/2023] Open
Abstract
ErbB family members that contain EGFR, HER2, HER3 and HER4 play important roles in many cancer types, including head and neck; however, inhibition of these receptors by small molecule kinase inhibitors showed limited results due to compensatory up-regulation of some key survival signaling pathways. Here, we explore the effectiveness of Afatinib, an irreversible inhibitor of EGFR, HER2, and HER4, in combination with the MEK inhibitor PD0325901 to inhibit cisplatin-resistant head and neck squamous cell carcinoma (HNSCC). We treated two cisplatin-resistant HNSCC cell lines, UMSCC74B and O28, with Afatinib, PD0325901, or a combination, and measured signaling pathways, cell proliferation, and survival. We found that Afatinib blocked Akt/mTOR activity and phosphorylation of EGFR, HER2 and HER3, but up-regulated MEK/ERK signaling. Interestingly, MEK inhibitor PD0325901 blocked ERK phosphorylation, but elevated phosphorylation of Akt and mTOR pathways. Similarly, Afatinib and PD0325901 inhibited all these pathways and synergistically suppressed cell proliferation and survival. Our data demonstrate that Afatinib in combination with MEK inhibitors could provide a potential novel therapy for cisplatin-resistant head and neck squamous cell cancer.
Collapse
Affiliation(s)
- Xiaofeng Lin
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of MedicineBaltimore, MD, USA
- Department of Radiation Oncology, Cancer Hospital Affiliated with Guangxi Medical UniversityNanning, Guangxi, China
| | - Jipei Liao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of MedicineBaltimore, MD, USA
| | - Zejia Yang
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of MedicineBaltimore, MD, USA
| | - Xiaoxuan Fan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of MedicineBaltimore, MD, USA
| | - Kevin J Cullen
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of MedicineBaltimore, MD, USA
| | - Long Chen
- Department of Radiation Oncology, Cancer Hospital Affiliated with Guangxi Medical UniversityNanning, Guangxi, China
| | - Hancai Dan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of MedicineBaltimore, MD, USA
- Department of Pathology, University of Maryland School of MedicineBaltimore, MD, USA
| |
Collapse
|
11
|
Mitchell CB, Phillips WA. Mouse Models for Exploring the Biological Consequences and Clinical Significance of PIK3CA Mutations. Biomolecules 2019; 9:biom9040158. [PMID: 31018529 PMCID: PMC6523081 DOI: 10.3390/biom9040158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 12/15/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway is involved in a myriad of cellular signalling pathways that regulate cell growth, metabolism, proliferation and survival. As a result, alterations in the PI3K pathway are frequently associated with human cancers. Indeed, PIK3CA-the gene encoding the p110α catalytic subunit of PI3K-is one of the most commonly mutated human oncogenes. PIK3CA mutations have also been implicated in non-malignant conditions including congenital overgrowth syndromes and vascular malformations. In order to study the role of PIK3CA mutations in driving tumorigenesis and tissue overgrowth and to test potential therapeutic interventions for these conditions, model systems are essential. In this review we discuss the various mouse models currently available for preclinical studies into the biological consequences and clinical significance of PIK3CA mutations.
Collapse
Affiliation(s)
| | - Wayne A Phillips
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
12
|
Landa I, Knauf JA. Mouse Models as a Tool for Understanding Progression in Braf V600E-Driven Thyroid Cancers. Endocrinol Metab (Seoul) 2019; 34:11-22. [PMID: 30784243 PMCID: PMC6435851 DOI: 10.3803/enm.2019.34.1.11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
The development of next generation sequencing (NGS) has led to marked advancement of our understanding of genetic events mediating the initiation and progression of thyroid cancers. The NGS studies have confirmed the previously reported high frequency of mutually-exclusive oncogenic alterations affecting BRAF and RAS proto-oncogenes in all stages of thyroid cancer. Initially identified by traditional sequencing approaches, the NGS studies also confirmed the acquisition of alterations that inactivate tumor protein p53 (TP53) and activate phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA) in advanced thyroid cancers. Novel alterations, such as those in telomerase reverse transcriptase (TERT) promoter and mating-type switching/sucrose non-fermenting (SWI/SNF) complex, are also likely to promote progression of the BRAFV600E-driven thyroid cancers. A number of genetically engineered mouse models (GEMM) of BRAFV600E-driven thyroid cancer have been developed to investigate thyroid tumorigenesis mediated by oncogenic BRAF and to explore the role of genetic alterations identified in the genomic analyses of advanced thyroid cancer to promote tumor progression. This review will discuss the various GEMMs that have been developed to investigate oncogenic BRAFV600E-driven thyroid cancers.
Collapse
Affiliation(s)
- Iñigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jeffrey A Knauf
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
13
|
ElMokh O, Taelman V, Radojewski P, Roelli MA, Stoss A, Dumont RA, Dettmer MS, Phillips WA, Walter MA, Charles RP. MEK Inhibition Induces Therapeutic Iodine Uptake in a Murine Model of Anaplastic Thyroid Cancer. J Nucl Med 2018; 60:917-923. [PMID: 30464041 DOI: 10.2967/jnumed.118.216721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/15/2018] [Indexed: 12/19/2022] Open
Abstract
Anaplastic thyroid carcinoma (ATC) is refractory to radioiodine therapy in part because of impaired iodine metabolism. We targeted the mitogen-activated protein kinase and phosphatidylinositol 3-kinase (PI3'K) pathways with the intent to induce radioiodine uptake for radioiodine treatment of ATC. Methods: Human ATC cells were used to evaluate the ability of pharmacologic inhibition of the mitogen-activated protein kinase and PI3'K pathways to induce radioiodine uptake. Thyrocyte-specific double-mutant BRAFV600E PIK3CAH1047R mice were treated with a MEK inhibitor followed by radioiodine treatment, and tumor burden was monitored by ultrasound imaging. Results: ATC cell lines showed an increase in sodium-iodine symporter transcription when treated with a MEK or BRAFV600E inhibitor alone and in combination with PI3'K inhibitor. This translated into a dose-dependent elevation of iodine uptake after treatment with a MEK inhibitor alone and in combination with a PI3'K inhibitor. In vivo, MEK inhibition but not BRAF or PI3'K inhibition upregulated sodium-iodine symporter transcription. This translated into a stable reduction of tumor burden when mice were treated with a MEK inhibitor before radioiodine administration. Conclusion: This study confirms the ability of MEK inhibition to induce iodine uptake in in vitro and in vivo models of ATC. The approach of using a MEK inhibitor before radioiodine treatment could readily be translated into clinical practice and provide a much-needed therapeutic option for patients with ATC.
Collapse
Affiliation(s)
- Oussama ElMokh
- Institute for Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Vincent Taelman
- Institute for Nuclear Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Piotr Radojewski
- Institute for Nuclear Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Matthias A Roelli
- Institute for Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Amandine Stoss
- Institute for Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Rebecca A Dumont
- Department of Radiology, University of California at San Francisco, San Francisco, California
| | | | - Wayne A Phillips
- Cancer Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Martin A Walter
- Institute for Nuclear Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Roch-Philippe Charles
- Institute for Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Wei PL, Gu H, Liu J, Wang Z. Development of Fangjiomics for Systems Elucidation of Synergistic Mechanism Underlying Combination Therapy. Comput Struct Biotechnol J 2018; 16:565-572. [PMID: 30546857 PMCID: PMC6279955 DOI: 10.1016/j.csbj.2018.10.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 02/08/2023] Open
Abstract
The rapid development of omics technology provides an opportunity for fulfilling the understanding of the synergistic mechanism of combination therapy. However, a systems theory to analyze synergy remains an ongoing challenge. Fangjiomics is a novel systems science based on a holistic theory integrated with reductionism which has been utilized to systematically elucidate the synergistic mechanisms underlying combination therapy using multi-target-, pathway- or network-based quantitative methods. Besides, our ability to understand the polyhierarchical structure in synergy is driven based on multi-level omics data fusion in Fangjiomics. According to the basic principle of “Jun-Chen-Zuo-Shi”, further global integration across various omics platforms and phenotype-driven quantitative multi-scale modeling would accelerate development in Fangjiomics-based dissection of synergy in multi-drug combination therapies. Fangjiomics is a novel systems science based on a holistic theory integrated with reductionism. We developed the pathway-based analysis of synergistic mechanisms in Fangjiomics. The theory of network-based synergistic targets is proposed in Fangjiomics. The hierarchical relationship of synergy in multilevel omics is dissected in Fangjiomics. The principle of “Jun-Chen-Zuo-Shi” is proposed to accelerate the development in Fangjiomics-based dissection of synergy.
Collapse
Affiliation(s)
- Peng-Lu Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hao Gu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
15
|
Häfliger P, Graff J, Rubin M, Stooss A, Dettmer MS, Altmann KH, Gertsch J, Charles RP. The LAT1 inhibitor JPH203 reduces growth of thyroid carcinoma in a fully immunocompetent mouse model. J Exp Clin Cancer Res 2018; 37:234. [PMID: 30241549 PMCID: PMC6150977 DOI: 10.1186/s13046-018-0907-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/11/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The L-type amino acid transporter 1 (LAT1/SLC7A5) transports essential amino acids across the plasma membrane. While LAT1 is overexpressed in a variety of human neoplasms, its expression and its role in thyroid cancer is currently unknown. Anaplastic thyroid carcinoma (ATC) is a highly aggressive malignancy for which no effective therapy exists. The purpose of this study was to explore whether the inhibition of LAT1 in ATC would affect tumor growth both in vitro and in vivo. METHODS LAT1 was pharmacologically blocked by JPH203 in human ATC and papillary thyroid cancer (PTC) cell lines. The effects on proliferation and mTORC1 activity were addressed in vitro. A genetically engineered mouse model of ATC was used to address the effect of blocking LAT1 on tumor growth in vivo. SLC7A5 transcription was measured in patient-derived ATC samples to address the clinical relevance of the findings. RESULTS LAT1 block by JPH203 reduced proliferation and mTORC1 signaling in human thyroid cancer cell lines. SLC7A5 transcription was upregulated in ATC tissues derived from a genetically engineered mouse model and in ATC samples recovered from patients. JPH203 treatment induced thyroid tumor growth arrest in vivo in a fully immunocompetent mouse model of thyroid cancer. Additionally, analysis of publicly available datasets of thyroid carcinomas revealed that high LAT1 expression is associated with potentially untreatable PTC presenting reduced NIS/SLC5A5 transcription and with ATC. CONCLUSIONS These preclinical results show that LAT1 inhibition is a novel therapeutic approach in the context of thyroid cancers, and more interestingly in untreatable thyroid cancers.
Collapse
Affiliation(s)
- Pascal Häfliger
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
- Present address: Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, USA
| | - Julien Graff
- Institute of Pharmaceutical Sciences, and Swiss National Center of Competence in Research (NCCR) TransCure, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Matthias Rubin
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Amandine Stooss
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Matthias S. Dettmer
- Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008 Bern, Switzerland
| | - Karl-Heinz Altmann
- Institute of Pharmaceutical Sciences, and Swiss National Center of Competence in Research (NCCR) TransCure, ETH Zürich, Vladimir-Prelog-Weg 4, CH-8093 Zürich, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Roch-Philippe Charles
- Institute of Biochemistry and Molecular Medicine, and Swiss National Center of Competence in Research (NCCR) TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| |
Collapse
|
16
|
Sato H, Yamamoto H, Sakaguchi M, Shien K, Tomida S, Shien T, Ikeda H, Hatono M, Torigoe H, Namba K, Yoshioka T, Kurihara E, Ogoshi Y, Takahashi Y, Soh J, Toyooka S. Combined inhibition of MEK and PI3K pathways overcomes acquired resistance to EGFR-TKIs in non-small cell lung cancer. Cancer Sci 2018; 109:3183-3196. [PMID: 30098066 PMCID: PMC6172047 DOI: 10.1111/cas.13763] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/18/2018] [Accepted: 07/29/2018] [Indexed: 12/12/2022] Open
Abstract
Compensatory activation of the signal transduction pathways is one of the major obstacles for the targeted therapy of non-small cell lung cancer (NSCLC). Herein, we present the therapeutic strategy of combined targeted therapy against the MEK and phosphoinositide-3 kinase (PI3K) pathways for acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) in NSCLC. We investigated the efficacy of combined trametinib plus taselisib therapy using experimentally established EGFR-TKI-resistant NSCLC cell lines. The results showed that the feedback loop between MEK/ERK and PI3K/AKT pathways had developed in several resistant cell lines, which caused the resistance to single-agent treatment with either inhibitor alone. Meanwhile, the combined therapy successfully regulated the compensatory activation of the key intracellular signals and synergistically inhibited the cell growth of those cells in vitro and in vivo. The resistance mechanisms for which the dual kinase inhibitor therapy proved effective included (MET) mesenchymal-epithelial transition factor amplification, induction of epithelial-to-mesenchymal transition (EMT) and EGFR T790M mutation. In further analysis, the combination therapy induced the phosphorylation of p38 MAPK signaling, leading to the activation of apoptosis cascade. Additionally, long-term treatment with the combination therapy induced the conversion from EMT to mesenchymal-to-epithelial transition in the resistant cell line harboring EMT features, restoring the sensitivity to EGFR-TKI. In conclusion, our results indicate that the combined therapy using MEK and PI3K inhibitors is a potent therapeutic strategy for NSCLC with the acquired resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Hiroki Sato
- Department of Thoracic, Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiromasa Yamamoto
- Department of Thoracic, Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhiko Shien
- Department of Thoracic, Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuta Tomida
- Department of Bioinformatics, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tadahiko Shien
- Department of Thoracic, Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirokuni Ikeda
- Department of Thoracic, Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Minami Hatono
- Department of Thoracic, Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidejiro Torigoe
- Department of Thoracic, Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kei Namba
- Department of Thoracic, Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takahiro Yoshioka
- Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Eisuke Kurihara
- Department of Thoracic, Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Ogoshi
- Department of Thoracic, Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuta Takahashi
- Department of Thoracic, Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Junichi Soh
- Department of Thoracic, Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of Thoracic, Breast and Endocrine Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Department of Clinical Genomic Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
17
|
MEK inhibitors induce apoptosis via FoxO3a-dependent PUMA induction in colorectal cancer cells. Oncogenesis 2018; 7:67. [PMID: 30190455 PMCID: PMC6127344 DOI: 10.1038/s41389-018-0078-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/07/2018] [Accepted: 07/30/2018] [Indexed: 12/19/2022] Open
Abstract
Mutations in BRAF are common to many cancers, including CRC. The MEK inhibitors are being investigated in BRAF-mutant CRC. In this study, we aimed to investigate how MEK inhibitor suppresses growth of BRAF-mutated CRC cells as well as its potential mechanisms. Our findings indicated that MEK inhibitor promote PUMA expression via ERK/FoxO3a signaling pathway. In addition, PUMA induction is essential for MEK inhibitor-induced apoptosis. Moreover, PUMA induction is required for MEK inhibitors to induced apoptosis in combination with cisplatin, dabrafenib, or Gefitinib. Knockdown of PUMA suppressed the anticancer effect of the MEK inhibitor in vivo. Our findings indicate a novel role for PUMA as a regulator of the antitumor effects of MEK inhibitor, suggesting that PUMA induction may modulate MEK inhibitor sensitivity.
Collapse
|
18
|
Borson-Chazot F, Dantony E, Illouz F, Lopez J, Niccoli P, Wassermann J, Do Cao C, Leboulleux S, Klein M, Tabarin A, Eberle MC, Benisvy D, de la Fouchardière C, Bournaud C, Lasolle H, Delahaye A, Rabilloud M, Lapras V, Decaussin-Petrucci M, Schlumberger M. Effect of Buparlisib, a Pan-Class I PI3K Inhibitor, in Refractory Follicular and Poorly Differentiated Thyroid Cancer. Thyroid 2018; 28:1174-1179. [PMID: 30105951 DOI: 10.1089/thy.2017.0663] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Dysregulation of the phosphatidylinositol 3-kinase (PI3K) pathway is frequent in advanced follicular (FTC) and poorly differentiated thyroid (PDTC) carcinomas and has been implicated in oncogenesis and tumor progression. This study investigated the efficacy and safety of buparlisib, a pan-PI3K inhibitor in radioiodine refractory FTC and PDTC. METHODS The primary endpoint of this open-label, multicenter, phase 2 pilot study was progression-free survival (PFS) at 6 months. The sample size was determined considering that a PFS ≤50% at 6 months would denote an absence of benefits (null hypothesis). Secondary endpoints were objective response rate, PFS at 12 months, overall survival at 6 and 12 months, and safety based on the frequency and severity of adverse events (AEs). RESULTS Forty-three patients (19M/24 F; median age: 67 years) with metastatic, radioiodine refractory, progressive disease received buparlisib, 100 mg, daily. Histology was PDTC in 25 (58%), FTC in 17 (40%), and Hürthle cell carcinoma in 1 (2%). RAS mutation was found in 44% (12/27) and activation of the PI3K pathway in 35% (8/23) of tested tumors. The probability of PFS was 41.7% [95% confidence interval (CI) 7.7-55.5] at 6 months and 20.9% [CI 0-35.7] at 12 months, lower than the 50% expected PFS. At 6 months, 25.6% patients had stable disease, 48.8% were progressive and 25.6% had stopped treatment due to AE. The response to therapy was not influenced by age, sex, histology, or genetic alterations. The overall survivals at 6 and 12 months were 85.9% [CI 76-97] and 78.7 % [CI 67-92], respectively. The mean tumor growth rate decreased from 3.78 mm/month [CI 2.61-4.95] before treatment to 0.8 mm/month [CI -0.2-1.88] during treatment (p < 0.02). Severe grade 3-4 AEs occurred in 27 patients (63%), including hepatitis (25%), hyperglycemia (21%), mood disorders (12%), and skin toxicity (12%), with favorable outcome after temporary or permanent treatment discontinuation or dose reduction. CONCLUSIONS Buparlisib did not result in significant efficacy in advanced FTC and PDTC. However, the decrease in tumor growth rate may suggest incomplete inhibition of oncogenic pathways and/or escape mechanisms. This should lead to evaluate combined therapy associating inhibitors of both the PI3K and mitogen-activated protein kinase pathways.
Collapse
Affiliation(s)
- Francoise Borson-Chazot
- 1 Fédération d'Endocrinologie, Hospices Civils de Lyon, Université Claude Bernard Lyon 1 , Lyon, France
| | - Emmanuelle Dantony
- 2 Service de Biostatistique-Bioinformatique, Hospices Civils de Lyon, Université Lyon 1 , Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, Villeurbanne, France
| | - Frederic Illouz
- 3 Service d'Endocrinologie, Centre de Référence de la Thyroïde et des Récepteurs Hormonaux , Centre Hospitalier Universitaire d'Angers, France
| | - Jonathan Lopez
- 4 Service de Biochimie et Biologie moléculaire, Centre Hospitalier Lyon-Sud , Hospices Civils de Lyon, Université Lyon 1, France
| | - Patricia Niccoli
- 5 Departement d'Oncologie Médicale, Institut Paoli Calmette , Marseille, France
| | - Johanna Wassermann
- 6 Département d'oncologie Médicale, Hôpital Pitié Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Sorbonne , Paris, France
| | - Christine Do Cao
- 7 Service d'Endocrinologie, Centre Hospitalier Regional et Universitaire Lille , France
| | - Sophie Leboulleux
- 8 Service de Médecine Nucléaire et de Cancérologie Endocrinienne, Institut Gustave Roussy , Villejuif et Université Paris Saclay, France
| | - Marc Klein
- 9 Service d'Endocrinologie, Centre Hospitalier Universitaire et Université de Nancy , France
| | - Antoine Tabarin
- 10 Service d'Endocrinologie, Centre Hospitalier Universitaire et Université de Bordeaux , France
| | - Marie-Claude Eberle
- 11 Service de Médecine Nucléaire, Institut du Cancer de Montpellier , France
| | - Danielle Benisvy
- 12 Service de Médecine Nucléaire, Centre Antoine Lacassagne , Nice, France
| | | | - Claire Bournaud
- 14 Centre de Médecine Nucléaire, Groupement Hospitalier Est , Hospices Civils de Lyon, France
| | - Helene Lasolle
- 1 Fédération d'Endocrinologie, Hospices Civils de Lyon, Université Claude Bernard Lyon 1 , Lyon, France
| | - Armelle Delahaye
- 1 Fédération d'Endocrinologie, Hospices Civils de Lyon, Université Claude Bernard Lyon 1 , Lyon, France
| | - Muriel Rabilloud
- 2 Service de Biostatistique-Bioinformatique, Hospices Civils de Lyon, Université Lyon 1 , Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, Villeurbanne, France
| | - Véronique Lapras
- 15 Service de Radiologie, Centre Hospitalier Lyon-Sud , Hospices Civils de Lyon, France
| | - Myriam Decaussin-Petrucci
- 16 Service d'Anatomie et Cytologie Pathologiques, Groupement Hospitalier Lyon Sud , Hospices Civils de Lyon, et Université Lyon 1, France
| | - Martin Schlumberger
- 8 Service de Médecine Nucléaire et de Cancérologie Endocrinienne, Institut Gustave Roussy , Villejuif et Université Paris Saclay, France
| |
Collapse
|
19
|
Beadnell TC, Nassar KW, Rose MM, Clark EG, Danysh BP, Hofmann MC, Pozdeyev N, Schweppe RE. Src-mediated regulation of the PI3K pathway in advanced papillary and anaplastic thyroid cancer. Oncogenesis 2018; 7:23. [PMID: 29487290 PMCID: PMC5833015 DOI: 10.1038/s41389-017-0015-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023] Open
Abstract
Advanced stages of papillary and anaplastic thyroid cancer continue to be plagued by a dismal prognosis, which is a result of limited effective therapies for these cancers. Due to the high proportion of thyroid cancers harboring mutations in the MAPK pathway, the MAPK pathway has become a focal point for therapeutic intervention in thyroid cancer. Unfortunately, unlike melanoma, a similar responsiveness to MAPK pathway inhibition has yet to be observed in thyroid cancer patients. To address this issue, we have focused on targeting the non-receptor tyrosine kinase, Src, and we and others have demonstrated that targeting Src results in inhibition of growth, invasion, and migration both in vitro and in vivo, which can be enhanced through the combined inhibition of Src and the MAPK pathway. Therefore, we examined the efficacy of the combination therapy across a panel of thyroid cancer cell lines representing common oncogenic drivers (BRAF, RAS, and PIK3CA). Interestingly, combined inhibition of Src and the MAPK pathway overcomes intrinsic dasatinib resistance in cell lines where both the MAPK and PI3K pathways are inhibited, which we show is likely due to the regulation of the PI3K pathway by Src in these responsive cells. Interestingly, we have mapped downstream phosphorylation of rpS6 as a key biomarker of response, and cells that maintain rpS6 phosphorylation likely represent drug tolerant persisters. Altogether, the combined inhibition of Src and the MAPK pathway holds great promise for improving the overall survival of advanced thyroid cancer patients with BRAF and RAS mutations, and activation of the PI3K pathway and rpS6 phosphorylation represent important biomarkers of response for patients treated with this therapy.
Collapse
Affiliation(s)
- Thomas C Beadnell
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Kelsey W Nassar
- Medical Oncology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Madison M Rose
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Erin G Clark
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Brian P Danysh
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nikita Pozdeyev
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Rebecca E Schweppe
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
- University of Colorado Cancer Center, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
20
|
PIK3CA H1047R-induced paradoxical ERK activation results in resistance to BRAF V600E specific inhibitors in BRAF V600E PIK3CA H1047R double mutant thyroid tumors. Oncotarget 2017; 8:103207-103222. [PMID: 29262556 PMCID: PMC5732722 DOI: 10.18632/oncotarget.21732] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/23/2017] [Indexed: 01/09/2023] Open
Abstract
Thyroid carcinomas are the most prevalent endocrine cancers. The BRAFV600E mutation is found in 40% of the papillary type and 25% of the anaplastic type. BRAFV600E inhibitors have shown great success in melanoma but, they have been, to date, less successful in thyroid cancer. About 50% of anaplastic thyroid carcinomas present mutations/amplification of the phosphatidylinositol 3’ kinase. Here we propose to investigate if the hyper activation of that pathway could influence the response to BRAFV600E specific inhibitors. To test this, we used two mouse models of thyroid cancer. Single mutant (BRAFV600E) mice responded to BRAFV600E-specific inhibition (PLX-4720), while double mutant mice (BRAFV600E; PIK3CAH1047R) showed resistance and even signs of aggravation. This resistance was abrogated by combination with a phosphoinositide 3-kinase inhibitor. At the molecular level, we showed that this resistance was concomitant to a paradoxical activation of the MAP-Kinase pathway, which could be overturned by phosphoinositide 3-kinase inhibition in vivo in our mouse model and in vitro in human double mutant cell lines. In conclusion, we reveal a phosphoinositide 3-kinase driven, paradoxical MAP-Kinase pathway activation as mechanism for resistance to BRAFV600E specific inhibitors in a clinically relevant mouse model of thyroid cancer.
Collapse
|
21
|
Abrams SL, Ruvolo PP, Ruvolo VR, Ligresti G, Martelli AM, Cocco L, Ratti S, Tafuri A, Steelman LS, Candido S, Libra M, McCubrey JA. Targeting signaling and apoptotic pathways involved in chemotherapeutic drug-resistance of hematopoietic cells. Oncotarget 2017; 8:76525-76557. [PMID: 29100331 PMCID: PMC5652725 DOI: 10.18632/oncotarget.20408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/15/2017] [Indexed: 12/29/2022] Open
Abstract
A critical problem in leukemia as well as other cancer therapies is the development of chemotherapeutic drug-resistance. We have developed models of hematopoietic drug resistance that are based on expression of dominant-negative TP53 [TP53 (DN)] or constitutively-active MEK1 [MEK1(CA)] oncogenes in the presence of chemotherapeutic drugs. In human cancer, functional TP53 activity is often lost in human cancers. Also, activation of the Raf/MEK/ERK pathway frequently occurs due to mutations/amplification of upstream components of this and other interacting pathways. FL5.12 is an interleukin-3 (IL−3) dependent hematopoietic cell line that is sensitive to doxorubicin (a.k.a Adriamycin). FL/Doxo is a derivative cell line that was isolated by culturing the parental FL5.12 cells in doxorubicin for prolonged periods of time. FL/Doxo + TP53 (DN) and FL/Doxo + MEK1 (CA) are FL/Doxo derivate cell lines that were infected with retrovirus encoding TP53 (DN) or MEK1 (CA) and are more resistant to doxorubicin than FL/Doxo cells. This panel of cell lines displayed differences in the sensitivity to inhibitors that suppress mTORC1, BCL2/BCLXL, MEK1 or MDM2 activities, as well as, the proteasomal inhibitor MG132. The expression of key genes involved in cell growth and drug-resistance (e.g., MDM2, MDR1, BAX) also varied in these cells. Thus, we can begin to understand some of the key genes that are involved in the resistance of hematopoietic cells to chemotherapeutic drugs and targeted therapeutics.
Collapse
Affiliation(s)
- Stephen L Abrams
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Peter P Ruvolo
- Section of Signal Transduction and Apoptosis, Hormel Institute, University of Minnesota, Austin, MN, USA.,Current/Present address: Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Vivian R Ruvolo
- Section of Signal Transduction and Apoptosis, Hormel Institute, University of Minnesota, Austin, MN, USA.,Current/Present address: Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Giovanni Ligresti
- Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy.,Current/Present address: Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Agostino Tafuri
- Hematology, Department of Clinical and Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Linda S Steelman
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|