1
|
Douglas C, Lomeli N, Vu T, Pham J, Bota DA. WITHDRAWN: LonP1 Drives Proneural Mesenchymal Transition in IDH1-R132H Diffuse Glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.13.536817. [PMID: 37131765 PMCID: PMC10153221 DOI: 10.1101/2023.04.13.536817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The authors have withdrawn their manuscript owing to massive revision and data validation. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
2
|
Douglas C, Jain S, Lomeli N, Di K, Nandwana NK, Mohammed AS, Vu T, Pham J, Lepe J, Kenney MC, Das B, Bota DA. WITHDRAWN: Dual targeting of mitochondrial Lon peptidase 1 and chymotrypsin-like protease by small molecule BT317, as potential therapeutics in malignant astrocytomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.13.536816. [PMID: 37131786 PMCID: PMC10153114 DOI: 10.1101/2023.04.13.536816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The authors have withdrawn their manuscript owing to massive revision and data validation. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
3
|
Yuhan L, Khaleghi Ghadiri M, Gorji A. Impact of NQO1 dysregulation in CNS disorders. J Transl Med 2024; 22:4. [PMID: 38167027 PMCID: PMC10762857 DOI: 10.1186/s12967-023-04802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
NAD(P)H Quinone Dehydrogenase 1 (NQO1) plays a pivotal role in the regulation of neuronal function and synaptic plasticity, cellular adaptation to oxidative stress, neuroinflammatory and degenerative processes, and tumorigenesis in the central nervous system (CNS). Impairment of the NQO1 activity in the CNS can result in abnormal neurotransmitter release and clearance, increased oxidative stress, and aggravated cellular injury/death. Furthermore, it can cause disturbances in neural circuit function and synaptic neurotransmission. The abnormalities of NQO1 enzyme activity have been linked to the pathophysiological mechanisms of multiple neurological disorders, including Parkinson's disease, Alzheimer's disease, epilepsy, multiple sclerosis, cerebrovascular disease, traumatic brain injury, and brain malignancy. NQO1 contributes to various dimensions of tumorigenesis and treatment response in various brain tumors. The precise mechanisms through which abnormalities in NQO1 function contribute to these neurological disorders continue to be a subject of ongoing research. Building upon the existing knowledge, the present study reviews current investigations describing the role of NQO1 dysregulations in various neurological disorders. This study emphasizes the potential of NQO1 as a biomarker in diagnostic and prognostic approaches, as well as its suitability as a target for drug development strategies in neurological disorders.
Collapse
Affiliation(s)
- Li Yuhan
- Epilepsy Research Center, Münster University, Münster, Germany
- Department of Breast Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Ali Gorji
- Epilepsy Research Center, Münster University, Münster, Germany.
- Department of Neurosurgery, Münster University, Münster, Germany.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Yuile A, Satgunaseelan L, Wei J, Kastelan M, Back MF, Lee M, Wei H, Buckland ME, Lee A, Wheeler HR. Implications of Concurrent IDH1 and IDH2 Mutations on Survival in Glioma-A Case Report and Systematic Review. Curr Issues Mol Biol 2022; 44:5117-5125. [PMID: 36286062 PMCID: PMC9600580 DOI: 10.3390/cimb44100348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Both IDH1 (isocitrate dehydrogenase 1) and IDH2 (isocitrate dehydrogenase 2) mutations play a vital role in the development of gliomas through disruption of normal cellular metabolic processes. Here we describe a case of a patient with an IDH-mutant astrocytoma, in which both IDH1 and IDH2 mutations were detected within the same tumour. The patient remains disease-free, nine and a half years after her initial diagnosis. Interrogation of cancer genomic databases and a systematic review was undertaken, demonstrating the rarity of the co-occurrence of IDH1 and IDH2 mutations in a variety of cancer types, and in glioma specifically. Due to the favourable outcome observed in this patient, the potential effect of concurrent IDH1 and IDH2 mutations on survival was also investigated.
Collapse
Affiliation(s)
- Alexander Yuile
- Department of Medical Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, Sydney, NSW 2065, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2000, Australia
- The Brain Cancer Group, North Shore Private Hospital, Westbourne Street, St Leonards, Sydney, NSW 2065, Australia
- Correspondence: ; Tel.: +61-2-9926-7111
| | - Laveniya Satgunaseelan
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2000, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Joe Wei
- Department of Medical Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, Sydney, NSW 2065, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2000, Australia
| | - Marina Kastelan
- Department of Medical Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, Sydney, NSW 2065, Australia
- The Brain Cancer Group, North Shore Private Hospital, Westbourne Street, St Leonards, Sydney, NSW 2065, Australia
| | - Michael F. Back
- Department of Medical Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, Sydney, NSW 2065, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2000, Australia
- The Brain Cancer Group, North Shore Private Hospital, Westbourne Street, St Leonards, Sydney, NSW 2065, Australia
| | - Maggie Lee
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2000, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Heng Wei
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2000, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Michael E. Buckland
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2000, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Missenden Road, Camperdown, NSW 2050, Australia
| | - Adrian Lee
- Department of Medical Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, Sydney, NSW 2065, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2000, Australia
- The Brain Cancer Group, North Shore Private Hospital, Westbourne Street, St Leonards, Sydney, NSW 2065, Australia
| | - Helen R. Wheeler
- Department of Medical Oncology, Royal North Shore Hospital, Reserve Road, St Leonards, Sydney, NSW 2065, Australia
- Sydney Medical School, Faculty of Medicine and Health Sciences, The University of Sydney, Sydney, NSW 2000, Australia
- The Brain Cancer Group, North Shore Private Hospital, Westbourne Street, St Leonards, Sydney, NSW 2065, Australia
| |
Collapse
|
5
|
Schulz JA, Rodgers LT, Kryscio RJ, Hartz AMS, Bauer B. Characterization and comparison of human glioblastoma models. BMC Cancer 2022; 22:844. [PMID: 35922758 PMCID: PMC9347152 DOI: 10.1186/s12885-022-09910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma (GBM) is one of the deadliest cancers. Treatment options are limited, and median patient survival is only several months. Translation of new therapies is hindered by a lack of GBM models that fully recapitulate disease heterogeneity. Here, we characterize two human GBM models (U87-luc2, U251-RedFLuc). In vitro, both cell lines express similar levels of luciferase and show comparable sensitivity to temozolomide and lapatinib exposure. In vivo, however, the two GBM models recapitulate different aspects of the disease. U87-luc2 cells quickly grow into large, well-demarcated tumors; U251-RedFLuc cells form small, highly invasive tumors. Using a new method to assess GBM invasiveness based on detecting tumor-specific anti-luciferase staining in brain slices, we found that U251-RedFLuc cells are more invasive than U87-luc2 cells. Lastly, we determined expression levels of ABC transporters in both models. Our findings indicate that U87-luc2 and U251-RedFLuc GBM models recapitulate different aspects of GBM heterogeneity that need to be considered in preclinical research.
Collapse
Affiliation(s)
- Julia A Schulz
- Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington, KY, USA
| | - Louis T Rodgers
- Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington, KY, USA
| | - Richard J Kryscio
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
- Statistics, College of Arts and Sciences, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, USA
- Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, USA
| | - Björn Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy University of Kentucky, Lexington, KY, USA.
- Drug Discovery, Delivery and Translational Therapeutics Track, Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, USA.
| |
Collapse
|
6
|
Heurtaux T, Bouvier DS, Benani A, Helgueta Romero S, Frauenknecht KBM, Mittelbronn M, Sinkkonen L. Normal and Pathological NRF2 Signalling in the Central Nervous System. Antioxidants (Basel) 2022; 11:1426. [PMID: 35892629 PMCID: PMC9394413 DOI: 10.3390/antiox11081426] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (NRF2) was originally described as a master regulator of antioxidant cellular response, but in the time since, numerous important biological functions linked to cell survival, cellular detoxification, metabolism, autophagy, proteostasis, inflammation, immunity, and differentiation have been attributed to this pleiotropic transcription factor that regulates hundreds of genes. After 40 years of in-depth research and key discoveries, NRF2 is now at the center of a vast regulatory network, revealing NRF2 signalling as increasingly complex. It is widely recognized that reactive oxygen species (ROS) play a key role in human physiological and pathological processes such as ageing, obesity, diabetes, cancer, and neurodegenerative diseases. The high oxygen consumption associated with high levels of free iron and oxidizable unsaturated lipids make the brain particularly vulnerable to oxidative stress. A good stability of NRF2 activity is thus crucial to maintain the redox balance and therefore brain homeostasis. In this review, we have gathered recent data about the contribution of the NRF2 pathway in the healthy brain as well as during metabolic diseases, cancer, ageing, and ageing-related neurodegenerative diseases. We also discuss promising therapeutic strategies and the need for better understanding of cell-type-specific functions of NRF2 in these different fields.
Collapse
Affiliation(s)
- Tony Heurtaux
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - David S. Bouvier
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
| | - Alexandre Benani
- Centre des Sciences du Goût et de l’Alimentation, AgroSup Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France;
| | - Sergio Helgueta Romero
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
| | - Katrin B. M. Frauenknecht
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
- Luxembourg Center of Neuropathology (LCNP), 3555 Dudelange, Luxembourg; (D.S.B.); (K.B.M.F.)
- National Center of Pathology (NCP), Laboratoire National de Santé (LNS), 3555 Dudelange, Luxembourg
- Luxembourg Centre of Systems Biomedicine (LCSB), University of Luxembourg, 4367 Belvaux, Luxembourg
- Luxembourg Institute of Health (LIH), 1526 Luxembourg, Luxembourg
| | - Lasse Sinkkonen
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 4367 Belvaux, Luxembourg; (S.H.R.); (M.M.); (L.S.)
| |
Collapse
|
7
|
Shahcheraghi SH, Salemi F, Alam W, Ashworth H, Saso L, Khan H, Lotfi M. The Role of NRF2/KEAP1 Pathway in Glioblastoma: Pharmacological Implications. Med Oncol 2022; 39:91. [PMID: 35568790 DOI: 10.1007/s12032-022-01693-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/21/2022] [Indexed: 11/29/2022]
Abstract
Glioblastoma multiforme (GBM) grade IV glioma is the most frequent and deadly intracranial cancer. This tumor is determined by unrestrained progression, uncontroled angiogenesis, high infiltration and weak response to treatment, which is chiefly because of abnormal signaling pathways in the tumor. A member related to the Cap 'n' collar family of keypart-leucine zipper transcription agents-the transcription factor NF-E2-related factor 2 (Nrf2)-regulates adaptive protection answers by organized upregulation of many genes that produce the cytoprotective factors. In reply to cellular pressures types such as stresses, Nrf2 escapes Kelch-like ECH-related protein 1 (Keap1)-facilitated suppression, moves from the cytoplasm towards the nucleus and performs upregulation of gene expression of antioxidant responsive element (ARE). Nrf2 function is related tocontrolling many types of diseases in the human specially GBM tumor.Thus, we will review the epigeneticalregulatory actions on the Nrf2/Keap1 signaling pathway and potential therapeutic options in GBM by aiming the stimulation of Nrf2.
Collapse
Affiliation(s)
- Seyed Hossein Shahcheraghi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Salemi
- School of Medicine, Islamic Azad University of Medical Sciences, Yazd, Iran
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | | | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan.
| | - Marzieh Lotfi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. .,Abortion Research Center, Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
8
|
Garcia JH, Jain S, Aghi MK. Metabolic Drivers of Invasion in Glioblastoma. Front Cell Dev Biol 2021; 9:683276. [PMID: 34277624 PMCID: PMC8281286 DOI: 10.3389/fcell.2021.683276] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/19/2021] [Indexed: 12/02/2022] Open
Abstract
Glioblastoma is a primary malignant brain tumor with a median survival under 2 years. The poor prognosis glioblastoma caries is largely due to cellular invasion, which enables escape from resection, and drives inevitable recurrence. While most studies to date have focused on pathways that enhance the invasiveness of tumor cells in the brain microenvironment as the primary driving forces behind GBM’s ability to invade adjacent tissues, more recent studies have identified a role for adaptations in cellular metabolism in GBM invasion. Metabolic reprogramming allows invasive cells to generate the energy necessary for colonizing surrounding brain tissue and adapt to new microenvironments with unique nutrient and oxygen availability. Historically, enhanced glycolysis, even in the presence of oxygen (the Warburg effect) has dominated glioblastoma research with respect to tumor metabolism. More recent global profiling experiments, however, have identified roles for lipid, amino acid, and nucleotide metabolism in tumor growth and invasion. A thorough understanding of the metabolic traits that define invasive GBM cells may provide novel therapeutic targets for this devastating disease. In this review, we focus on metabolic alterations that have been characterized in glioblastoma, the dynamic nature of tumor metabolism and how it is shaped by interaction with the brain microenvironment, and how metabolic reprogramming generates vulnerabilities that may be ripe for exploitation.
Collapse
Affiliation(s)
- Joseph H Garcia
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Saket Jain
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
9
|
Di Gregorio E, Miolo G, Saorin A, Steffan A, Corona G. From Metabolism to Genetics and Vice Versa: The Rising Role of Oncometabolites in Cancer Development and Therapy. Int J Mol Sci 2021; 22:5574. [PMID: 34070384 PMCID: PMC8197491 DOI: 10.3390/ijms22115574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last decades, the study of cancer metabolism has returned to the forefront of cancer research and challenged the role of genetics in the understanding of cancer development. One of the major impulses of this new trend came from the discovery of oncometabolites, metabolic intermediates whose abnormal cellular accumulation triggers oncogenic signalling and tumorigenesis. These findings have led to reconsideration and support for the long-forgotten hypothesis of Warburg of altered metabolism as oncogenic driver of cancer and started a novel paradigm whereby mitochondrial metabolites play a pivotal role in malignant transformation. In this review, we describe the evolution of the cancer metabolism research from a historical perspective up to the oncometabolites discovery that spawned the new vision of cancer as a metabolic disease. The oncometabolites' mechanisms of cellular transformation and their contribution to the development of new targeted cancer therapies together with their drawbacks are further reviewed and discussed.
Collapse
Affiliation(s)
- Emanuela Di Gregorio
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Gianmaria Miolo
- Medical Oncology and Cancer Prevention Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy;
| | - Asia Saorin
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Agostino Steffan
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| | - Giuseppe Corona
- Immunopathology and Cancer Biomarkers Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (E.D.G.); (A.S.); (A.S.)
| |
Collapse
|
10
|
From Laboratory Studies to Clinical Trials: Temozolomide Use in IDH-Mutant Gliomas. Cells 2021; 10:cells10051225. [PMID: 34067729 PMCID: PMC8157002 DOI: 10.3390/cells10051225] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we discuss the use of the alkylating agent temozolomide (TMZ) in the treatment of IDH-mutant gliomas. We describe the challenges associated with TMZ in clinical (drug resistance and tumor recurrence) and preclinical settings (variabilities associated with in vitro models) in treating IDH-mutant glioma. Lastly, we summarize the emerging therapeutic targets that can potentially be used in combination with TMZ.
Collapse
|
11
|
Cano-Galiano A, Oudin A, Fack F, Allega MF, Sumpton D, Martinez-Garcia E, Dittmar G, Hau AC, De Falco A, Herold-Mende C, Bjerkvig R, Meiser J, Tardito S, Niclou SP. Cystathionine-γ-lyase drives antioxidant defense in cysteine-restricted IDH1-mutant astrocytomas. Neurooncol Adv 2021; 3:vdab057. [PMID: 34250481 PMCID: PMC8262642 DOI: 10.1093/noajnl/vdab057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Mutations in isocitrate dehydrogenase 1 or 2 (IDH1/2) define glioma subtypes and are considered primary events in gliomagenesis, impacting tumor epigenetics and metabolism. IDH enzyme activity is crucial for the generation of reducing potential in normal cells, yet the impact of the mutation on the cellular antioxidant system in glioma is not understood. The aim of this study was to determine how glutathione (GSH), the main antioxidant in the brain, is maintained in IDH1-mutant gliomas, despite an altered NADPH/NADP balance. METHODS Proteomics, metabolomics, metabolic tracer studies, genetic silencing, and drug targeting approaches in vitro and in vivo were applied. Analyses were done in clinical specimen of different glioma subtypes, in glioma patient-derived cell lines carrying the endogenous IDH1 mutation and corresponding orthotopic xenografts in mice. RESULTS We find that cystathionine-γ-lyase (CSE), the enzyme responsible for cysteine production upstream of GSH biosynthesis, is specifically upregulated in IDH1-mutant astrocytomas. CSE inhibition sensitized these cells to cysteine depletion, an effect not observed in IDH1 wild-type gliomas. This correlated with an increase in reactive oxygen species and reduced GSH synthesis. Propargylglycine (PAG), a brain-penetrant drug specifically targeting CSE, led to delayed tumor growth in mice. CONCLUSIONS We show that IDH1-mutant astrocytic gliomas critically rely on NADPH-independent de novo GSH synthesis via CSE to maintain the antioxidant defense, which highlights a novel metabolic vulnerability that may be therapeutically exploited.
Collapse
Affiliation(s)
- Andrés Cano-Galiano
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anais Oudin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Fred Fack
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Maria-Francesca Allega
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | | | - Gunnar Dittmar
- Quantitative Biology Unit, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Ann-Christin Hau
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Alfonso De Falco
- National Center of Genetics, Laboratoire national de santé, Dudelange, Luxembourg
| | | | - Rolf Bjerkvig
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Johannes Meiser
- Cancer Metabolism Group, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Wang J, Quan Y, Lv J, Dong Q, Gong S. LncRNA IDH1-AS1 suppresses cell proliferation and tumor growth in glioma. Biochem Cell Biol 2020; 98:556-564. [PMID: 32990028 DOI: 10.1139/bcb-2019-0465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glioma is a type of brain tumor that is common globally, and is associated with a variety of genetic changes. It has been reported that isocitrate dehydrogenase 1 (IDH1) is overexpressed in glioma and in HeLa cells. The lncRNA IDH1-AS1 is believed to interact with IDH1, and when IDH1-AS1 is overexpressed, HeLa cell proliferation is inhibited. However, the effects of IDH1-AS1 on glioma were relatively unknown. The results from this work show that IDH1-AS1 is downregulated in the glioma tissues. We used primary glioblastoma cell lines U251 and U87-MG to study the effects of IDH1-AS1 on glioma cell growth, in vitro and in vivo. We found that when IDH1-AS1 is overexpressed cell proliferation is inhibited, cell cycle is arrested at the G1 phase, and the protein expression levels of cyclinD1, cyclinA, cyclinE, CDK2, and CDK4 are decreased. We found that cell apoptosis was increased when IDH1-AS1 was overexpressed, as evidenced by increases in the levels of cleaved caspase-9 and -3. Conversely, knockdown of IDH1-AS1 promoted cell proliferation. Moreover, we proved that overexpression of IDH1-AS1 inhibits the tumorigenesis of U251 cells, in vivo. Furthermore, IDH1-AS1 did not affect IDH1 protein expression, but altered its enzymatic activities in glioma cells. Silencing of IDH1 reversed the effects of IDH1-AS1 upregulation on cell viability. Hence, our study provides first-hand evidence for the effects of lncRNA IDH1-AS1 on gliomas. Because overexpressing IDH1-AS1 inhibited cell growth, IDH1-AS1 could also be considered as a potential target for glioma treatment.
Collapse
Affiliation(s)
- Jubo Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China.,Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China
| | - Yu Quan
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China.,Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China
| | - Jian Lv
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China.,Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China
| | - Quan Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China.,Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China
| | - Shouping Gong
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China.,Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Road, Xi'an 710004, P.R. China
| |
Collapse
|
13
|
Batsios G, Viswanath P, Subramani E, Najac C, Gillespie AM, Santos RD, Molloy AR, Pieper RO, Ronen SM. PI3K/mTOR inhibition of IDH1 mutant glioma leads to reduced 2HG production that is associated with increased survival. Sci Rep 2019; 9:10521. [PMID: 31324855 PMCID: PMC6642106 DOI: 10.1038/s41598-019-47021-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/09/2019] [Indexed: 02/08/2023] Open
Abstract
70-90% of low-grade gliomas and secondary glioblastomas are characterized by mutations in isocitrate dehydrogenase 1 (IDHmut). IDHmut produces the oncometabolite 2-hydroxyglutarate (2HG), which drives tumorigenesis in these tumors. The phosphoinositide-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway represents an attractive therapeutic target for IDHmut gliomas, but noninvasive indicators of drug target modulation are lacking. The goal of this study was therefore to identify magnetic resonance spectroscopy (MRS)-detectable metabolic biomarkers associated with IDHmut glioma response to the dual PI3K/(mTOR) inhibitor XL765. 1H-MRS of two cell lines genetically modified to express IDHmut showed that XL765 induced a significant reduction in several intracellular metabolites including 2HG. Importantly, examination of an orthotopic IDHmut tumor model showed that enhanced animal survival following XL765 treatment was associated with a significant in vivo 1H-MRS detectable reduction in 2HG but not with significant inhibition in tumor growth. Further validation is required, but our results indicate that 2HG could serve as a potential noninvasive MRS-detectable metabolic biomarker of IDHmut glioma response to PI3K/mTOR inhibition.
Collapse
Affiliation(s)
- Georgios Batsios
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Elavarasan Subramani
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Chloe Najac
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Abigail R Molloy
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Research Center, 1450 3rd Street, University of California, 94143, San Francisco, CA, United States
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, Mission Bay Campus, 1700 4th Street, Byers Hall, University of California, 94158, San Francisco, CA, United States. .,Brain Tumor Research Center, Helen Diller Family Cancer Research Building, 1450 3rd Street, University of California, 94158, San Francisco, CA, United States.
| |
Collapse
|
14
|
Radiosensitization and a Less Aggressive Phenotype of Human Malignant Glioma Cells Expressing Isocitrate Dehydrogenase 1 (IDH1) Mutant Protein: Dissecting the Mechanisms. Cancers (Basel) 2019; 11:cancers11060889. [PMID: 31242696 PMCID: PMC6627228 DOI: 10.3390/cancers11060889] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023] Open
Abstract
The presence of an isocitrate dehydrogenase 1 (IDH1) mutation is associated with a less aggressive phenotype, increased sensitivity to radiation, and increased overall survival in patients with diffuse glioma. Based on in vitro experimentations in malignant glioma cell lines, the consequences on cellular processes of IDH1R132H expression were analyzed. The results revealed that IDH1R132H expression enhanced the radiation induced accumulation of residual γH2AX foci and decreased the amount of glutathione (GSH) independent of the oxygen status. In addition, expression of the mutant IDH1 caused a significant increase of cell stiffness and induced an altered organization of the cytoskeleton, which has been shown to reinforce cell stiffness. Furthermore, IDH1R132H expression decreased the expression of vimentin, an important component of the cytoskeleton and regulator of the cell stiffness. The results emphasize the important role of mutant IDH1 in treatment of patients with diffuse gliomas especially in response to radiation. Hence, detection of the genetic status of IDH1 before therapy massively expands the utility of immunohistochemistry to accurately distinguish patients with a less aggressive and radiosensitive IDH1-mutant diffuse glioma suitable for radiotherapy from those with a more aggressive IDH1-wildtype diffuse glioma who might benefit from an individually intensified therapy comprising radiotherapy and alternative medical treatments.
Collapse
|
15
|
Molenaar RJ, Maciejewski JP, Wilmink JW, van Noorden CJF. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene 2018; 37:1949-1960. [PMID: 29367755 PMCID: PMC5895605 DOI: 10.1038/s41388-017-0077-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/02/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022]
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH1/2) are key enzymes in cellular metabolism, epigenetic regulation, redox states, and DNA repair. IDH1/2 mutations are causal in the development and/or progression of various types of cancer due to supraphysiological production of d-2-hydroxyglutarate. In various tumor types, IDH1/2-mutated cancers predict for improved responses to treatment with irradiation or chemotherapy. The present review discusses the molecular basis of the sensitivity of IDH1/2-mutated cancers with respect to the function of mutated IDH1/2 in cellular processes and their interactions with novel IDH1/2-mutant inhibitors. Finally, lessons learned from IDH1/2 mutations for future clinical applications in IDH1/2 wild-type cancers are discussed.
Collapse
Affiliation(s)
- Remco J Molenaar
- Cancer Center Amsterdam, Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands. .,Cancer Center Amsterdam, Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands. .,Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA.
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Johanna W Wilmink
- Cancer Center Amsterdam, Department of Medical Oncology, Academic Medical Center, Amsterdam, The Netherlands
| | - Cornelis J F van Noorden
- Cancer Center Amsterdam, Department of Medical Biology, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Li PC, Tu MJ, Ho PY, Jilek JL, Duan Z, Zhang QY, Yu AX, Yu AM. Bioengineered NRF2-siRNA Is Effective to Interfere with NRF2 Pathways and Improve Chemosensitivity of Human Cancer Cells. Drug Metab Dispos 2017; 46:2-10. [PMID: 29061583 DOI: 10.1124/dmd.117.078741] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/18/2017] [Indexed: 12/28/2022] Open
Abstract
The nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a transcription factor in the regulation of many oxidative enzymes and efflux transporters critical for oxidative stress and cellular defense against xenobiotics. NRF2 is dysregulated in patient osteosarcoma (OS) tissues and correlates with therapeutic outcomes. Nevertheless, research on the NRF2 regulatory pathways and its potential as a therapeutic target is limited to the use of synthetic small interfering RNA (siRNA) carrying extensive artificial modifications. Herein, we report successful high-level expression of recombinant siRNA against NRF2 in Escherichia coli using our newly established noncoding RNA bioengineering technology, which was purified to >99% homogeneity using an anion-exchange fast protein liquid chromatography method. Bioengineered NRF2-siRNA was able to significantly knock down NRF2 mRNA and protein levels in human OS 143B and MG63 cells, and subsequently suppressed the expression of NRF2-regulated oxidative enzymes [heme oxygenase-1 and NAD(P)H:quinone oxidoreductase 1] and elevated intracellular levels of reactive oxygen species. In addition, recombinant NRF2-siRNA was effective to sensitize both 143B and MG63 cells to doxorubicin, cisplatin, and sorafenib, which was associated with significant downregulation of NRF2-targeted ATP-binding cassette (ABC) efflux transporters (ABCC3, ABCC4, and ABCG2). These findings support that targeting NRF2 signaling pathways may improve the sensitivity of cancer cells to chemotherapy, and bioengineered siRNA molecules should be added to current tools for related research.
Collapse
Affiliation(s)
- Peng-Cheng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Mei-Juan Tu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Pui Yan Ho
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Joseph L Jilek
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Zhijian Duan
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Qian-Yu Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Ai-Xi Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| | - Ai-Ming Yu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (P.-C.L., A.-X.Y.) and Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, UC Davis School of Medicine, Sacramento, California (P.-C.L., M.-J.T., P.Y.H., J.L.J., Z.D., Q.-Y.Z., A.-M.Y.)
| |
Collapse
|