1
|
Schwarz S, Su Z, Krohn M, Löffler MW, Schlosser A, Linnebacher M. Peptide-stimulated T cells bypass immune checkpoint inhibitor resistance and eliminate autologous microsatellite instable colorectal cancer cells. NPJ Precis Oncol 2024; 8:163. [PMID: 39075115 PMCID: PMC11286882 DOI: 10.1038/s41698-024-00645-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
Two hypermutated colon cancer cases with patient-derived cell lines, peripheral and tumor-infiltrating T cells available were selected for detailed investigation of immunological response.T cells co-cultured with autologous tumor cells showed only low levels of pro-inflammatory cytokines and failed at tumor recognition. Similarly, treatment of co-cultures with immune checkpoint inhibitors (ICI) did not boost antitumor immune responses. Since proteinase inhibitor 9 (PI-9) was detected in tumor cells, a specific inhibitor (PI-9i) was used in addition to ICI in T cell cytotoxicity testing. However, only pre-stimulation with tumor-specific peptides (cryptic and neoantigenic) significantly increased recognition and elimination of tumor cells by T cells independently of ICI or PI-9i.We showed, that ICI resistant tumor cells can be targeted by tumor-primed T cells and also demonstrated the superiority of tumor-naïve peripheral blood T cells compared to highly exhausted tumor-infiltrating T cells. Future precision immunotherapeutic approaches should include multimodal strategies to successfully induce durable anti-tumor immune responses.
Collapse
Affiliation(s)
- Sandra Schwarz
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany
| | - Zhaoran Su
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany
| | - Mathias Krohn
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany
| | - Markus W Löffler
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
- Institute of Immunology, University of Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Partner Site Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) 'Image-Guided and Functionally Instructed Tumor Therapies', University of Tübingen, Tübingen, Germany
- Institute for Clinical and Experimental Transfusion Medicine, Medical Faculty, University Hospital Tübingen, Tübingen, Germany
| | - Andreas Schlosser
- Rudolf-Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Michael Linnebacher
- Department of General Surgery, Molecular Oncology and Immunotherapy, University Medicine Rostock, Rostock, Germany.
| |
Collapse
|
2
|
Wojakowska A, Marczak L, Zeman M, Chekan M, Zembala-Nożyńska E, Polanski K, Strugała A, Widlak P, Pietrowska M. Proteomic and metabolomic signatures of rectal tumor discriminate patients with different responses to preoperative radiotherapy. Front Oncol 2024; 14:1323961. [PMID: 38410100 PMCID: PMC10896604 DOI: 10.3389/fonc.2024.1323961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/16/2024] [Indexed: 02/28/2024] Open
Abstract
Background Neoadjuvant radiotherapy (neo-RT) is widely used in locally advanced rectal cancer (LARC) as a component of radical treatment. Despite the advantages of neo-RT, which typically improves outcomes in LARC patients, the lack of reliable biomarkers that predict response and monitor the efficacy of therapy, can result in the application of unnecessary aggressive therapy affecting patients' quality of life. Hence, the search for molecular biomarkers for assessing the radio responsiveness of this cancer represents a relevant issue. Methods Here, we combined proteomic and metabolomic approaches to identify molecular signatures, which could discriminate LARC tumors with good and poor responses to neo-RT. Results The integration of data on differentially accumulated proteins and metabolites made it possible to identify disrupted metabolic pathways and signaling processes connected with response to irradiation, including ketone bodies synthesis and degradation, purine metabolism, energy metabolism, degradation of fatty acid, amino acid metabolism, and focal adhesion. Moreover, we proposed multi-component panels of proteins and metabolites which could serve as a solid base to develop biomarkers for monitoring and predicting the efficacy of preoperative RT in rectal cancer patients. Conclusion We proved that an integrated multi-omic approach presents a valid look at the analysis of the global response to cancer treatment from the perspective of metabolomic reprogramming.
Collapse
Affiliation(s)
- Anna Wojakowska
- Laboratory of Mass Spectrometry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Lukasz Marczak
- Laboratory of Mass Spectrometry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Marcin Zeman
- The Oncologic and Reconstructive Surgery Clinic, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | - Mykola Chekan
- Department of Pathomorphology, University of Technology, Katowice, Poland
| | - Ewa Zembala-Nożyńska
- Tumor Pathology Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| | | | - Aleksander Strugała
- Laboratory of Mass Spectrometry, Institute of Bioorganic Chemistry Polish Academy of Sciences, Poznan, Poland
| | - Piotr Widlak
- 2nd Department of Radiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Monika Pietrowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice, Poland
| |
Collapse
|
3
|
Stanojevic A, Samiotaki M, Lygirou V, Marinkovic M, Nikolic V, Stojanovic-Rundic S, Jankovic R, Vlahou A, Panayotou G, Fijneman RJA, Castellví-Bel S, Zoidakis J, Cavic M. Data-Independent Acquisition Mass Spectrometry Analysis of FFPE Rectal Cancer Samples Offers In-Depth Proteomics Characterization of the Response to Neoadjuvant Chemoradiotherapy. Int J Mol Sci 2023; 24:15412. [PMID: 37895091 PMCID: PMC10607861 DOI: 10.3390/ijms242015412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Locally advanced rectal cancer (LARC) presents a challenge in identifying molecular markers linked to the response to neoadjuvant chemoradiotherapy (nCRT). This study aimed to utilize a sensitive proteomic method, data-independent mass spectrometry (DIA-MS), to extensively analyze the LARC proteome, seeking individuals with favorable initial responses suitable for a watch-and-wait approach. This research addresses the unmet need to understand the response to treatment, potentially guiding personalized strategies for LARC patients. Post-treatment assessment included MRI scans and proctoscopy. This research involved 97 LARC patients treated with intense chemoradiotherapy, comprising radiation and chemotherapy. Out of 97 LARC included in this study, we selected 20 samples with the most different responses to nCRT for proteome profiling (responders vs. non-responders). This proteomic approach shows extensive proteome coverage in LARC samples. The analysis identified a significant number of proteins compared to a prior study. A total of 915 proteins exhibited differential expression between the two groups, with certain signaling pathways associated with response mechanisms, while top candidates had good predictive potential. Proteins encoded by genes SMPDL3A, PCTP, LGMN, SYNJ2, NHLRC3, GLB1, and RAB43 showed high predictive potential of unfavorable treatment outcome, while RPA2, SARNP, PCBP2, SF3B2, HNRNPF, RBBP4, MAGOHB, DUT, ERG28, and BUB3 were good predictive biomarkers of favorable treatment outcome. The identified proteins and related biological processes provide promising insights that could enhance the management and care of LARC patients.
Collapse
Affiliation(s)
- Aleksandra Stanojevic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; (A.S.); (R.J.)
| | - Martina Samiotaki
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 166 72 Vari, Greece; (M.S.); (G.P.)
| | - Vasiliki Lygirou
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (V.L.); (A.V.); (J.Z.)
| | - Mladen Marinkovic
- Clinic for Radiation Oncology and Diagnostics, Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; (M.M.); (S.S.-R.)
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Vladimir Nikolic
- Clinic for Medical Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia;
| | - Suzana Stojanovic-Rundic
- Clinic for Radiation Oncology and Diagnostics, Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; (M.M.); (S.S.-R.)
- Faculty of Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia
| | - Radmila Jankovic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; (A.S.); (R.J.)
| | - Antonia Vlahou
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (V.L.); (A.V.); (J.Z.)
| | - George Panayotou
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Fleming 34, 166 72 Vari, Greece; (M.S.); (G.P.)
| | - Remond J. A. Fijneman
- Department of Pathology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands;
| | - Sergi Castellví-Bel
- Gastroenterology Department, Fundació Clínic per la Recerca Biomèdica-Institut d’Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), C/del Rosselló, 149, 08036 Barcelona, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) Almagro, 3, 28029 Madrid, Spain
- Hospital Clínic, University of Barcelona, C/del Villarroel, 170, 08036 Barcelona, Spain
| | - Jerome Zoidakis
- Department of Biotechnology, Biomedical Research Foundation, Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (V.L.); (A.V.); (J.Z.)
- Department of Biology, National and Kapodistrian University of Athens, Panepistimíou 30, 106 79 Athens, Greece
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia; (A.S.); (R.J.)
| |
Collapse
|
4
|
Babic T, Lygirou V, Rosic J, Miladinov M, Rom AD, Baira E, Stroggilos R, Pappa E, Zoidakis J, Krivokapic Z, Nikolic A. Pilot proteomic study of locally advanced rectal cancer before and after neoadjuvant chemoradiotherapy indicates high metabolic activity in non-responders' tumor tissue. Proteomics Clin Appl 2023; 17:e2100116. [PMID: 35997210 DOI: 10.1002/prca.202100116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/28/2022] [Accepted: 08/03/2022] [Indexed: 01/25/2023]
Abstract
PURPOSE In the search for candidate predictive biomarkers to evaluate response to neoadjuvant chemoradiotherapy (nCRT) in rectal cancer, only a few studies report proteomic profiles of tumor tissue before and after nCRT. The aim of our study was to determine differentially expressed proteins between responders and non-responders before and after the therapy in order to identify candidate molecules for prediction and follow-up of response to nCRT. EXPERIMENTAL DESIGN The study has included tissue sections of rectal tumor and non-tumor mucosa from five responders and five non-responders taken before and after nCRT from patients with locally advanced rectal cancer. Extracted proteins were analyzed by LC-MS/MS analysis followed by a set of bioinformatics analyses. RESULT Proteomics analysis provided a mean of approximately 1050 protein identifications per sample. A comparison of proteomic profiles between responders and non-responders has identified 18 differentially expressed proteins. Pathway analysis demonstrated high metabolic activity in non-responders' tumors before nCRT, indicating the presence of intrinsic chemoradioresistance in these subjects. Two proteins associated with poor prognosis in colorectal cancer, ADAM10 and CAD, were identified as candidate predictive biomarkers as they were present in non-responders only. CONCLUSIONS AND CLINICAL RELEVANCE Shortlisted proteins from our study should be further validated as candidate biomarkers for response to routinely applied nCRT protocols.
Collapse
Affiliation(s)
- Tamara Babic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Vasiliki Lygirou
- Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of The Academy of Athens (BRFAA), Athens, Greece
| | - Jovana Rosic
- School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Miladinov
- Clinic for Digestive Surgery - First Surgical Clinic, Clinical Center of Serbia, Belgrade, Serbia
| | - Aleksandra Djikic Rom
- Clinic for Digestive Surgery - First Surgical Clinic, Clinical Center of Serbia, Belgrade, Serbia
| | - Eirini Baira
- Laboratory of Toxicological Assessment of pesticides, Scientific Directorate of Pesticides Assessment and Phytopharmacy, Benaki Phytopathological Institute, Athens, Greece
| | - Rafael Stroggilos
- Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of The Academy of Athens (BRFAA), Athens, Greece
| | - Eftychia Pappa
- Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of The Academy of Athens (BRFAA), Athens, Greece
| | - Jerome Zoidakis
- Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of The Academy of Athens (BRFAA), Athens, Greece
| | - Zoran Krivokapic
- School of Medicine, University of Belgrade, Belgrade, Serbia.,Clinic for Digestive Surgery - First Surgical Clinic, Clinical Center of Serbia, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Aleksandra Nikolic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Li M, Xiao Q, Venkatachalam N, Hofheinz RD, Veldwijk MR, Herskind C, Ebert MP, Zhan T. Predicting response to neoadjuvant chemoradiotherapy in rectal cancer: from biomarkers to tumor models. Ther Adv Med Oncol 2022; 14:17588359221077972. [PMID: 35222695 PMCID: PMC8864271 DOI: 10.1177/17588359221077972] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a major contributor to cancer-associated morbidity worldwide and over one-third of CRC is located in the rectum. Neoadjuvant chemoradiotherapy (nCRT) followed by surgical resection is commonly applied to treat locally advanced rectal cancer (LARC). In this review, we summarize current and novel concepts of neoadjuvant therapy for LARC such as total neoadjuvant therapy and describe how these developments impact treatment response. Moreover, as response to nCRT is highly divergent in rectal cancers, we discuss the role of potential predictive biomarkers. We review recent advances in biomarker discovery, from a clinical as well as a histopathological and molecular perspective. Furthermore, the role of emerging predictive biomarkers derived from the tumor environment such as immune cell composition and gut microbiome is presented. Finally, we describe how different tumor models such as patient-derived cancer organoids are used to identify novel predictive biomarkers for chemoradiotherapy (CRT) in rectal cancer.
Collapse
Affiliation(s)
- Moying Li
- Medical Faculty Mannheim, Heidelberg
University, Mannheim
| | - Qiyun Xiao
- Department of Medicine II, Mannheim University
Hospital, Medical Faculty Mannheim, Heidelberg University, Mannheim,
Germany
| | - Nachiyappan Venkatachalam
- Department of Medicine II, Mannheim University
Hospital, Medical Faculty Mannheim, Heidelberg University, Mannheim,
Germany
| | - Ralf-Dieter Hofheinz
- Department of Medicine III, Mannheim University
Hospital, Medical Faculty Mannheim, Heidelberg University, Mannheim,
GermanyMannheim Cancer Center, Medical Faculty Mannheim, Heidelberg
University, Mannheim, Germany
| | - Marlon R. Veldwijk
- Department of Radiation Oncology, Mannheim
University Hospital, Medical Faculty Mannheim, Heidelberg University,
Mannheim, Germany
| | - Carsten Herskind
- Department of Radiation Oncology, Mannheim
University Hospital, Medical Faculty Mannheim, Heidelberg University,
Mannheim, Germany
| | - Matthias P. Ebert
- Department of Medicine II, Mannheim University
Hospital, Medical Faculty Mannheim, Heidelberg University, Mannheim,
GermanyMannheim Cancer Center, Medical Faculty Mannheim, Heidelberg
University, Mannheim, GermanyDKFZ-Hector Cancer Institute, University
Medical Center Mannheim, Mannheim, Germany
| | - Tianzuo Zhan
- Department of Internal Medicine II, Mannheim
University Hospital, Medical Faculty Mannheim, Heidelberg University,
Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, GermanyMannheim Cancer Center,
Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Strybel U, Marczak L, Zeman M, Polanski K, Mielańczyk Ł, Klymenko O, Samelak-Czajka A, Jackowiak P, Smolarz M, Chekan M, Zembala-Nożyńska E, Widlak P, Pietrowska M, Wojakowska A. Molecular Composition of Serum Exosomes Could Discriminate Rectal Cancer Patients with Different Responses to Neoadjuvant Radiotherapy. Cancers (Basel) 2022; 14:993. [PMID: 35205741 PMCID: PMC8870712 DOI: 10.3390/cancers14040993] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Identification of biomarkers that could be used for the prediction of the response to neoadjuvant radiotherapy (neo-RT) in locally advanced rectal cancer remains a challenge addressed by different experimental approaches. Exosomes and other classes of extracellular vesicles circulating in patients' blood represent a novel type of liquid biopsy and a source of cancer biomarkers. Here, we used a combined proteomic and metabolomic approach based on mass spectrometry techniques for studying the molecular components of exosomes isolated from the serum of rectal cancer patients with different responses to neo-RT. This allowed revealing several proteins and metabolites associated with common pathways relevant for the response of rectal cancer patients to neo-RT, including immune system response, complement activation cascade, platelet functions, metabolism of lipids, metabolism of glucose, and cancer-related signaling pathways. Moreover, the composition of serum-derived exosomes and a whole serum was analyzed in parallel to compare the biomarker potential of both specimens. Among proteins that the most properly discriminated good and poor responders were GPLD1 (AUC = 0.85, accuracy of 74%) identified in plasma as well as C8G (AUC = 0.91, accuracy 81%), SERPINF2 (AUC = 0.91, accuracy 79%) and CFHR3 (AUC = 0.90, accuracy 81%) identified in exosomes. We found that the proteome component of serum-derived exosomes has the highest capacity to discriminate samples of patients with different responses to neo-RT when compared to the whole plasma proteome and metabolome. We concluded that the molecular components of exosomes are associated with the response of rectal cancer patients to neo-RT and could be used for the prediction of such response.
Collapse
Affiliation(s)
- Urszula Strybel
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Lukasz Marczak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Marcin Zeman
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK;
| | - Łukasz Mielańczyk
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Ł.M.); (O.K.)
| | - Olesya Klymenko
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Ł.M.); (O.K.)
| | - Anna Samelak-Czajka
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Paulina Jackowiak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Mateusz Smolarz
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Mykola Chekan
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Ewa Zembala-Nożyńska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Piotr Widlak
- Clinical Research Support Centre, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Anna Wojakowska
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| |
Collapse
|
7
|
Sun Z, Ji S, Wu J, Tian J, Quan W, Shang A, Ji P, Xiao W, Liu D, Wang X, Li D. Proteomics-Based Identification of Candidate Exosomal Glycoprotein Biomarkers and Their Value for Diagnosing Colorectal Cancer. Front Oncol 2021; 11:725211. [PMID: 34737948 PMCID: PMC8560707 DOI: 10.3389/fonc.2021.725211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/29/2021] [Indexed: 01/21/2023] Open
Abstract
Early diagnosis and treatment of colorectal cancer (CRC) significantly improves the survival rate and quality of life. Here we screened for differences in glycoproteins associated with tumor-derived exosomes and validated their clinical value to serve as liquid biopsy biomarkers to diagnosed early CRC. Exosomes were extracted from paracancerous tissues, cancer tissues, and plasma. LC-MS/MS proteomic and glycoproteomics analyses were performed using an LTQ-Orbitrap Elite mass spectrometer. The differences in glycoproteins associated with exosomes of paracancerous tissues and cancer tissue were determined, and their levels in plasma exosomes were determined. Statistical analysis was performed to evaluate the diagnostic efficacy of exosome-associated glycoproteins for CRC. We found that the levels of fibrinogen beta chain (FGB) and beta-2-glycoprotein 1 (β2-GP1) in the exosome of CRC tissue were significantly higher compared with those of paracancerous tissues exosome. The areas under the receiver operating characteristic (ROC) curves of plasma exosomal FGB and β2-GP1 as biomarkers for CRC were 0.871 (95% CI = 0.786–0.914) and 0.834 (95% CI = 0.734–0.901), respectively, compared with those of the concentrations of carcinoembryonic antigen concentration [0.723 (95% CI = 0.679–0.853)] and carbohydrate antigen19-9 concentration [0.614 (95% CI = 0.543–0.715)]. Comprehensive proteomics analyses of plasma exosomal biomarkers in CRC identified biomarkers with significant diagnostic efficacy for early CRC, which can be measured using relatively non-invasive techniques.
Collapse
Affiliation(s)
- Zujun Sun
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shurong Ji
- Department of General Surgery, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junlu Wu
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiale Tian
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenqiang Quan
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Anquan Shang
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ping Ji
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Xuan Wang
- Department of Pharmacy, Shanghai Putuo People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Dong Li
- Department of Clinical Medicine, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Wang WJ, Wang J, Ouyang C, Chen C, Xu XF, Ye XQ. Overview of serpin B9 and its roles in cancer (Review). Oncol Rep 2021; 46:190. [PMID: 34278491 DOI: 10.3892/or.2021.8141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/25/2021] [Indexed: 11/06/2022] Open
Abstract
Serine proteinase inhibitor B9 (serpin B9) is a member of the serine protease inhibitor superfamily, which is widely found in animals, plants and microorganisms. Serpin B9 has been reported to protect cells from the immune‑killing effect of granzyme B (GrB) released by lymphocytes. In recent years, an increasing number of studies have indicated that serpin B9 is involved in tumour apoptosis, immune evasion, tumorigenesis, progression, metastasis, drug resistance and even in maintaining the stemness of cancer stem cells (CSCs). Moreover, according to clinical studies, serpin B9 has been demonstrated to be significantly associated with the development of precancerous lesions, a poor prognosis and ineffective therapies, suggesting that serpin B9 may be a potential target for cancer treatment and an indicator of cancer diagnosis; thus, it has begun to attract increased attention from scholars. The present review concisely described the structure and biological functions of the serpin superfamily and serpin B9. In addition, related research on serpins in cancer is discussed in order to provide a comprehensive understanding of the role of serpin B9 in cancer, as well as its clinical significance for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiao Wang
- Department of Respiratory Diseases, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Chao Ouyang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chong Chen
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Feng Xu
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Qun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
9
|
Di Re AM, Sun Y, Sundaresan P, Hau E, Toh JWT, Gee H, Or M, Haworth A. MRI radiomics in the prediction of therapeutic response to neoadjuvant therapy for locoregionally advanced rectal cancer: a systematic review. Expert Rev Anticancer Ther 2021; 21:425-449. [PMID: 33289435 DOI: 10.1080/14737140.2021.1860762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: The standard of care for locoregionally advanced rectal cancer is neoadjuvant therapy (NA CRT) prior to surgery, of which 10-30% experience a complete pathologic response (pCR). There has been interest in using imaging features, also known as radiomics features, to predict pCR and potentially avoid surgery. This systematic review aims to describe the spectrum of MRI studies examining high-performing radiomic features that predict NA CRT response.Areas covered: This article reviews the use of pre-therapy MRI in predicting NA CRT response for patients with locoregionally advanced rectal cancer (T3/T4 and/or N1+). The primary outcome was to identify MRI radiomic studies; secondary outcomes included the power and the frequency of use of radiomic features.Expert opinion: Advanced models incorporating multiple radiomics categories appear to be the most promising. However, there is a need for standardization across studies with regards to; the definition of NA CRT response, imaging protocols, and radiomics features incorporated. Further studies are needed to validate current radiomics models and to fully ascertain the value of MRI radiomics in the response prediction for locoregionally advanced rectal cancer.
Collapse
Affiliation(s)
- Angelina Marina Di Re
- Colorectal Department, Westmead Hospital, Cnr Hawkesbury, Westmead, NSW.,School of Physics, University of Sydney, Camperdown, NSW, Australia
| | - Yu Sun
- School of Physics, University of Sydney, Camperdown, NSW, Australia
| | - Purnima Sundaresan
- Radiation Oncology Network, Western Sydney Local Health District, Cnr Hawkesbury, Westmead, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Eric Hau
- Radiation Oncology Network, Western Sydney Local Health District, Cnr Hawkesbury, Westmead, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, NSW, Australia
| | - James Wei Tatt Toh
- Colorectal Department, Westmead Hospital, Cnr Hawkesbury, Westmead, NSW.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Centre for Cancer Research, Westmead Institute of Medical Research, Westmead, NSW, Australia
| | - Harriet Gee
- Radiation Oncology Network, Western Sydney Local Health District, Cnr Hawkesbury, Westmead, NSW, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Michelle Or
- Radiation Oncology Network, Western Sydney Local Health District, Cnr Hawkesbury, Westmead, NSW, Australia
| | - Annette Haworth
- School of Physics, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
10
|
Crotti S, Fraccaro A, Bedin C, Bertazzo A, Di Marco V, Pucciarelli S, Agostini M. Tryptophan Catabolism and Response to Therapy in Locally Advanced Rectal Cancer (LARC) Patients. Front Oncol 2020; 10:583228. [PMID: 33178611 PMCID: PMC7593679 DOI: 10.3389/fonc.2020.583228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022] Open
Abstract
In locally advanced rectal cancer patients (LARC), preoperative chemoradiation improves local control and sphincter preservation. The response rate to treatment varies substantially between 20 and 30%, and it is an important prognostic factor. Indeed, nonresponsive patients are subjected to higher rates of local and distant metastases, and worse survival compared to patients with complete response. In the search of predictive biomarkers for response prediction to therapy in LARC patients, we found increased plasma tryptophan levels in nonresponsive patients. On the basis of plasma levels of 5-hydroxy-tryptophan and kynurenine, the activities of tryptophan 5-hydroxylase 1 (TPH1) and indoleamine-2,3-dioxygenases 1 (IDO1)/tryptophan-2,3-dioxygenase (TDO2) have been obtained and data have been correlated with gene expression profiles. We demonstrated that TDO2 overexpression in nonresponsive patients correlates with kynurenine plasma levels. Finally, through the gene expression and targeted metabolomic analysis in paired healthy mucosa-rectal cancer tumor samples, we evaluated the impact of tryptophan catabolism at tissue level in responsive and nonresponsive patients.
Collapse
Affiliation(s)
- Sara Crotti
- Nano-Inspired Biomedicine Laboratory, Institute of Paediatric Research-Città della Speranza, Padua, Italy
| | | | - Chiara Bedin
- Nano-Inspired Biomedicine Laboratory, Institute of Paediatric Research-Città della Speranza, Padua, Italy
| | - Antonella Bertazzo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padua, Padua, Italy
| | - Salvatore Pucciarelli
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| | - Marco Agostini
- Nano-Inspired Biomedicine Laboratory, Institute of Paediatric Research-Città della Speranza, Padua, Italy.,First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, Padua, Italy
| |
Collapse
|
11
|
Izzotti A, Ceccaroli C, Geretto M, Ruggieri FG, Schenone S, Di Maria E. Predicting Response to Neoadjuvant Therapy in Colorectal Cancer Patients the Role of Messenger-and Micro-RNA Profiling. Cancers (Basel) 2020; 12:cancers12061652. [PMID: 32580435 PMCID: PMC7352797 DOI: 10.3390/cancers12061652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer patients' responses to neoadjuvant therapy undergo broad inter-individual variations. The aim of this systematic review is to identify a molecular signature that is predictive of colon cancer downstaging and/or downgrading after neoadjuvant therapy. Among the hundreds analysed in the available studies, only 19 messenger-RNAs (mRNAs) and six micro-RNAs (miRNAs) were differentially expressed in responders versus non-responders in two or more independent studies. Therefore, a mRNA/miRNA signature can be designed accordingly, with limitations caused by the retrospective nature of these studies, the heterogeneity in study designs and the downgrading/downstaging assessment criteria. This signature can be proposed to tailor neoadjuvant therapy regimens on an individual basis.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Correspondence: ; Tel.: +39-010-353-8522
| | | | - Marta Geretto
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy;
| | | | - Sara Schenone
- Department of Health Sciences, University of Genova, 16132 Genova, Italy; (S.S.); (E.D.M.)
| | - Emilio Di Maria
- Department of Health Sciences, University of Genova, 16132 Genova, Italy; (S.S.); (E.D.M.)
- Unit of Medical Genetics, Galliera Hospital, 16128 Genoa, Italy
| |
Collapse
|
12
|
AlQudah M, Salmo E, Haboubi N. The effect of radiotherapy on rectal cancer: a histopathological appraisal and prognostic indicators. Radiat Oncol J 2020; 38:77-83. [PMID: 33012150 PMCID: PMC7533410 DOI: 10.3857/roj.2020.00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022] Open
Abstract
The management of rectal cancer is a major undertaking. There are currently multiple treatment modalities with variable degrees of complications. Radiotherapy (RT) is one of the more frequently used modalities either on its own or more frequently with chemotherapy mostly before the definitive surgery. The outcome of RT is unpredictable. RT has its serious side effects and there are no guarantees of its usefulness in all patients. This article outlines the effect of RT on the tumor, reviews the various staging systems of responses to RT and present recent evidence of which case is less responsive to such treatments to avoid unnecessary complications.
Collapse
Affiliation(s)
- Mohammad AlQudah
- Department of Pathology and Microbiology, School of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Emil Salmo
- Department of Histopathology, The Pennine Acute Hospitals NHS Trust, The Royal Oldham Hospital, Oldham, UK
| | - Najib Haboubi
- Department of Histopathology, Spire Manchester Hospital, Manchester, UK
| |
Collapse
|
13
|
Holm M, Joenväärä S, Saraswat M, Tohmola T, Ristimäki A, Renkonen R, Haglund C. Preoperative Radiotherapy Leads to Significant Differences in the Plasma Protein Profile of Rectal Cancer Patients. Oncology 2020; 98:493-500. [PMID: 32294655 DOI: 10.1159/000505697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 12/31/2019] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Colorectal cancer (CRC) is the third most common cancer worldwide, accounting for 10% of the global cancer burden. Rectal cancer accounts for around 30% of CRC cases, and patients with resectable rectal cancer are often given preoperative radiotherapy (PRT) to reduce the rate of local recurrence. The human plasma proteome is an exceptionally complex proteome and ideal to study due to its ability to reflect the presence of diseases such as cancer and the ease of obtaining blood samples. Previous proteomic studies involving rectal cancer patients have mostly focused on the identification of proteins involved in resistance to radiotherapy. OBJECTIVE The aim of this study was to investigate the overall effects of PRT on plasma protein expression in rectal cancer patients, as there is a lack of such studies. METHODS Here, we have used mass spectrometry and subsequent statistical analyses to analyze the plasma samples of 30 rectal cancer patients according to PRT status (positive or negative) and tumor stage (II or III). RESULTS AND CONCLUSIONS We discovered 42 proteins whose levels differed significantly between stage II and III rectal cancer patients who did or did not receive PRT. This study shows that PRT, although localized to the pelvis, leads to measurable, tumor stage-specific changes in plasma protein expression. Future studies of plasma proteins should, when relevant, take this into account and be aware of the widespread effects that PRT has on the plasma proteome.
Collapse
Affiliation(s)
- Matilda Holm
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland, .,Department of Pathology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland, .,Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland, .,Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,
| | - Sakari Joenväärä
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tiialotta Tohmola
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland.,Department of Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Ari Ristimäki
- Department of Pathology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Applied Tumor Genomics Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Risto Renkonen
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,HUSLAB, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
14
|
Park IJ, Yu YS, Mustafa B, Park JY, Seo YB, Kim GD, Kim J, Kim CM, Noh HD, Hong SM, Kim YW, Kim MJ, Ansari AA, Buonaguro L, Ahn SM, Yu CS. A Nine-Gene Signature for Predicting the Response to Preoperative Chemoradiotherapy in Patients with Locally Advanced Rectal Cancer. Cancers (Basel) 2020; 12:cancers12040800. [PMID: 32225122 PMCID: PMC7226472 DOI: 10.3390/cancers12040800] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/22/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
Preoperative chemoradiotherapy (PCRT) and subsequent surgery is the standard multimodal treatment for locally advanced rectal cancer (LARC), albeit PCRT response varies among the individuals. This creates a dire necessity to identify a predictive model to forecast treatment response outcomes and identify patients who would benefit from PCRT. In this study, we performed a gene expression study using formalin-fixed paraffin-embedded (FFPE) tumor biopsy samples from 156 LARC patients (training cohort n = 60; validation cohort n = 96); we identified the nine-gene signature (FGFR3, GNA11, H3F3A, IL12A, IL1R1, IL2RB, NKD1, SGK2, and SPRY2) that distinctively differentiated responders from non-responders in the training cohort (accuracy = 86.9%, specificity = 84.8%, sensitivity = 81.5%) as well as in an independent validation cohort (accuracy = 81.0%, specificity = 79.4%, sensitivity = 82.3%). The signature was independent of all pathological and clinical features and was robust in predicting PCRT response. It is readily applicable to the clinical setting using FFPE samples and Food and Drug Administration (FDA) approved hardware and reagents. Predicting the response to PCRT may aid in tailored therapies for respective responders to PCRT and improve the oncologic outcomes for LARC patients.
Collapse
Affiliation(s)
- In Ja Park
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Yun Suk Yu
- CbsBioscience Inc., Daejeon 34036, Korea; (Y.S.Y.); (J.Y.P.); (Y.B.S.); (G.-D.K.); (J.K.); (C.M.K.); (H.D.N.)
| | - Bilal Mustafa
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon 21565, Korea;
| | - Jin Young Park
- CbsBioscience Inc., Daejeon 34036, Korea; (Y.S.Y.); (J.Y.P.); (Y.B.S.); (G.-D.K.); (J.K.); (C.M.K.); (H.D.N.)
| | - Yong Bae Seo
- CbsBioscience Inc., Daejeon 34036, Korea; (Y.S.Y.); (J.Y.P.); (Y.B.S.); (G.-D.K.); (J.K.); (C.M.K.); (H.D.N.)
| | - Gun-Do Kim
- CbsBioscience Inc., Daejeon 34036, Korea; (Y.S.Y.); (J.Y.P.); (Y.B.S.); (G.-D.K.); (J.K.); (C.M.K.); (H.D.N.)
- Department of Microbiology, College of Natural Sciences, Pukyong National University, Busan 48513, Korea
| | - Jinpyo Kim
- CbsBioscience Inc., Daejeon 34036, Korea; (Y.S.Y.); (J.Y.P.); (Y.B.S.); (G.-D.K.); (J.K.); (C.M.K.); (H.D.N.)
| | - Chang Min Kim
- CbsBioscience Inc., Daejeon 34036, Korea; (Y.S.Y.); (J.Y.P.); (Y.B.S.); (G.-D.K.); (J.K.); (C.M.K.); (H.D.N.)
| | - Hyun Deok Noh
- CbsBioscience Inc., Daejeon 34036, Korea; (Y.S.Y.); (J.Y.P.); (Y.B.S.); (G.-D.K.); (J.K.); (C.M.K.); (H.D.N.)
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.W.K.); (M.-J.K.)
| | - Yeon Wook Kim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.W.K.); (M.-J.K.)
| | - Mi-Ju Kim
- Asan Institute for Life Science, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (Y.W.K.); (M.-J.K.)
| | - Adnan Ahmad Ansari
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Incheon 21565, Korea;
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale”-IRCCS, 80131 Naples, Italy;
| | - Sung-Min Ahn
- Department of Genome Medicine and Science, College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: (S.-M.A.); (C.-S.Y.); Tel.: +82-010-3648-7437 (S.-M.A.); +82-2-3010-3494 (C.-S.Y.)
| | - Chang-Sik Yu
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Correspondence: (S.-M.A.); (C.-S.Y.); Tel.: +82-010-3648-7437 (S.-M.A.); +82-2-3010-3494 (C.-S.Y.)
| |
Collapse
|
15
|
Cantor DI, Cheruku HR, Westacott J, Shin JS, Mohamedali A, Ahn SB. Proteomic investigations into resistance in colorectal cancer. Expert Rev Proteomics 2020; 17:49-65. [PMID: 31914823 DOI: 10.1080/14789450.2020.1713103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Despite advances in screening and treatment options, colorectal cancer (CRC) remains one of the most prevalent and lethal cancer subtypes. Resistance to cytotoxic or targeted therapy has remained a constant challenge to the treatment and long-term management of patients, attracting intense worldwide investigation since the 1950s. Through extensive investigations into the proteomic mechanisms and functions that convey resistance to therapy/s, researchers have become able to implicate alterations in several signaling pathways that provide and sustain resistance to treatment.Areas covered: In this review, we summarize how protein alterations are associated with resistance to therapy, with particular emphasis on CRC. An overview of the mechanisms of therapeutic resistance is described, highlighting recent studies which endeavor to elucidate the proteomic changes that are associated with the acquisition and promulgation of therapeutic resistance.Expert opinion: While cancers such as CRC have been intensively studied for decades, unresponsiveness and the resistance to therapy remain critical obstacles in the treatment of patients. Due to the inherent biological and clinical heterogeneity of individual CRCs, proteomic methods stand to become powerful tools to provide biological insights that may guide therapeutic strategies with the ultimate goal of refining emergent immunotherapeutic treatments.
Collapse
Affiliation(s)
- David I Cantor
- Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | | | - Jack Westacott
- Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Joo-Shik Shin
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and Faculty of Medicine, University of Sydney, Sydney, Australia
| | - Abidali Mohamedali
- Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Seong Boem Ahn
- Faculty of Health and Medical Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
16
|
Bedin C, Crotti S, D'Angelo E, D'Aronco S, Pucciarelli S, Agostini M. Circulating Biomarkers for Response Prediction of Rectal Cancer to Neoadjuvant Chemoradiotherapy. Curr Med Chem 2019; 27:4274-4294. [PMID: 31060482 DOI: 10.2174/0929867326666190507084839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 03/05/2019] [Accepted: 04/18/2019] [Indexed: 12/20/2022]
Abstract
Rectal cancer response to neoadjuvant Chemoradiotherapy (pCRT) is highly variable. In fact, it has been estimated that only about 21 % of patients show pathologic Complete Response (pCR) after therapy, while in most of the patients a partial or incomplete tumour regression is observed. Consequently, patients with a priori chemoradioresistant tumour should not receive the treatment, which is associated with substantial adverse effects and does not guarantee any clinical benefit. For Locally Advanced Rectal Cancer Patients (LARC), a standardized neoadjuvant treatment protocol is applied, the identification and the usefulness of prognostic or predictive biomarkers can improve the antitumoural treatment strategy, modifying the sequence, dose, and combination of radiotherapy, chemotherapy and surgical resection. For these reasons, a growing number of studies are actually focussed on the discovery and investigation of new predictive biomarkers of response to pCRT. In this review, we have selected the most recent literature (2012-2017) regarding the employment of blood-based biomarkers potentially predicting pCR in LARC patients and we have critically discussed them to highlight their real clinical benefit and the current limitations of the proposed methodological approaches.
Collapse
Affiliation(s)
- Chiara Bedin
- Nano-inspired Biomedicine Lab, Paediatric Research Institute-Città della Speranza, Padua, Italy
| | - Sara Crotti
- Nano-inspired Biomedicine Lab, Paediatric Research Institute-Città della Speranza, Padua, Italy
| | - Edoardo D'Angelo
- Nano-inspired Biomedicine Lab, Paediatric Research Institute-Città della Speranza, Padua, Italy
| | - Sara D'Aronco
- Nano-inspired Biomedicine Lab, Paediatric Research Institute-Città della Speranza, Padua, Italy,First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Science, University of
Padua, Padua, Italy
| | - Salvatore Pucciarelli
- First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Science, University of
Padua, Padua, Italy
| | - Marco Agostini
- Nano-inspired Biomedicine Lab, Paediatric Research Institute-Città della Speranza, Padua, Italy,First Surgical Clinic Section, Department of Surgical, Oncological and Gastroenterological Science, University of
Padua, Padua, Italy
| |
Collapse
|
17
|
Chauvin A, Boisvert FM. Clinical Proteomics in Colorectal Cancer, a Promising Tool for Improving Personalised Medicine. Proteomes 2018; 6:proteomes6040049. [PMID: 30513835 PMCID: PMC6313903 DOI: 10.3390/proteomes6040049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer is the third most common and the fourth most lethal cancer worldwide. In most of cases, patients are diagnosed at an advanced or even metastatic stage, thus explaining the high mortality. The lack of proper clinical tests and the complicated procedures currently used for detecting this cancer, as well as for predicting the response to treatment and the outcome of a patient's resistance in guiding clinical practice, are key elements driving the search for biomarkers. In the present overview, the different biomarkers (diagnostic, prognostic, treatment resistance) discovered through proteomics studies in various colorectal cancer study models (blood, stool, biopsies), including the different proteomic techniques used for the discovery of these biomarkers, are reviewed, as well as the various tests used in clinical practice and those currently in clinical phase. These studies define the limits and perspectives related to proteomic biomarker research for personalised medicine in colorectal cancer.
Collapse
Affiliation(s)
- Anaïs Chauvin
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| | - François-Michel Boisvert
- Department of Anatomy and Cell Biology, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
18
|
Repetto O, Mussolin L, Elia C, Martina L, Bianchi M, Buffardi S, Sala A, Burnelli R, Mascarin M, De Re V. Proteomic Identification of Plasma Biomarkers in Children and Adolescents with Recurrent Hodgkin Lymphoma. J Cancer 2018; 9:4650-4658. [PMID: 30588249 PMCID: PMC6299395 DOI: 10.7150/jca.27560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/26/2018] [Indexed: 12/13/2022] Open
Abstract
The treatment of paediatric Hodgkin lymphoma (HL) has steadily improved over the years, so that 10- years survival exceed 80%. The purpose of this study was to identify prognostic markers for relapsed HL that might contribute to optimize therapeutic approaches. To this aim we retrospectively analysed differential protein expression profiles obtained from plasma of children/adolescents with HL (age ranging from 10 to 18 years) collected at diagnosis. We examined the protein profiles of 15 HL relapsed (R) patients compared with 14 HL not relapsed (NR) patients treated with the same LH-2004 protocol. Two dimensional difference in gel electrophoresis (2D-DIGE) revealed significant differences (fold change > 1.5; Student's T-test p<0.01) between R and NR patients in 10 proteins: α-1-antitrypsin chain a, apolipoprotein A-IV precursor; inter-α-trypsin inhibitor heavy chain; antithrombin-III; vitronectin; fibrinogen α, β and γ chains, complement C3, and ceruloplasmin. An up-regulation of fibrinogen α (spots 78, 196, 230, 234, 239) and β (spots 98, 291, 296, 300) chains together with a lower level of α-1-antitrypsin (spots 255, 264, 266, 272, 273) were found in R patients, and this difference was validated by immunoblotting. The functional role(s) of these proteins in the coagulation and inflammation associated with paediatric/adolescent HL progression and relapse deserves further investigations.
Collapse
Affiliation(s)
- Ombretta Repetto
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Lara Mussolin
- Clinic of Pediatric Haemato-Oncology, Department of Women's and Children's Health, University of Padua, Padua, Institute of Paediatric Research - Fondazione Città della Speranza, Padua, Italy
| | - Caterina Elia
- Pediatric Radioterapy Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Lia Martina
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Maurizio Bianchi
- Pediatric Onco-Hematology and Stem Cell Transplant Division, City of Health and Science, Regina Margherita Children's Hospital, Turin, Italy
| | - Salvatore Buffardi
- Paediatric Haemato-Oncology department, Santobono-Pausilipon Children's Hospital, Napoli, Italy
| | - Alessandra Sala
- Department of Paediatrics, Ospedale San Gerardo, University of Milano-Bicocca, Fondazione MBBM, Monza, Italy
| | - Roberta Burnelli
- Pediatric Oncology University Hospital, Sant'Anna Hospital, Ferrara, Italy
| | - Maurizio Mascarin
- Pediatric Radioterapy Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Valli De Re
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
19
|
Peroxiredoxins in Colorectal Cancer: Predictive Biomarkers of Radiation Response and Therapeutic Targets to Increase Radiation Sensitivity? Antioxidants (Basel) 2018; 7:antiox7100136. [PMID: 30301137 PMCID: PMC6210826 DOI: 10.3390/antiox7100136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 09/27/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer in the Western world, with one-third of cases located in the rectum. Preoperative radiotherapy is the standard of care for many patients with rectal cancer but has a highly variable response rate. The ability to predict response would be of great clinical utility. The response of cells to ionizing radiation is known to involve immediate damage to biomolecules and more sustained disruption of redox homeostasis leading to cell death. The peroxiredoxins are an important group of thiol-dependent antioxidants involved in protecting cells from oxidative stress and regulating signaling pathways involved in cellular responses to oxidative stress. All six human peroxiredoxins have shown increased expression in CRC and may be associated with clinicopathological features and tumor response to ionizing radiation. Peroxiredoxins can act as markers of oxidative stress in various biological systems but they have not been investigated in this capacity in CRC. As such, there is currently insufficient evidence to support the role of peroxiredoxins as clinical biomarkers, but it is an area worthy of investigation. Future research should focus on the in vivo response of rectal cancer to radiotherapy and the redox status of peroxiredoxins in rectal cancer cells, in order to predict response to radiotherapy. The peroxiredoxin system is also a potential therapeutic target for CRC.
Collapse
|
20
|
Chauvin A, Wang CS, Geha S, Garde-Granger P, Mathieu AA, Lacasse V, Boisvert FM. The response to neoadjuvant chemoradiotherapy with 5-fluorouracil in locally advanced rectal cancer patients: a predictive proteomic signature. Clin Proteomics 2018; 15:16. [PMID: 29681787 PMCID: PMC5898006 DOI: 10.1186/s12014-018-9192-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/04/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Colorectal cancer is the third most common and the fourth most lethal cancer in the world. In the majority of cases, patients are diagnosed at an advanced stage or even metastatic, thus explaining the high mortality. The standard treatment for patients with locally advanced non-metastatic rectal cancer is neoadjuvant radio-chemotherapy (NRCT) with 5-fluorouracil (5-FU) followed by surgery, but the resistance rate to this treatment remains high with approximately 30% of non-responders. The lack of evidence available in clinical practice to predict NRCT resistance to 5-FU and to guide clinical practice therefore encourages the search for biomarkers of this resistance. METHODS From twenty-three formalin-fixed paraffin-embedded (FFPE) biopsies performed before NRCT with 5-FU of locally advanced non-metastatic rectal cancer patients, we extracted and analysed the tumor proteome of these patients. From clinical data, we were able to classify the twenty-three patients in our cohort into three treatment response groups: non-responders (NR), partial responders (PR) and total responders (TR), and to compare the proteomes of these different groups. RESULTS We have highlighted 384 differentially abundant proteins between NR and PR, 248 between NR and TR and 417 between PR and TR. Among these proteins, we have identified many differentially abundant proteins identified as having a role in cancer (IFIT1, FASTKD2, PIP4K2B, ARID1B, SLC25A33: overexpressed in TR; CALD1, CPA3, B3GALT5, CD177, RIPK1: overexpressed in NR). We have also identified that DPYD, the main degradation enzyme of 5-FU, was overexpressed in NR, as well as several ribosomal and mitochondrial proteins also overexpressed in NR. Data are available via ProteomeXchange with identifier PXD008440. CONCLUSIONS From these retrospective study, we implemented a protein extraction protocol from FFPE biopsy to highlight protein differences between different response groups to RCTN with 5-FU in patients with locally advanced non-metastatic rectal cancer. These results will pave the way for a larger cohort for better sensitivity and specificity of the signature to guide decisions in the choice of treatment.
Collapse
Affiliation(s)
- Anaïs Chauvin
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC J1E 4K8 Canada
| | - Chang-Shu Wang
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Sameh Geha
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Perrine Garde-Granger
- Department of Pathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC Canada
| | - Alex-Ane Mathieu
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC J1E 4K8 Canada
| | - Vincent Lacasse
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC J1E 4K8 Canada
| | - François-Michel Boisvert
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3201 Jean-Mignault, Sherbrooke, QC J1E 4K8 Canada
| |
Collapse
|
21
|
Abstract
Elevated plasma fibrinogen levels and tumor progression in patients with gastric cancer (GC) have been largely reported. However, distinct fibrinogen chains and domains have different effects on coagulation, inflammation, and angiogenesis. The aim of this study was to characterize fibrinogen β chain (FGB) in GC tissues. Retrospectively we analyzed the data of matched pairs of normal (N) and malignant tissues (T) of 28 consecutive patients with GC at diagnosis by combining one- and two-dimensional electrophoresis (1DE and 2DE) with immunoblotting and mass spectrometry together with two-dimensional difference in gel electrophoresis (2D-DIGE). 1DE showed bands of the intact FGB at 50 kDa and the cleaved forms containing the fragment D at ~37–40 kDa, which corresponded to 19 spots in 2DE. In particular, spot 402 at ~50 kDa and spots 526 and 548 at ~37 kDa were of interest by showing an increased expression in tumor tissues. A higher content of spot 402 was associated with stomach antrum, while spots 526 and 548 amounts correlated with corpus and high platelet count (>208 × 109/L). The quantification of FGB and cleaved products may help to further characterize the interconnections between GC and platelet/coagulation pathways.
Collapse
|
22
|
Repetto O, De Re V. Coagulation and fibrinolysis in gastric cancer. Ann N Y Acad Sci 2017; 1404:27-48. [PMID: 28833193 DOI: 10.1111/nyas.13454] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/12/2017] [Accepted: 07/25/2017] [Indexed: 12/12/2022]
Abstract
Coagulation is a highly conserved process occurring after an injury to a blood vessel and resulting in hemostasis. In the thrombus microenvironment, finely orchestrated events restore vessel integrity through platelet activation, adhesion, and aggregation (primary hemostasis), followed by the coagulation cascades, thrombin generation, and fibrin clot deposition (secondary hemostasis). Several studies on cancer have provided insight into dramatic changes to coagulation-related events (i.e., fibrin clot deposition, fibrinolysis) during tumor pathogenesis, progression, and metastasis, in addition to a tumor-driven systemic activation of hemostasis and thrombosis (Trousseau's syndrome). Diverse molecular and cellular effectors participate in the cross talk between hemostasis and tumors. Here, we focus on some aspects of the interconnection between cancer biology and hemostatic components, with particular attention to some key coagulation-related proteins (e.g., tissue factor, thrombin, fibrinogen, and D-dimers) in the particular case of gastric cancer (GC). Recent advances in deciphering the complex molecular link between GC and the coagulation system are described, showing their important roles in better management of patients affected by GC.
Collapse
Affiliation(s)
- Ombretta Repetto
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| | - Valli De Re
- Facility of Bio-Proteomics, Immunopathology and Cancer Biomarkers, CRO Aviano National Cancer Institute, Aviano (PN), Italy
| |
Collapse
|