1
|
Karagkouni AC, Polemidiotou K, Gkretsi V, Stylianou A. Atomic force microscopy reveals the influence of substrate collagen concentration and TGF-β on lung fibroblast mechanics. Micron 2025; 189:103751. [PMID: 39591758 DOI: 10.1016/j.micron.2024.103751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Understanding how extracellular matrix (ECM) stiffness and biochemical factors such as TGF-β affect cell behaviour is critical for elucidating mechanisms underlying several pathologic conditions such as tissue fibrosis and cancer metastasis. This study investigates the effects of varying collagen substrate concentration and consequently varying stiffness conditions along with TGF-β treatment on the morphology, nanomechanical properties, and gene expression of normal human lung fibroblasts (NHLF). Our results reveal that increased substrate stiffness leads to more elongated cell morphology, decreased cellular stiffness, and significant alterations in gene expression related to cytoskeletal organization and myofibroblast activation genes. TGF-β treatment further induces myofibroblast differentiation, as evidenced by increased α-SMA and collagen expression, while also reducing cellular stiffness and promoting a more elongated, invasive phenotype. These findings highlight the critical role of both mechanical and biochemical cues in modulating fibroblast behaviour, with significant implications in fibrosis development and cancer progression.
Collapse
Affiliation(s)
- Anna Christina Karagkouni
- Cancer Mechanobiology and Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus, Cyprus
| | - Katerina Polemidiotou
- Cancer Mechanobiology and Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus, Cyprus
| | - Vasiliki Gkretsi
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus
| | - Andreas Stylianou
- Cancer Mechanobiology and Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus, Cyprus; Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| |
Collapse
|
2
|
Polemidiotou K, Kulkarni SG, Szydlak R, Lekka M, Radmacher M, Gkretsi V, Stylianopoulos T, Stylianou A. Assessing sarcoma cell cytoskeleton remodeling in response to varying collagen concentration. Int J Biol Macromol 2024; 282:136770. [PMID: 39437949 DOI: 10.1016/j.ijbiomac.2024.136770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/18/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Sarcomas, rare malignant tumors of mesenchymal origin, are often underdiagnosed and have face diagnostic ambiguities and limited treatment options. The main objective of this study was to define the nanomechanical and biophysical properties of sarcoma cells, particularly examining how the cytoskeleton's remodeling and related cellular processes such as cell migration and invasion in response to environmental stimuli due to collagen content. Utilizing one murine fibrosarcoma and one osteosarcoma cell line we employed atomic force microscopy, immunostaining, advanced image processing, in vitro cellular assays, and molecular techniques to investigate cells' cytoskeleton remodeling in response to varying collagen concentration. Our study focused on how alterations in collagen content affects the cytoskeletal dynamics and correlate with changes in gene expression profiles relevant to metastasis and an aggressive cancer phenotypes. Our findings indicate that despite their shared classification, fibrosarcoma and osteosarcoma cells display distinct biophysical properties and respond differently to mechanical forces. Notably, this difference in cellular behavior renders mechanical properties a potent novel biomarkers. Furthermore, the metastasis-related identified genes related to metastatic capability, could be potential therapeutic targets. This study highlights the significance of understanding the unique traits of sarcoma cells to improve diagnostic precision and expand therapeutic strategies, for this rare type of cancer.
Collapse
Affiliation(s)
- Katerina Polemidiotou
- Cancer Mechanobiology & Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus/EUC Research Centre, 2404 Nicosia, Cyprus.
| | - Shruti G Kulkarni
- Institute of Biophysics, University of Bremen, 28359 Bremen, Germany.
| | - Renata Szydlak
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, PL-30688 Krakow, Poland.
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland.
| | - Manfred Radmacher
- Institute of Biophysics, University of Bremen, 28359 Bremen, Germany.
| | - Vasiliki Gkretsi
- Cancer Metastasis and Adhesion Group, Basic and Translational Cancer Research Center (BTCRC), European University Cyprus, Nicosia, Cyprus.
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus.
| | - Andreas Stylianou
- Cancer Mechanobiology & Applied Biophysics Group, Basic and Translational Cancer Research Center, School of Sciences, European University Cyprus/EUC Research Centre, 2404 Nicosia, Cyprus; Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus.
| |
Collapse
|
3
|
Jeibouei S, Monfared AK, Hojat A, Aref AR, Shams F, Dolati M, Moradi A, Hosseini M, Javadi SM, Ajoudanian M, Molavi Z, Moghaddam M, Mohammadi F, Nuoroozi G, Naeimi SK, Shahani M, Zali H, Akbari ME, Mostafavi E. Human-derived Tumor-On-Chip model to study the heterogeneity of breast cancer tissue. BIOMATERIALS ADVANCES 2024; 162:213915. [PMID: 38878646 DOI: 10.1016/j.bioadv.2024.213915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 07/03/2024]
Abstract
One of the leading causes that complicate the treatment of some malignancies, including breast cancer, is tumor heterogeneity. In addition to inter-heterogeneity and intra-heterogeneity of tumors that reflect the differences between cancer cell characteristics, heterogeneity in the tumor microenvironment plays a critical role in tumor progression and could be considered an overlooked and a proper target for the effective selection of therapeutic approaches. Due to the difficulty of completely capturing tumor heterogeneity in conventional detection methods, Tumor-on-Chip (TOC) devices with culturing patient-derived spheroids could be an appropriate alternative. In this research, human-derived spheroids from breast cancer individuals were cultured for 6 days in microfluidic devices. To compare TOC data with conventional detection methods, immunohistochemistry (IHC) and ITRAQ data were employed, and various protein expressions were validated using the transcriptomic databases. The behavior of the spheroids in the collagen matrix and the cell viability were monitored over 6 days of culture. IHC and immunocytochemistry (ICC) results revealed that inter and intra-heterogeneity of tumor spheroids are associated with HER2/ER expression. HER2 expression levels revealed a more important biomarker associated with invasion in the 3D culturing of spheroids. The expression levels of CD163 (as a marker for Ma2 macrophages) and CD44 (a marker for cancer stem cells (CSCs)) were also evaluated. Interestingly, the levels of M2a macrophages and CSCs were higher in triple-negative specimens and samples that showed higher migration and invasion. Cell density and extracellular matrix (ECM) stiffness were also important factors affecting the migration and invasion of the spheroids through the matrix. Among these, rigid ECM revealed a more crucial role than cell density. To sum up, these research findings demonstrated that human-derived spheroids from breast cancer specimens in microfluidic devices provide a dynamic condition for predicting tumor heterogeneity in patients, which can help move the field forward for better and more accurate therapeutic strategies.
Collapse
Affiliation(s)
- Shabnam Jeibouei
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran; Virginia Seafood Agricultural Research and Extension Center, Virginia Tech, Hampton, VA 23669, USA
| | - Arefeh Khazraie Monfared
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Ali Hojat
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Amir Reza Aref
- Department of surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Vitro Vision, DeepkinetiX Inc, Boston, MA, USA
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mandana Dolati
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Afshin Moradi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Masoumeh Hosseini
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Seyed Mohammadreza Javadi
- Department of Surgery, School of Medicine, Besat Hospital, Hamadan University of Medical Sciences, Hamadan 65178-38636, Iran
| | - Mohammad Ajoudanian
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Molavi
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran 19839-63113, Iran
| | - Maryam Moghaddam
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Farzaneh Mohammadi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Ghader Nuoroozi
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Khakpour Naeimi
- Islamic Azad University, Central Tehran Branch, Faculty of Basic Sciences, Department of Biology, Tehran 63537-11489, Iran
| | - Minoo Shahani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Hakimeh Zali
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.
| | - Mohammad Esmaeil Akbari
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Xu Y, Hou YY, Wu Z, Fang ZX, Wu HT, Liu J. Comprehensive analysis of cell-extracellular matrix protein Ras suppressor-1 in function and prognosis of gastrointestinal cancers. World J Methodol 2023; 13:223-237. [PMID: 37771863 PMCID: PMC10523239 DOI: 10.5662/wjm.v13.i4.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Ras suppressor 1 (RSU1), a highly conserved protein, plays an important role in actin cytoskeleton remodeling and cell-extracellular matrix adhesion. Aberration of RSU1 activity can cause changes in cell adhesion and migration, thereby enhancing tumor proliferation and metastasis. However, the correlation between RSU1 and gastrointestinal cancers (GICs), as well as its prognostic role related to tumor-infiltrating immune cells (TIICs) remains unclear. AIM To shows RSU1 plays a potential promoting role in facilitating tumor immune escape in GIC. METHODS Differential expression of RSU1 in different tumors and their corresponding normal tissues was evaluated by exploring the Gene Expression Profiling Interactive Analysis (GEPIA) dataset. The correlation between RSU1 expression and prognosis of GIC cancer patients was evaluated by Kaplan-Meier plotter. Then, RSU1-correlated genes were screened and functionally characterized via enrichment analysis. The correlation between RSU1 and TIICs was further characterized using the Tumor Immune Estimation Resource (TIMER). In addition, the correlation between RSU1 and immune cell surface molecules was also analyzed by TIMER. RESULTS High RSU1 expression was associated with poor overall survival of gastric cancer patients, exhibiting a hazard ratio (HR) = 1.36, first progression HR = 1.53, and post progression survival HR = 1.6. Specifically, high RSU1 Levels were associated with prognosis of gastric cancer in females, T4 and N3 stages, and Her-2-negative subtypes. Regarding immune-infiltrating cells, RSU1 expression level was positively correlated with infiltration of CD4+ T cells, macrophages, neutrophils, and dendritic cells (DCs) in colorectal adenocarcinoma and stomach adenocarcinoma. RSU1 expression was also predicted to be strongly correlated with immune marker sets in M2 macrophage, DCs and T cell exhaustion in GICs. CONCLUSION In gastrointestinal cancers, RSU1 is increased in tumor tissues, and predicts poor survival of patients. Increased RSU1 may be involved in promoting macrophage polarization, DC infiltration, and T cell exhaustion, inducing tumor immune escape and the development of tumors in GICs. We suggest that RSU1 is a promising prognostic biomarker reflecting immune infiltration level of GICs, as well as a potential therapeutic target for precision treatment through improving the immune response.
Collapse
Affiliation(s)
- Ya Xu
- Department of Radiation Oncology, Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei 516600, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
5
|
Cameron AP, Gao S, Liu Y, Zhao CX. Impact of hydrogel biophysical properties on tumor spheroid growth and drug response. BIOMATERIALS ADVANCES 2023; 149:213421. [PMID: 37060634 DOI: 10.1016/j.bioadv.2023.213421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
The extracellular matrix (ECM) plays a critical role in regulating cell-matrix interactions during tumor progression. These interactions are due in large part to the biophysical properties responding to cancer cell interactions. Within in vitro models, the ECM is mimicked by hydrogels, which possess adjustable biophysical properties that are integral to tumor development. This work presents a systematic and comparative study on the impact of the biophysical properties of two widely used natural hydrogels, Matrigel and collagen gel, on tumor growth and drug response. The biophysical properties of Matrigel and collagen including complex modulus, loss tangent, diffusive permeability, and pore size, were characterised. Then the spheroid growth rates in these two hydrogels were monitored for spheroids with two different sizes (140 μm and 500 μm in diameters). An increased migratory growth was observed in the lower concentration of both the gels. The effect of spheroid incorporation within the hydrogel had a minimal impact on the hydrogel's complex modulus. Finally, 3D tumor models using different concentrations of hydrogels were applied for drug treatment using paclitaxel. Spheroids cultured in hydrogels with different concentrations showed different drug response, demonstrating the significant effect of the choice of hydrogels and their concentrations on the drug response results despite using the same spheroids. This study provides useful insights into the effect of hydrogel biophysical properties on spheroid growth and drug response and highlights the importance of hydrogel selection and in vitro model design.
Collapse
Affiliation(s)
- Anna P Cameron
- Australian institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Song Gao
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, Australia
| | - Yun Liu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, Australia
| | - Chun-Xia Zhao
- Australian institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia; School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
6
|
Pancreatic Cancer Presents Distinct Nanomechanical Properties During Progression. Ann Biomed Eng 2023:10.1007/s10439-023-03168-3. [PMID: 36813931 DOI: 10.1007/s10439-023-03168-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 02/11/2023] [Indexed: 02/24/2023]
Abstract
Cancer progression is closely related to changes in the structure and mechanical properties of the tumor microenvironment (TME). In many solid tumors, including pancreatic cancer, the interplay among the different components of the TME leads to a desmoplastic reaction mainly due to collagen overproduction. Desmoplasia is responsible for the stiffening of the tumor, poses a major barrier to effective drug delivery and has been associated with poor prognosis. The understanding of the involved mechanisms in desmoplasia and the identification of nanomechanical and collagen-based properties that characterize the state of a particular tumor can lead to the development of novel diagnostic and prognostic biomarkers. In this study, in vitro experiments were conducted using two human pancreatic cell lines. Morphological and cytoskeleton characteristics, cells' stiffness and invasive properties were assessed using optical and atomic force microscopy techniques and cell spheroid invasion assay. Subsequently, the two cell lines were used to develop orthotopic pancreatic tumor models. Tissue biopsies were collected at different times of tumor growth for the study of the nanomechanical and collagen-based optical properties of the tissue using Atomic Force Microscopy (AFM) and picrosirius red polarization microscopy, respectively. The results from the in vitro experiments demonstrated that the more invasive cells are softer and present a more elongated shape with more oriented F-actin stress fibers. Furthermore, ex vivo studies of orthotopic tumor biopsies on MIAPaCa-2 and BxPC-3 murine tumor models highlighted that pancreatic cancer presents distinct nanomechanical and collagen-based optical properties relevant to cancer progression. The stiffness spectrums (in terms of Young's modulus values) showed that the higher elasticity distributions were increasing during cancer progression mainly due desmoplasia (collagen overproduction), while a lower elasticity peak was evident - due to cancer cells softening - on both tumor models. Optical microscopy studies highlighted that collagen content increases while collagen fibers tend to form align patterns. Consequently, during cancer progression nanomechanical and collagen-based optical properties alter in relation to changes in collagen content. Therefore, they have the potential to be used as novel biomarkers for assessing and monitoring tumor progression and treatment outcomes.
Collapse
|
7
|
Christou C, Christodoulou MI, Zaravinos A, Gkretsi V. Ras suppressor 1 long form (RSU1L) silencing promotes apoptosis in invasive breast cancer cells. Cell Signal 2023; 101:110522. [PMID: 36375714 DOI: 10.1016/j.cellsig.2022.110522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/14/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Ras Suppressor-1 (RSU1) is a cell-extracellular matrix (ECM) adhesion protein implicated in breast cancer (BC) cell metastasis. Nevertheless, its role in apoptosis is yet unknown. In the present study, we used bioinformatics tools to evaluate the association of RSU1 expression and BC patient survival, the expression of basic pro- and anti-apoptotic genes in metastatic BC samples and their correlation with the expression of RSU1. Then, we specifically depleted RSU1 long form (RSU1L) using a short hairpin RNA (shRNA) silencing approach in two BC cell lines, the non-invasive MCF-7 and the highly invasive MDA-MB-231-LM2 cells and assessed gene expression of pro-and anti-apoptotic genes, as well as cell survival and apoptosis. Our results showed that high RSU1 expression was correlated with poor survival and significant changes were found in the expression of apoptosis-related genes (PUMA, TP53, BCL-2 and BCL-XL) in metastatic BC. Moreover, silencing of the long and most common isoform of RSU1 (RSU1L) resulted in the upregulation of PUMA and TP53 and concomitant downregulation of anti-apoptotic BCL-2 and BCL-XL, with the effect being more prominent in invasive MDA-MB-231-LM2 cells. Finally, RSU1L depletion leads to a dramatic increase in apoptosis of MDA-MB-231-LM2 cells, while no change was observed in the apoptotic rate of MCF-7 cells. This is the first study linking RSU1L with apoptosis and provides evidence for its differential role in cell lines of different invasive potential. This indicates that RSU1L represses apoptosis in aggressive BC cells helping them evade cell death and survive.
Collapse
Affiliation(s)
- Christiana Christou
- Cancer Metastasis and Adhesion Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Maria-Ioanna Christodoulou
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Tumor Immunology and Biomarkers Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Apostolos Zaravinos
- Biological Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus; Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus.
| | - Vasiliki Gkretsi
- Cancer Metastasis and Adhesion Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia, Cyprus; Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| |
Collapse
|
8
|
Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022; 21:208. [PMID: 36324128 PMCID: PMC9628074 DOI: 10.1186/s12943-022-01670-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-associated vascular system as well as a wide variety of cellular components including activated cancer-associated fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the past few decades, numerous studies have been conducted to study the interaction and crosstalk between stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to bedside.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
9
|
Sencha LM, Dobrynina OE, Pospelov AD, Guryev EL, Peskova NN, Brilkina AA, Cherkasova EI, Balalaeva IV. Real-Time Fluorescence Visualization and Quantitation of Cell Growth and Death in Response to Treatment in 3D Collagen-Based Tumor Model. Int J Mol Sci 2022; 23:ijms23168837. [PMID: 36012102 PMCID: PMC9408454 DOI: 10.3390/ijms23168837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
The use of 3D in vitro tumor models has become a common trend in cancer biology studies as well as drug screening and preclinical testing of drug candidates. The transition from 2D to 3D matrix-based cell cultures requires modification of methods for assessing tumor growth. We propose the method for assessing the growth of tumor cells in a collagen hydrogel using macro-scale registration and quantification of the gel epi-fluorescence. The technique does not require gel destruction, can be used for real-time observation of fast (in seconds) cellular responses and demonstrates high agreement with cell counting approaches or measuring total DNA content. The potency of the method was proven in experiments aimed at testing cytotoxic activity of chemotherapeutic drug (cisplatin) and recombinant targeted toxin (DARPin-LoPE) against two different tumor cell lines genetically labelled with fluorescent proteins. Moreover, using fluorescent proteins with sensor properties allows registration of dynamic changes in cells’ metabolism, which was shown for the case of sensor of caspase 3 activity.
Collapse
|
10
|
Nikou S, Arbi M, Dimitrakopoulos FID, Kalogeropoulou A, Geramoutsou C, Zolota V, Kalofonos HP, Taraviras S, Lygerou Z, Bravou V. Ras suppressor-1 (RSU1) exerts a tumor suppressive role with prognostic significance in lung adenocarcinoma. Clin Exp Med 2022:10.1007/s10238-022-00847-8. [PMID: 35729367 DOI: 10.1007/s10238-022-00847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/25/2022] [Indexed: 11/03/2022]
Abstract
Ras suppressor-1 (RSU1), originally described as a suppressor of Ras oncogenic transformation, localizes to focal adhesions interacting with the ILK-PINCH-PARVIN (IPP) complex that exerts a well-established oncogenic role in cancer. However, RSU1 implication in lung cancer is currently unknown. Our study aims to address the role of RSU1 in lung adenocarcinoma (LUADC). We here show that RSU1 protein expression by immunohistochemistry is downregulated in LUADC human tissue samples and represents a significant prognostic indicator. In silico analysis of gene chip and RNA seq data validated our findings. Depletion of RSU1 by siRNA in lung cancer cells promotes anchorage-independent cell growth, cell motility and epithelial to mesenchymal transition (EMT). Silencing of RSU1 also alters IPP complex expression in lung cancer cells. The p29 RSU1 truncated isoform is detected in lung cancer cells, and its expression is downregulated upon RSU1 silencing, whereas it is overexpressed upon ILK overexpression. These findings suggest that RSU1 exerts a tumor suppressive role with prognostic significance in LUADC.
Collapse
Affiliation(s)
- Sofia Nikou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26504, Patras, Greece
| | - Marina Arbi
- Department of General Biology, Medical School, University of Patras, 26504, Patras, Greece
| | - Foteinos-Ioannis D Dimitrakopoulos
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, 26504, Patras, Greece
| | - Argiro Kalogeropoulou
- Department of Physiology, School of Medicine, University of Patras, 26504, Rio, Patras, Greece
| | - Christina Geramoutsou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26504, Patras, Greece
| | - Vasiliki Zolota
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26504, Patras, Greece.,Department of Pathology, University Hospital of Patras, 26504, Patras, Greece
| | - Haralabos P Kalofonos
- Molecular Oncology Laboratory, Division of Oncology, Department of Medicine, Medical School, University of Patras, 26504, Patras, Greece.,Division of Oncology, Department of Internal Medicine, University Hospital of Patras, 26504, Rio Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, 26504, Rio, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, Medical School, University of Patras, 26504, Patras, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, Medical School, University of Patras, 26504, Patras, Greece.
| |
Collapse
|
11
|
Nousi A, Søgaard MT, Audoin M, Jauffred L. Single-cell tracking reveals super-spreading brain cancer cells with high persistence. Biochem Biophys Rep 2021; 28:101120. [PMID: 34541340 PMCID: PMC8435994 DOI: 10.1016/j.bbrep.2021.101120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 08/26/2021] [Indexed: 01/06/2023] Open
Abstract
Cell migration is a fundamental characteristic of vital processes such as tissue morphogenesis, wound healing and immune cell homing to lymph nodes and inflamed or infected sites. Therefore, various brain defect diseases, chronic inflammatory diseases as well as tumor formation and metastasis are associated with aberrant or absent cell migration. We embedded multicellular brain cancer spheroids in Matrigel™ and utilized single-particle tracking to extract the paths of cells migrating away from the spheroids. We found that - in contrast to local invasion - single cell migration is independent of Matrigel™ concentration and is characterized by high directionality and persistence. Furthermore, we identified a subpopulation of super-spreading cells with >200-fold longer persistence times than the majority of cells. These results highlight yet another aspect of cell heterogeneity in tumors.
Collapse
Affiliation(s)
| | - Maria Tangen Søgaard
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen O, Denmark
| | | | - Liselotte Jauffred
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen O, Denmark
| |
Collapse
|
12
|
Stefanek E, Samiei E, Kavoosi M, Esmaeillou M, Roustai Geraylow K, Emami A, Ashrafizadeh M, Perrin D, Gordon JW, Akbari M, Ghavami S. A bioengineering method for modeling alveolar Rhabdomyosarcoma and assessing chemotherapy responses. MethodsX 2021; 8:101473. [PMID: 34430344 PMCID: PMC8374652 DOI: 10.1016/j.mex.2021.101473] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common pediatric soft-tissue malignant tumor. Treatment of RMS usually includes primary tumor resection along with systemic chemotherapy. Two-dimensional (2D) cell culture systems and animal models have been extensively used for investigating the potential efficacy of new RMS treatments. However, RMS cells behave differently in 2D culture than in vivo, which has recently inspired the adoption of three-dimensional (3D) culture environments. In the current paper, we will describe the detailed methodology we have developed for fabricating a 3D engineered model to study alveolar RMS (ARMS) in vitro. This model consists of a thermally cross-linked collagen disk laden with RMS cells that mimics the structural and bio-chemical aspects of the tumor extracellular matrix (ECM). This process is highly reproducible and produces a 3D engineered model that can be used to analyze the cytotoxicity and autophagy induction of drugs on ARMS cells. The most improtant bullet points are as following:We fabricated 3D model of ARMS. The current ARMS 3D model can be used for screening of chemotherapy drugs. We developed methods to detect apoptosis and autophagy in ARMS 3D model to detect the mechansims of chemotherapy agents.
Collapse
Key Words
- 2D, Two-dimensional
- 3D, Three-dimensional
- AKT, Protein Kinase B
- Apoptosis
- Autophagy
- BSA, Bovine serum albumin
- Biofabrication
- Cell death
- DAPI, 4’,6-Diami- dino-2-Phenylindole, Dihydrochloride
- DFS, Disease-free survival
- DMEM, Dulbecco's phosphate buffered saline
- DNA, Deoxyribonucleic acid
- ECM, Extracellular matrix
- EDTA, Ethylenediaminetetraacetic acid
- EM, Engineered model
- EthD-1, Ethidium homodimer-1
- FBS, Fetal bovine serum
- FOXO1, Forkhead box protein O1
- HEPES, (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)
- ICC, Immunocytochemistry
- IgG, Immunoglobulin G
- LC3, Microtubule associated protein 1A/1B-light chain 3
- MEK, Mitogen-activated extracellular signal-regulated kinase
- MYOD1, Myogenic muscle differentiation transcription factor 1
- PAX, Paired box gene
- PDMS, Polydimethylsiloxane
- PNIPAAm, Poly-N-isopropylacrylamide
- RGD, Arginylglycylaspartic acid
- RMS, Rhabdomyosarcoma
- RPMI, Roswell Park Memorial Institute
- RT, Room temperature
- Rhabdomyosarcoma
- TMZ, Temozolomide
- dECM, Decellularized extracellular matrix
Collapse
Affiliation(s)
- Evan Stefanek
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, Canada.,Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ehsan Samiei
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, Canada
| | - Mahboubeh Kavoosi
- Department of Biology, School of Basic Sciences, Research and Science Branch of Islamic Azad University, Zanjan, Iran
| | | | | | - Arya Emami
- Faculty of Psychology, Department of Health, York University, ON, Canada.,Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey
| | - David Perrin
- Department of Surgery, Section of Orthopaedic Surgery, University of Manitoba, Winnipeg MB R3A 1R9, Canada
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, Canada.,Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada.,Biotechnology Center, Silesian University of Technology, Akademicka 2A, Gliwice 44-100, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg MBR3E 0V9, Canada.,Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran.,Faculty of Medicine, Katowice School of Technology, Katowice, Poland
| |
Collapse
|
13
|
Yin J, Lin C, Jiang M, Tang X, Xie D, Chen J, Ke R. CENPL, ISG20L2, LSM4, MRPL3 are four novel hub genes and may serve as diagnostic and prognostic markers in breast cancer. Sci Rep 2021; 11:15610. [PMID: 34341433 PMCID: PMC8328991 DOI: 10.1038/s41598-021-95068-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
As a highly prevalent disease among women worldwide, breast cancer remains in urgent need of further elucidation its molecular mechanisms to improve the patient outcomes. Identifying hub genes involved in the pathogenesis and progression of breast cancer can potentially help to unveil mechanism and also provide novel diagnostic and prognostic markers. In this study, we integrated multiple bioinformatic methods and RNA in situ detection technology to identify and validate hub genes. EZH2 was recognized as a key gene by PPI network analysis. CENPL, ISG20L2, LSM4, MRPL3 were identified as four novel hub genes through the WGCNA analysis and literate search. Among these, many studies on EZH2 in breast cancer have been reported, but no studies are related to the roles of CENPL, ISG20L2, MRPL3 and LSM4 in breast cancer. These four novel hub genes were up-regulated in tumor tissues and associated with cancer progression. The receiver operating characteristic analysis and Kaplan-Meier survival analysis indicated that these four hub genes are promising candidate genes that can serve as diagnostic and prognostic biomarkers for breast cancer. Moreover, these four newly identified hub genes as aberrant molecules in the maintenance of breast cancer development, their exact functional mechanisms deserve further in-depth study.
Collapse
Affiliation(s)
- Jinbao Yin
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
- Department of Pathology, Guangdong Medical University, Dongguan, 523808, Guangdong, China
| | - Chen Lin
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
| | - Meng Jiang
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
| | - Xinbin Tang
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
| | - Danlin Xie
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
| | - Jingwen Chen
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China
| | - Rongqin Ke
- School of Medicine, Huaqiao University, Quanzhou, 362021, Fujian, China.
| |
Collapse
|
14
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, Qiao Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 2021; 6:153. [PMID: 33888679 PMCID: PMC8062524 DOI: 10.1038/s41392-021-00544-0] [Citation(s) in RCA: 340] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is one of the major components of tumors that plays multiple crucial roles, including mechanical support, modulation of the microenvironment, and a source of signaling molecules. The quantity and cross-linking status of ECM components are major factors determining tissue stiffness. During tumorigenesis, the interplay between cancer cells and the tumor microenvironment (TME) often results in the stiffness of the ECM, leading to aberrant mechanotransduction and further malignant transformation. Therefore, a comprehensive understanding of ECM dysregulation in the TME would contribute to the discovery of promising therapeutic targets for cancer treatment. Herein, we summarized the knowledge concerning the following: (1) major ECM constituents and their functions in both normal and malignant conditions; (2) the interplay between cancer cells and the ECM in the TME; (3) key receptors for mechanotransduction and their alteration during carcinogenesis; and (4) the current therapeutic strategies targeting aberrant ECM for cancer treatment.
Collapse
Affiliation(s)
- Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Lele Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Dalong Wan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shengzhang Lin
- School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China.
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China.
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
15
|
Yang H, Lin L, Sun K, Zhang T, Chen W, Li L, Xie Y, Wu C, Wei Z, Yu C. Complex structures of Rsu1 and PINCH1 reveal a regulatory mechanism of the ILK/PINCH/Parvin complex for F-actin dynamics. eLife 2021; 10:64395. [PMID: 33587032 PMCID: PMC7909951 DOI: 10.7554/elife.64395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Communications between actin filaments and integrin-mediated focal adhesion (FA) are crucial for cell adhesion and migration. As a core platform to organize FA proteins, the tripartite ILK/PINCH/Parvin (IPP) complex interacts with actin filaments to regulate the cytoskeleton-FA crosstalk. Rsu1, a Ras suppressor, is enriched in FA through PINCH1 and plays important roles in regulating F-actin structures. Here, we solved crystal structures of the Rsu1/PINCH1 complex, in which the leucine-rich-repeats of Rsu1 form a solenoid structure to tightly associate with the C-terminal region of PINCH1. Further structural analysis uncovered that the interaction between Rsu1 and PINCH1 blocks the IPP-mediated F-actin bundling by disrupting the binding of PINCH1 to actin. Consistently, overexpressing Rsu1 in HeLa cells impairs stress fiber formation and cell spreading. Together, our findings demonstrated that Rsu1 is critical for tuning the communication between F-actin and FA by interacting with the IPP complex and negatively modulating the F-actin bundling.
Collapse
Affiliation(s)
- Haibin Yang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Faculty of Health Sciences, University of Macau, Macau, China
| | - Leishu Lin
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kang Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ting Zhang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Wan Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Lianghui Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yuchen Xie
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chuanyue Wu
- Department of Pathology, School of Medicine and University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, United States
| | - Zhiyi Wei
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Cong Yu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen, China
| |
Collapse
|
16
|
Wang M, Liu J, Tu Y, Zhao Z, Qu J, Chen K, Chen Y, Sun Y, Zhao H, Deng Y, Wu C. RSU-1 interaction with prohibitin-2 links cell-extracellular matrix detachment to downregulation of ERK signaling. J Biol Chem 2020; 296:100109. [PMID: 33853759 PMCID: PMC7948471 DOI: 10.1074/jbc.ra120.014413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 11/13/2020] [Accepted: 11/22/2020] [Indexed: 12/21/2022] Open
Abstract
Cell–extracellular matrix (ECM) detachment is known to decrease extracellular signal–regulated kinase (ERK) signaling, an intracellular pathway that is central for control of cell behavior. How cell–ECM detachment is linked to downregulation of ERK signaling, however, is incompletely understood. We show here that focal adhesion protein Ras Suppressor 1 (RSU1) plays a critical role in cell–ECM detachment induced suppression of ERK signaling. We have identified prohibitin 2 (PHB2), a component of membrane lipid rafts, as a novel binding protein of RSU1, and mapped a major RSU1-binding site to PHB2 amino acids 150 to 206 in the C-terminal region of the PHB/SPFH (stomatin/prohibitin/flotillin/HflKC) domain. The PHB2 binding is mediated by multiple sites located in the N-terminal leucine-rich repeat region of RSU1. Depletion of PHB2 suppressed cell–ECM adhesion–induced ERK activation. Furthermore, cell–ECM detachment increased RSU1 association with membrane lipid rafts and interaction with PHB2. Finally, knockout of RSU1 or inhibition of RSU1 interaction with PHB2 by overexpression of the major RSU1-binding PHB2 fragment (amino acids 150–206) effectively suppressed the cell–ECM detachment induced downregulation of ERK signaling. Additionally, expression of venus-tagged wild-type RSU1 restored ERK signaling, while expression of venus-tagged PHB2-binding defective RSU1 mutant in which the N-terminal leucine-rich repeat region is deleted did not. Taken together, Our findings identify a novel RSU1-PHB2 signaling axis that senses cell–ECM detachment and links it to decreased ERK signaling.
Collapse
Affiliation(s)
- Meiling Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China; Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Jie Liu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Yizeng Tu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zihan Zhao
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China; The Faculty of Health Sciences, The University of Macau, Macau, China
| | - Jingjing Qu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Ka Chen
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yonglong Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Ying Sun
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi Deng
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
17
|
Li Y, Khuu N, Prince E, Tao H, Zhang N, Chen Z, Gevorkian A, McGuigan AP, Kumacheva E. Matrix Stiffness-Regulated Growth of Breast Tumor Spheroids and Their Response to Chemotherapy. Biomacromolecules 2020; 22:419-429. [PMID: 33136364 DOI: 10.1021/acs.biomac.0c01287] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Interactions between tumor cells and the extracellular matrix (ECM) are an important factor contributing to therapy failure in cancer patients. Current in vitro breast cancer spheroid models examining the role of mechanical properties on spheroid response to chemotherapy are limited by the use of two-dimensional cell culture, as well as simultaneous variation in hydrogel matrix stiffness and other properties, e.g., hydrogel composition, pore size, and cell adhesion ligand density. In addition, currently used hydrogel matrices do not replicate the filamentous ECM architecture in a breast tumor microenvironment. Here, we report a collagen-alginate hydrogel with a filamentous architecture and a 20-fold variation in stiffness, achieved independently of other properties, used for the evaluation of estrogen receptor-positive breast cancer spheroid response to doxorubicin. The variation in hydrogel mechanical properties was achieved by altering the degree of cross-linking of alginate molecules. We show that soft hydrogels promote the growth of larger MCF-7 tumor spheroids with a lower fraction of proliferating cells and enhance spheroid resistance to doxorubicin. Notably, the stiffness-dependent chemotherapeutic response of the spheroids was temporally mediated: it became apparent at sufficiently long cell culture times, when the matrix stiffness has influenced the spheroid growth. These findings highlight the significance of decoupling matrix stiffness from other characteristics in studies of chemotherapeutic resistance of tumor spheroids and in development of drug screening platforms.
Collapse
Affiliation(s)
- Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Nancy Khuu
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Elisabeth Prince
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Huachen Tao
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Ningtong Zhang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Zhengkun Chen
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Albert Gevorkian
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Alison P McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada.,The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada.,The Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
18
|
Karagiorgis S, Tsamis A, Voutouri C, Turcu R, Porav SA, Socoliuc V, Vekas L, Louca M, Stylianopoulos T, Vavourakis V, Krasia-Christoforou T. Engineered magnetoactive collagen hydrogels with tunable and predictable mechanical response. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111089. [PMID: 32994019 DOI: 10.1016/j.msec.2020.111089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 11/16/2022]
Abstract
In the present study, the synthesis of superparamagnetic collagen-based nanocomposite hydrogels with tunable swelling, mechanical and magnetic properties is reported. The fabrication strategy involved the preparation of pristine collagen type-I hydrogels followed by their immersion in highly stable aqueous solutions containing pre-formed double-layer oleic acid-coated hydrophilic magnetite nanoparticles (OA.OA.Fe3O4) at different concentrations, to interrogate nanoparticles' deposition within the 3D fibrous collagen matrix. Besides the investigation of the morphology, composition and magnetic properties of the produced materials, their mechanical properties were experimentally evaluated under confined compressive loading conditions while an exponential constitutive equation was employed to describe their mechanical response. Moreover, the deposition of the nanoparticles in the collagenous matrix was modeled mathematically with respect to the swelling of the gel and the effective stiffness of the matrix. The model recapitulated nanoparticle diffusion and deposition as well as hydrogel swelling, in terms of nanoparticles' size and concentration of OA.OA.Fe3O4 aqueous solution.
Collapse
Affiliation(s)
- Savvas Karagiorgis
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS
| | - Alkiviadis Tsamis
- University of Leicester, School of Engineering, University Road, LE1 7RH Leicester, UK
| | - Chrysovalantis Voutouri
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS
| | - Rodica Turcu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Department of Physics of Nanostructured Systems, Donat Str. 67-103, 400293 Cluj-Napoca, Romania
| | - Sebastian Alin Porav
- National Institute for Research and Development of Isotopic and Molecular Technologies, Department of Physics of Nanostructured Systems, Donat Str. 67-103, 400293 Cluj-Napoca, Romania
| | - Vlad Socoliuc
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazul Ave. 24, 300223, Timisoara, Romania
| | - Ladislau Vekas
- Romanian Academy - Timisoara Branch, Center for Fundamental and Advanced Technical Research, Laboratory of Magnetic Fluids, Mihai Viteazul Ave. 24, 300223, Timisoara, Romania; Politehnica University of Timisoara, Research Center for Complex Fluids Systems Engineering, Mihai Viteazul Ave. 1, 300222 Timisoara, Romania
| | - Maria Louca
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS
| | - Triantafyllos Stylianopoulos
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS
| | - Vasileios Vavourakis
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS; University College London, Department of Medical Physics and Biomedical Engineering, Gower Street, WC1E 6BT London, UK
| | - Theodora Krasia-Christoforou
- University of Cyprus, Department of Mechanical and Manufacturing Engineering, 75, Kallipoleos Avenue, P.O. Box 20537, 1678 Nicosia, CYPRUS.
| |
Collapse
|
19
|
MicroRNA-Dependent Targeting of RSU1 and the IPP Adhesion Complex Regulates the PTEN/PI3K/AKT Signaling Pathway in Breast Cancer Cell Lines. Int J Mol Sci 2020; 21:ijms21155458. [PMID: 32751711 PMCID: PMC7432699 DOI: 10.3390/ijms21155458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022] Open
Abstract
(1) Background: The microRNA (miR)-directed control of gene expression is correlated with numerous physiological processes as well as the pathological features of tumors. The focus of this study is on the role of miRs in the regulation of RSU1 and proteins in the IPP (integrin linked kinase, PINCH and parvin) complex. Because the IPP adaptor proteins link β integrins to actin cytoskeleton, and the RSU1 signaling protein connects the complex to the activation of cJun, ATF2 and the transcription of PTEN, their reduction by miRs has the potential to alter both adhesion and survival signaling. (2) Methods: Multiple database analyses were used to identify miRs that target RSU1 and PINCH1. miR transfection validated the effects of miRs on RSU1, PINCH1 and downstream targets in breast cancer cell lines. (3) Results: The miRs targeting RSU1 mRNA include miR-182-5p, -409-3p, -130a-3p, -221-3p, -744-5p and -106b-5p. Data show that miR-182-5p and -409-3p reduce RSU1, PINCH1 and inhibit the ATF2 activation of PTEN expression. miR-221-3p and miR-130a-3p target RSU1 and PINCH1 and, conversely, RSU1 depletion increases miR-221-3p and miR-130a-3p. (4) Conclusions: miRs targeting RSU1 and PINCH1 in mammary epithelial or luminal breast cancer cell lines reduced RSU1 signaling to p38 MAP kinase and ATF2, inhibiting the expression of PTEN. miR-221-3p, known to target PTEN and cell cycle regulators, also targets RSU1 and PINCH1 in luminal breast cancer cell lines.
Collapse
|
20
|
Ras Suppressor-1 (RSU1) in Cancer Cell Metastasis: A Tale of a Tumor Suppressor. Int J Mol Sci 2020; 21:ijms21114076. [PMID: 32517326 PMCID: PMC7312364 DOI: 10.3390/ijms21114076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer is a multifactorial disease responsible for millions of deaths worldwide. It has a strong genetic background, as mutations in oncogenes or tumor suppressor genes contribute to the initiation of cancer development. Integrin signaling as well as the signaling pathway of Ras oncogene, have been long implicated both in carcinogenesis and disease progression. Moreover, they have been involved in the promotion of metastasis, which accounts for the majority of cancer-related deaths. Ras Suppressor-1 (RSU1) was identified as a suppressor of Ras-induced transformation and was shown to localize to cell-extracellular matrix adhesions. Recent findings indicate that its expression is elevated in various cancer types, while its role in regulating metastasis-related cellular processes remains largely unknown. Interestingly, there is no in vivo work in the field to date, and thus, all relevant knowledge stems from in vitro studies. In this review, we summarize recent studies using breast, liver and brain cancer cell lines and highlight the role of RSU1 in regulating cancer cell invasion.
Collapse
|
21
|
ILK silencing inhibits migration and invasion of more invasive glioblastoma cells by downregulating ROCK1 and Fascin-1. Mol Cell Biochem 2020; 471:143-153. [PMID: 32506247 DOI: 10.1007/s11010-020-03774-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/31/2020] [Indexed: 12/23/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor and it is associated with poor survival. Integrin-linked kinase (ILK) is a serine/threonine protein pseudo-kinase that binds to the cytoplasmic domains of β1 and β3 integrins and has been previously shown to promote invasion and metastasis in many cancer types, including GBM. However, little is known regarding the exact molecular mechanism implicating ILK in GBM aggressiveness. In this study, we used two brain cell lines, the non-invasive neuroglioma H4 cells, and the highly invasive glioblastoma A172 cells, which express ILK in much higher levels than H4. We studied the effect of ILK silencing on the metastatic behavior of glioblastoma cells in vitro and elucidate the underlying molecular mechanism. We showed that siRNA-mediated silencing of ILK inhibits cell migration and invasion of the highly invasive A172 cells while it does not affect the migratory and invasive capacity of H4 cells. These data were also supported by respective changes in the expression of Rho-associated kinase 1 (ROCK1), fascin actin-bundling protein 1 (FSCN1), and matrix metalloproteinase 13 (MMP13), which are known to regulate cell migration and invasion. Our findings were further corroborated by analyzing the Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) dataset. We conclude that ILK promotes glioblastoma cell invasion through activation of ROCK1 and FSCN1 in vitro, providing a more exact molecular mechanism for its action.
Collapse
|
22
|
Stylianou A, Gkretsi V, Louca M, Zacharia LC, Stylianopoulos T. Collagen content and extracellular matrix cause cytoskeletal remodelling in pancreatic fibroblasts. J R Soc Interface 2020; 16:20190226. [PMID: 31113335 DOI: 10.1098/rsif.2019.0226] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In many solid tumours a desmoplastic reaction takes place, which results in tumour tissue stiffening due to the extensive production of extracellular matrix (ECM) proteins, such as collagen, by stromal cells, mainly fibroblasts (FBs) and cancer-associated fibroblasts (CAFs). In this study, we investigated the effect of collagen stiffness on pancreatic FBs and CAFs, particularly on specific cytoskeleton properties and gene expression involved in tumour invasion. We found that cells become stiffer when they are cultured on stiff substrates and express higher levels of alpha-smooth muscle actin (α-SMA). Also, it was confirmed that on stiff substrates, CAFs are softer than FBs, while on soft substrates they have comparable Young's moduli. Furthermore, the number of spread FBs and CAFs was higher in stiffer substrates, which was also confirmed by Ras-related C3 botulinum toxin substrate 1 ( RAC1) mRNA expression, which mediates cell spreading. Although stress fibres in FBs become more oriented on stiff substrates, CAFs have oriented stress fibres regardless of substrate stiffness. Subsequently, we demonstrated that cells' invasion has a differential response to stiffness, which was associated with regulation of Ras homologue family member ( RhoA) and Rho-associated, coiled-coil containing protein kinase 1 ( ROCK-1) mRNA expression. Overall, our results demonstrate that collagen stiffness modulates FBs and CAFs cytoskeleton remodelling and alters their invasion properties.
Collapse
Affiliation(s)
- Andreas Stylianou
- 1 Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia 1678 , Cyprus
| | - Vasiliki Gkretsi
- 1 Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia 1678 , Cyprus
| | - Maria Louca
- 1 Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia 1678 , Cyprus
| | - Lefteris C Zacharia
- 2 Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia , 1700 Nicosia , Cyprus
| | - Triantafyllos Stylianopoulos
- 1 Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus , Nicosia 1678 , Cyprus
| |
Collapse
|
23
|
Chen H, Cai Y, Chen Q, Li Z. Multiscale modeling of solid stress and tumor cell invasion in response to dynamic mechanical microenvironment. Biomech Model Mechanobiol 2019; 19:577-590. [PMID: 31571083 DOI: 10.1007/s10237-019-01231-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/23/2019] [Indexed: 12/16/2022]
Abstract
Mathematical models can provide a quantitatively sophisticated description of tumor cell (TC) behaviors under mechanical microenvironment and help us better understand the role of specific biophysical factors based on their influences on the TC behaviors. To this end, we propose an off-lattice cell-based multiscale mathematical model to describe the dynamic growth-induced solid stress during tumor progression and investigate the influence of the mechanical microenvironment on TC invasion. At the cellular level, cell-cell and cell-matrix interactive forces depend on the mechanical properties of the cells and the cancer-associated fibroblasts in the stroma, respectively. The constitutive relationship between the interactive forces and cell migrations obeys the Hooke's law and damping effects. At the tissue level, the integrated growth-induced forces caused by proliferating cells within the simulation region are balanced by the external forces applied by the surrounding host tissues. Then, the cell movements are calculated according to the Newton's second law of motion, and the morphology of TC invasion is updated. The simulation results reveal the continuous changes of the macroscopic mechanical forces due to the interactions among the structural components and the microscopic environmental factors. Moreover, the simulation results demonstrate the adverse effect of the stiffness of tumor tissue on tumor growth and invasion. A decrease in the stiffness of tumor and matrix can promote TCs to proliferate at a much faster rate and invade into the surrounding healthy tissue more easily, whereas an increase in the stiffness can lead to an aggressive morphology of tumor invasion. We envision that the proposed model can be served as a quantitative theoretical platform to study the underlying biophysical role of the mechanical microenvironmental factors during tumor invasion and metastasis.
Collapse
Affiliation(s)
- H Chen
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Y Cai
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Q Chen
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Z Li
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China. .,School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| |
Collapse
|
24
|
Louca M, Gkretsi V, Stylianopoulos T. Coordinated Expression of Ras Suppressor 1 (RSU-1) and Growth Differentiation Factor 15 (GDF15) Affects Glioma Cell Invasion. Cancers (Basel) 2019; 11:cancers11081159. [PMID: 31412547 PMCID: PMC6721804 DOI: 10.3390/cancers11081159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of brain tumor due to its invasive phenotype. Ras suppressor 1 (RSU-1) is a cell-extracellular matrix adhesion protein and we recently found that it promotes cell invasion in aggressive cells and inhibits it in non-invasive. Growth differentiation factor-15 (GDF15) is known to be involved in actin cytoskeleton reorganization and metastasis. In this study, we used three brain cell lines (H4, SW1088 and A172) with increasing RSU-1 expression levels and invasive capacity and decreasing GDF15 levels to investigate the interplay between RSU-1 and GDF15 with regard to cell invasion. Four experimental approaches were used: (a) GDF15 treatment, (b) Rsu-1 silencing, (c) GDF15 silencing, and (d) combined GDF15 treatment and RSU-1 silencing. We found that the differential expression of RSU-1 and GDF15 in H4 and A172 cells leading to inhibition of cell invasion in H4 cells and promotion in A172 through respective changes in PINCH1, RhoA and MMP-13 expression. Interestingly SW1088, with intermediate RSU-1 and GDF15 expression, were not affected by any treatment. We conclude that there is a strong connection between RSU-1 and GDF15 in H4, SW1088 and A172 cells and the relative expression of these two proteins is fundamental in affecting their invasive fate.
Collapse
Affiliation(s)
- Maria Louca
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus
| | - Vasiliki Gkretsi
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus.
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus.
| |
Collapse
|
25
|
Gkretsi V, Kalli M, Efstathiades C, Papageorgis P, Papanikolaou V, Zacharia LC, Tsezou A, Athanassiou E, Stylianopoulos T. Depletion of Ras Suppressor-1 (RSU-1) promotes cell invasion of breast cancer cells through a compensatory upregulation of a truncated isoform. Sci Rep 2019; 9:10050. [PMID: 31296919 PMCID: PMC6624310 DOI: 10.1038/s41598-019-46575-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 06/21/2019] [Indexed: 01/01/2023] Open
Abstract
Extracellular matrix (ECM)-adhesion proteins and actin cytoskeleton are pivotal in cancer cell invasion. Ras Suppressor-1 (RSU-1), a cell-ECM adhesion protein that interacts with PINCH-1, thus being connected to Integrin Linked Kinase (ILK), alpha-parvin (PARVA), and actin cytoskeleton, is up-regulated in metastatic breast cancer (BC) samples. Apart from the originally-identified gene (RSU-1L), an alternatively-spliced isoform (RSU-1-X1) has been reported. We used non-invasive MCF-7 cells, expressing only RSU-1L, and highly invasive MDA-MB-231-LM2 expressing both isoforms and generated stable shRNA-transduced cells lacking RSU-1L, while the truncated RSU-1-X1 isoform was depleted by siRNA-mediated silencing. RSU-1L depletion in MCF-7 cells resulted in complete abrogation of tumor spheroid invasion in three-dimensional collagen gels, whereas it promoted MDA-MB-231-LM2 invasion, through a compensatory upregulation of RSU-1-X1. When RSU-1-X1 was also eliminated, RSU-1L-depletion-induced migration and invasion were drastically reduced being accompanied by reduced urokinase plasminogen activator expression. Protein expression analysis in 23 human BC samples corroborated our findings showing RSU-1L to be upregulated and RSU-1-X1 downregulated in metastatic samples. We demonstrate for the first time, that both RSU-1 isoforms promote invasion in vitro while RSU-1L elimination induces RSU-1-X1 upregulation to compensate for the loss. Hence, we propose that both isoforms should be blocked to effectively eliminate metastasis.
Collapse
Affiliation(s)
- Vasiliki Gkretsi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus. .,Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.
| | - Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Christodoulos Efstathiades
- The Center for Risk and Decision Sciences (CERIDES), Department of Computer Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Panagiotis Papageorgis
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.,Biological Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Vassilios Papanikolaou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | - Lefteris C Zacharia
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, Larissa, Greece.,Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece
| | | | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
26
|
Ras suppressor-1 (RSU-1) promotes cell invasion in aggressive glioma cells and inhibits it in non-aggressive cells through STAT6 phospho-regulation. Sci Rep 2019; 9:7782. [PMID: 31123330 PMCID: PMC6533309 DOI: 10.1038/s41598-019-44200-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 05/10/2019] [Indexed: 02/08/2023] Open
Abstract
Most gliomas are invasive tumors formed from glial cells and associated with high mortality rates. In this study, we characterized four glioma cell lines of varying degree of aggressiveness (H4, SW1088, A172 and U87-MG) in terms of morphology, cytoskeleton organization and stiffness, and evaluated their invasive potential by performing invasion, colony forming and spheroid invasion assays. Cells were divided into two distinct groups: aggressive cell lines (A172 and U87-MG) with more elongated, softer and highly invasive cells and less aggressive cells (H4 and SW088). Interestingly, we found that Ras Suppressor-1 (RSU-1), a cell-matrix adhesion protein involved in cancer cell invasion, was significantly upregulated in more aggressive glioma cells compared to less aggressive. Importantly, RSU-1 silencing had opposing effects on glioma cell invasion depending on their aggressiveness, inhibiting migration and invasion of aggressive cells and promoting those of less aggressive cells. Finally, we found that RSU-1 silencing in aggressive cells led to decreased Signal Transducer and Activator of Transcription6 (STAT6) phosphorylation and Matrix Metalloproteinase13 (MMP13) expression in contrast to less invasive cells. Our study demonstrates that RSU-1 promotes invasion of aggressive glioma cells and inhibits it in the non-aggressive cells, indicating that it could serve as a predictor of gliomas progression.
Collapse
|
27
|
Zacharia LC, Stylianopoulos T, Gkretsi V. Ras Suppressor-1 (RSU-1) in Cancer Cell Metastasis: Friend or Foe? Crit Rev Oncog 2019; 22:249-253. [PMID: 29604901 DOI: 10.1615/critrevoncog.2018024231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metastasis to distant organs and not the primary tumor itself is usually the cause of death for cancer patients. Hence, studying the key molecules and molecular pathways involved in metastasis are essential. Metastasis is a complex process in which cancer cells detach from the original tumor, migrate, and invade through surrounding tissues and metastasize to other sites of the body through the circulation. The cell-extracellular matrix (ECM) adhesion proteins play a fundamental role in this process as cancer cells need to weaken their adhesions to dissociate from the ECM as well as the neighboring cells within the tumor and finally form new adhesions and invade surrounding tissues. Ras suppressor-1 (RSU-1) was originally identified as a suppressor of Ras-dependent oncogenic transformation and found to be localized to cell-ECM adhesions where it binds to PINCH-1, a focal adhesion involved in cell survival. Although RSU-1 was connected to cancer early on, little is known about its expression in various cancer types or its role in metastasis. In this article, we review the recent literature regarding the expression of RSU-1 in various cancer types and its potential role in metastasis, discussing interesting findings and issues that still need to be addressed.
Collapse
Affiliation(s)
- Lefteris C Zacharia
- Department of Life and Health Sciences, School of Sciences and Engineering, University of Nicosia, Cyprus
| | | | - Vasiliki Gkretsi
- Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
28
|
Rsu1-dependent control of PTEN expression is regulated via ATF2 and cJun. J Cell Commun Signal 2019; 13:331-341. [PMID: 30680530 DOI: 10.1007/s12079-018-00504-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
The Rsu1 protein contributes to cell adhesion and migration via its association with the adaptor complex of Integrin linked kinase (ILK), PINCH, and Parvin (IPP), which binds to the cytoplasmic domain of β1 integrins joining integrins to the actin cytoskeleton. Rsu1 binding to PINCH in the IPP complex is required for EGF-induced adhesion, spreading and migration in MCF10A mammary epithelial cells. In addition, Rsu1 expression inhibits Jun kinase but is necessary for the activation of MKK4 and p38 Map kinase signaling essential for migration in MCF10A cells. The data reported here examines the links between MKK4-p38-ATF2 signaling and AKT regulation in MCF10A cells. Ectopic Rsu1 inhibited AKT1 phosphorylation while Rsu1 depletion induced AKT activation and AKT1 phosphorylation of MKK4 on serine 80, blocking MKK4 activity. Rsu1 depletion also reduced the RNA for lipid phosphatase PTEN thus implicating PTEN in modulating levels of activated AKT in these conditions. ChIP analysis of the PTEN promoter revealed that Rsu1 depletion prevented binding of ATF2 to a positive regulatory site in the PTEN promoter and the enhanced binding of cJun to a negatively regulatory PTEN promoter site. These results demonstrate a mechanism by which Rsu1 adhesion signaling alters the balance between MKK4-p38-ATF2 and cJun activation thus altering PTEN expression in MCF10A cells.
Collapse
|
29
|
Inhibition of Breast Cancer Cell Invasion by Ras Suppressor-1 (RSU-1) Silencing Is Reversed by Growth Differentiation Factor-15 (GDF-15). Int J Mol Sci 2019; 20:ijms20010163. [PMID: 30621163 PMCID: PMC6337329 DOI: 10.3390/ijms20010163] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
Extracellular matrix (ECM)-related adhesion proteins are important in metastasis. Ras suppressor-1 (RSU-1), a suppressor of Ras-transformation, is localized to cell–ECM adhesions where it interacts with the Particularly Interesting New Cysteine-Histidine rich protein (PINCH-1), being connected to Integrin Linked Kinase (ILK) and alpha-parvin (PARVA), a direct actin-binding protein. RSU-1 was also found upregulated in metastatic breast cancer (BC) samples and was recently demonstrated to have metastasis-promoting properties. In the present study, we transiently silenced RSU-1 in BC cells, MCF-7 and MDA-MB-231. We found that RSU-1 silencing leads to downregulation of Growth Differentiation Factor-15 (GDF-15), which has been associated with both actin cytoskeleton reorganization and metastasis. RSU-1 silencing also reduced the mRNA expression of PINCH-1 and cell division control protein-42 (Cdc42), while increasing that of ILK and Rac regardless of the presence of GDF-15. However, the downregulation of actin-modulating genes PARVA, RhoA, Rho associated kinase-1 (ROCK-1), and Fascin-1 following RSU-1 depletion was completely reversed by GDF-15 treatment in both cell lines. Moreover, complete rescue of the inhibitory effect of RSU-1 silencing on cell invasion was achieved by GDF-15 treatment, which also correlated with matrix metalloproteinase-2 expression. Finally, using a graph clustering approach, we corroborated our findings. This is the first study providing evidence of a functional association between RSU-1 and GDF-15 with regard to cancer cell invasion.
Collapse
|
30
|
Onishi H, Udagawa C, Kubo M, Nakamura S, Akashi-Tanaka S, Kuwayama T, Watanabe C, Takamaru T, Takei H, Ishikawa T, Miyahara K, Matsumoto H, Hasegawa Y, Momozawa Y, Low SK, Kutomi G, Shima H, Satomi F, Okazaki M, Zaha H, Onomura M, Matsukata A, Sagara Y, Baba S, Yamada A, Shimada K, Shimizu D, Tsugawa K, Shimo A, Hartman M, Chan CW, Lee SC, Endo I, Zembutsu H. A genome-wide association study identifies three novel genetic markers for response to tamoxifen: A prospective multicenter study. PLoS One 2018; 13:e0201606. [PMID: 30161160 PMCID: PMC6116947 DOI: 10.1371/journal.pone.0201606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/19/2018] [Indexed: 01/13/2023] Open
Abstract
Purpose Although association studies of genetic variations with the clinical outcomes of breast cancer patients treated with tamoxifen have been reported, genetic factors which could determine individual response to tamoxifen are not fully clarified. We performed a genome-wide association study (GWAS) to identify novel genetic markers for response to tamoxifen. Experimental design We prospectively collected 347 blood samples from patients with hormone receptor-positive and human epidermal growth factor receptor 2-negative, invasive breast cancer receiving preoperative tamoxifen monotherapy for 14 to 28 days. We used Ki-67 response in breast cancer tissues after preoperative short-term tamoxifen therapy as a surrogate marker for response to tamoxifen. We performed GWAS and genotype imputation using 275 patients, and an independent set of 72 patients was used for replication study. Results The combined result of GWAS and the replication study, and subsequent imputation analysis indicated possible association of three loci with Ki-67 response after tamoxifen therapy (rs17198973 on chromosome 4q34.3, rs4577773 on 6q12, and rs7087428 on 10p13, Pcombined = 5.69 x 10−6, 1.64 x 10−5, and 9.77 x 10−6, respectively). When patients were classified into three groups by the scoring system based on the genotypes of the three SNPs, patients with higher scores showed significantly higher after/before ratio of Ki-67 compared to those with lower scores (P = 1.8 x 10−12), suggesting the cumulative effect of the three SNPs. Conclusion We identified three novel loci, which could be associated with clinical response to tamoxifen. These findings provide new insights into personalized hormonal therapy for the patients with breast cancer.
Collapse
Affiliation(s)
- Hiroshi Onishi
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chihiro Udagawa
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
| | - Michiaki Kubo
- RIKEN, Center for Integrative Medical Sciences, Yokohama, Japan
| | - Seigo Nakamura
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Sadako Akashi-Tanaka
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Takashi Kuwayama
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Chie Watanabe
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Tomoko Takamaru
- Division of Breast Surgical Oncology, Department of Surgery, Showa University School of Medicine, Tokyo, Japan
| | - Hiroyuki Takei
- Department of Breast Surgery, Nippon Medical School, Tokyo, Japan
| | - Takashi Ishikawa
- Department of Breast Surgery, Tokyo Medical University, Tokyo, Japan
| | - Kana Miyahara
- Department of Breast Surgery, Tokyo Medical University, Tokyo, Japan
| | | | - Yoshie Hasegawa
- Department of Breast Surgery, Hirosaki Municipal Hospital, Hirosaki, Japan
| | | | - Siew-Kee Low
- RIKEN, Center for Integrative Medical Sciences, Yokohama, Japan
| | - Goro Kutomi
- 1st Department of Surgery, Sapporo Medical University, Sapporo, Japan
| | - Hiroaki Shima
- 1st Department of Surgery, Sapporo Medical University, Sapporo, Japan
| | - Fukino Satomi
- 1st Department of Surgery, Sapporo Medical University, Sapporo, Japan
| | - Minoru Okazaki
- Department of Breast Surgery, Sapporo Breast Surgical Clinic, Sapporo, Japan
| | - Hisamitsu Zaha
- Department of Breast Surgery, Nakagami Hospital, Okinawa, Japan
| | - Mai Onomura
- Department of Breast Surgery, Nakagami Hospital, Okinawa, Japan
| | - Ayami Matsukata
- Department of Breast Surgery, Sagara Hospital, Kagoshima, Japan
| | - Yasuaki Sagara
- Department of Breast Surgery, Sagara Hospital, Kagoshima, Japan
| | - Shinichi Baba
- Department of Breast Surgery, Sagara Hospital, Kagoshima, Japan
| | - Akimitsu Yamada
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama, Japan
| | - Kazuhiro Shimada
- Department of Breast and Thyroid Surgery, Yokohama City University Medical Center, Yokohama, Japan
| | - Daisuke Shimizu
- Department of Breast Surgery, Yokohama Minato Red Cross Hospital, Yokohama, Japan
| | - Koichiro Tsugawa
- Department of Breast and Endocrine Surgery, St. Marianna University School of Medicine Hospital, Kawasaki, Japan
| | - Arata Shimo
- Department of Breast and Endocrine Surgery, St. Marianna University School of Medicine Hospital, Kawasaki, Japan
| | - Mikael Hartman
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Ching-Wan Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore
| | - Soo Chin Lee
- Department of Hematology Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hitoshi Zembutsu
- Division of Genetics, National Cancer Center Research Institute, Tokyo, Japan
- * E-mail:
| |
Collapse
|
31
|
Wu K, Zhang H, Fu Y, Zhu Y, Kong L, Chen L, Zhao F, Yu L, Chen X. TLR4/MyD88 signaling determines the metastatic potential of breast cancer cells. Mol Med Rep 2018; 18:3411-3420. [PMID: 30066873 PMCID: PMC6102647 DOI: 10.3892/mmr.2018.9326] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The influence of Toll-like receptor (TLR)4/myeloid differentiation factor (MyD)88 signaling on the invasion and metastasis of cancer cells has been previously reported. The purpose of the present study was to determine the role of TLR4/MyD88 in breast cancer cell migration and invasion, and to discover novel therapeutic targets for breast cancer treatment. TLR4, MyD88 and high mobility group box 1 (HMGB1) mRNA expression levels were assessed in highly invasive human MDA-MB-231 breast cancer cells, breast cancer cells with a low rate of invasion (MCF-7) and normal human MDA-Kb2 mammary gland cells by reverse transcription-quantitative polymerase chain reaction. The protein expression levels of these markers were detected by western blotting and immunofluorescence. Randomly selected breast cancer and paracarcinoma tissues were used to measure TLR4 and MyD88 protein expression levels by immunohistochemistry. The mRNA and protein expression levels of TLR4 and MyD88 were significantly higher in MDA-MB-231 cells compared with either MCF-7 cells or MDA-Kb2 cells. The mRNA and protein expression levels of HMGB1 were comparable in the two breast cancer cell lines, with no statistical difference (P>0.05). TLR4 and MyD88 protein expression levels were also significantly higher in breast cancer tissues compared with paracarcinoma tissues (P<0.05). TLR4 and MyD88 protein expression levels were positively correlated with axillary lymph node metastasis and histological grade (P<0.05). TLR4/MyD88 expression levels were positively correlated with the metastasis of breast cancer cells. TLR4/MyD88 may be useful as a novel biomarker to evaluate the prognosis and treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Kunlin Wu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Huihao Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Yajuan Fu
- Southern Biomedical Research Center, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Youzhi Zhu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Lingjun Kong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Ling Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Feng Zhao
- First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Liangfei Yu
- First Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| |
Collapse
|
32
|
Stylianou A, Gkretsi V, Stylianopoulos T. Transforming growth factor-β modulates pancreatic cancer associated fibroblasts cell shape, stiffness and invasion. Biochim Biophys Acta Gen Subj 2018; 1862:1537-1546. [PMID: 29477748 PMCID: PMC5957271 DOI: 10.1016/j.bbagen.2018.02.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/19/2018] [Accepted: 02/14/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Tumor microenvironment consists of the extracellular matrix (ECM), stromal cells, such as fibroblasts (FBs) and cancer associated fibroblasts (CAFs), and a myriad of soluble factors. In many tumor types, including pancreatic tumors, the interplay between stromal cells and the other tumor microenvironment components leads to desmoplasia, a cancer-specific type of fibrosis that hinders treatment. Transforming growth factor beta (TGF-β) and CAFs are thought to play a crucial role in this tumor desmoplastic reaction, although the involved mechanisms are unknown. METHODS Optical/fluorescence microscopy, atomic force microscopy, image processing techniques, invasion assay in 3D collagen I gels and real-time PCR were employed to investigate the effect of TGF-β on normal pancreatic FBs and CAFs with regard to crucial cellular morphodynamic characteristics and relevant gene expression involved in tumor progression and metastasis. RESULTS CAFs present specific myofibroblast-like characteristics, such as α-smooth muscle actin expression and cell elongation, they also form more lamellipodia and are softer than FBs. TGF-β treatment increases cell stiffness (Young's modulus) of both FBs and CAFs and increases CAF's (but not FB's) elongation, cell spreading, lamellipodia formation and spheroid invasion. Gene expression analysis shows that these morphodynamic characteristics are mediated by Rac, RhoA and ROCK expression in CAFs treated with TGF-β. CONCLUSIONS TGF-β modulates CAFs', but not FBs', cell shape, stiffness and invasion. GENERAL SIGNIFICANCE Our findings elucidate on the effects of TGF-β on CAFs' behavior and stiffness providing new insights into the mechanisms involved.
Collapse
Affiliation(s)
- Andreas Stylianou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Vasiliki Gkretsi
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 1678, Cyprus.
| |
Collapse
|
33
|
Gkretsi V, Stylianopoulos T. Cell Adhesion and Matrix Stiffness: Coordinating Cancer Cell Invasion and Metastasis. Front Oncol 2018; 8:145. [PMID: 29780748 PMCID: PMC5945811 DOI: 10.3389/fonc.2018.00145] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 04/20/2018] [Indexed: 01/27/2023] Open
Abstract
Metastasis is a multistep process in which tumor extracellular matrix (ECM) and cancer cell cytoskeleton interactions are pivotal. ECM is connected, through integrins, to the cell’s adhesome at cell–ECM adhesion sites and through them to the actin cytoskeleton and various downstream signaling pathways that enable the cell to respond to external stimuli in a coordinated manner. Cues from cell-adhesion proteins are fundamental for defining the invasive potential of cancer cells, and many of these proteins have been proposed as potent targets for inhibiting cancer cell invasion and thus, metastasis. In addition, ECM accumulation is quite frequent within the tumor microenvironment leading in many cases to an intense fibrotic response, known as desmoplasia, and tumor stiffening. Stiffening is not only required for the tumor to be able to displace the host tissue and grow in size but also contributes to cell–ECM interactions and can promote cancer cell invasion to surrounding tissues. Here, we review the role of cell adhesion and matrix stiffness in cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Vasiliki Gkretsi
- Department of Life Sciences, Biomedical Sciences Program, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
34
|
Stylianopoulos T, Munn LL, Jain RK. Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside. Trends Cancer 2018; 4:292-319. [PMID: 29606314 PMCID: PMC5930008 DOI: 10.1016/j.trecan.2018.02.005] [Citation(s) in RCA: 354] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/16/2022]
Abstract
Physical forces have a crucial role in tumor progression and cancer treatment. The application of principles of engineering and physical sciences to oncology has provided powerful insights into the mechanisms by which these forces affect tumor progression and confer resistance to delivery and efficacy of molecular, nano-, cellular, and immuno-medicines. Here, we discuss the mechanics of the solid and fluid components of a tumor, with a focus on how they impede the transport of therapeutic agents and create an abnormal tumor microenvironment (TME) that fuels tumor progression and treatment resistance. We also present strategies to reengineer the TME by normalizing the tumor vasculature and the extracellular matrix (ECM) to improve cancer treatment. Finally, we summarize various mathematical models that have provided insights into the physical barriers to cancer treatment and revealed new strategies to overcome these barriers.
Collapse
Affiliation(s)
- Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, 1678, Cyprus.
| | - Lance L Munn
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
35
|
Kalli M, Stylianopoulos T. Defining the Role of Solid Stress and Matrix Stiffness in Cancer Cell Proliferation and Metastasis. Front Oncol 2018; 8:55. [PMID: 29594037 PMCID: PMC5857934 DOI: 10.3389/fonc.2018.00055] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/20/2018] [Indexed: 12/17/2022] Open
Abstract
Solid tumors are characterized by an abnormal stroma that contributes to the development of biomechanical abnormalities in the tumor microenvironment. In particular, these abnormalities include an increase in matrix stiffness and an accumulation of solid stress in the tumor interior. So far, it is not clearly defined whether matrix stiffness and solid stress are strongly related to each other or they have distinct roles in tumor progression. Moreover, while the effects of stiffness on tumor progression are extensively studied compared to the contribution of solid stress, it is important to ascertain the biological outcomes of both abnormalities in tumorigenesis and metastasis. In this review, we discuss how each of these parameters is evolved during tumor growth and how these parameters are influenced by each other. We further review the effects of matrix stiffness and solid stress on the proliferative and metastatic potential of cancer and stromal cells and summarize the in vitro experimental setups that have been designed to study the individual contribution of these parameters.
Collapse
Affiliation(s)
- Maria Kalli
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|