1
|
Russo D, Malagola M, Polverelli N, Farina M, Re F, Bernardi S. Twenty years of evolution of CML therapy: how the treatment goal is moving from disease to patient. Ther Adv Hematol 2023; 14:20406207231216077. [PMID: 38145059 PMCID: PMC10748527 DOI: 10.1177/20406207231216077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/19/2023] [Indexed: 12/26/2023] Open
Abstract
The introduction of imatinib in 2000 opened the era of tyrosine kinase inhibitors (TKIs) for CML therapy and has revolutionized the life expectancy of CML patients, which is now quite like the one of the healthy aged population. Over the last 20 years, both the TKI therapy itself and the objectives have undergone evolutions highlighted and discussed in this review. The main objective of the CML therapy in the first 10 years after TKI introduction was to abolish the disease progression from the chronic to the blastic phase and guarantee the long-term survival of the great majority of patients. In the second 10 years (from 2010 to the present), the main objective of CML therapy moved from survival, considered achieved as a goal, to treatment-free remission (TFR). Two phenomena emerged: no more than 50-60% of CML patients could be candidates for discontinuation and over 50% of them molecularly relapse. The increased cumulative incidence of specific TKI off-target side effects was such relevant to compel to discontinue or reduce the TKI administration in a significant proportion of patients and to avoid a specific TKI in particular settings of patients. Therefore, the treatment strategy must be adapted to each category of patients. What about the patients who do not get or fail the TFR? Should they be compelled to continue the TKIs at the maximum tolerated dose? Alternative strategies based on the principle of minimal effective dose have been tested with success and they are now re-evaluated with more attention, since they guarantee survival and probably a better quality of life, too. Moving from treating the disease to treating the patient is an important change of paradigm. We can say that we are entering a personalized CML therapy, which considers the patients' age, their comorbidities, tolerability, and specific objectives. In this scenario, the new techniques supporting the monitoring of the patients, such as the digital PCR, must be considered. In the present review, we present in deep this evolution and comment on the future perspectives of CML therapy.
Collapse
Affiliation(s)
- Domenico Russo
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, ASST-Spedali Civili Hospital of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Michele Malagola
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, ASST-Spedali Civili Hospital of Brescia, University of Brescia, Brescia, Italy
| | - Nicola Polverelli
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, ASST-Spedali Civili Hospital of Brescia, University of Brescia, Brescia, Italy
| | - Mirko Farina
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, ASST-Spedali Civili Hospital of Brescia, University of Brescia, Brescia, Italy
| | - Federica Re
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, ASST-Spedali Civili Hospital of Brescia, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-oncologico AIL (CREA), ASST-Spedali Civili Hospital of Brescia, Brescia, Italy
| | - Simona Bernardi
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, ASST-Spedali Civili Hospital of Brescia, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-oncologico AIL (CREA), ASST-Spedali Civili Hospital of Brescia, Brescia, Italy
| |
Collapse
|
2
|
Zizioli D, Bernardi S, Varinelli M, Farina M, Mignani L, Bosio K, Finazzi D, Monti E, Polverelli N, Malagola M, Borsani E, Borsani G, Russo D. Development of BCR-ABL1 Transgenic Zebrafish Model Reproducing Chronic Myeloid Leukemia (CML) Like-Disease and Providing a New Insight into CML Mechanisms. Cells 2021; 10:cells10020445. [PMID: 33669758 PMCID: PMC7922348 DOI: 10.3390/cells10020445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Zebrafish has proven to be a versatile and reliable experimental in vivo tool to study human hematopoiesis and model hematological malignancies. Transgenic technologies enable the generation of specific leukemia types by the expression of human oncogenes under specific promoters. Using this technology, a variety of myeloid and lymphoid malignancies zebrafish models have been described. Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia characterized by the BCR-ABL1 fusion gene, derived from the t (9;22) translocation causing the Philadelphia Chromosome (Ph). The BCR-ABL1 protein is a constitutively activated tyrosine kinas inducing the leukemogenesis and resulting in an accumulation of immature leukemic cells into bone marrow and peripheral blood. To model Ph+ CML, a transgenic zebrafish line expressing the human BCR-ABL1 was generated by the Gal4/UAS system, and then crossed with the hsp70-Gal4 transgenic line. The new line named (BCR-ABL1pUAS:CFP/hsp70-Gal4), presented altered expression of hematopoietic markers during embryonic development compared to controls and transgenic larvae showed proliferating hematopoietic cells in the caudal hematopoietic tissue (CHT). The present transgenic zebrafish would be a robust CML model and a high-throughput drug screening tool.
Collapse
Affiliation(s)
- Daniela Zizioli
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.V.); (L.M.); (D.F.); (E.M.)
- Correspondence: daniela.zizioli@unibs; Tel.: +39-(03)-03717546
| | - Simona Bernardi
- Unit of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy; (S.B.); (M.F.); (K.B.); (N.P.); (M.M.); (D.R.)
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
| | - Marco Varinelli
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.V.); (L.M.); (D.F.); (E.M.)
| | - Mirko Farina
- Unit of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy; (S.B.); (M.F.); (K.B.); (N.P.); (M.M.); (D.R.)
| | - Luca Mignani
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.V.); (L.M.); (D.F.); (E.M.)
| | - Katia Bosio
- Unit of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy; (S.B.); (M.F.); (K.B.); (N.P.); (M.M.); (D.R.)
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
| | - Dario Finazzi
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.V.); (L.M.); (D.F.); (E.M.)
- Laboratorio Centrale Analisi Chimico-Cliniche, ASST Spedali Civili, 25123 Brescia, Italy
| | - Eugenio Monti
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.V.); (L.M.); (D.F.); (E.M.)
| | - Nicola Polverelli
- Unit of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy; (S.B.); (M.F.); (K.B.); (N.P.); (M.M.); (D.R.)
| | - Michele Malagola
- Unit of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy; (S.B.); (M.F.); (K.B.); (N.P.); (M.M.); (D.R.)
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
| | - Giuseppe Borsani
- Unit of Biology and Genetic, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Domenico Russo
- Unit of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy; (S.B.); (M.F.); (K.B.); (N.P.); (M.M.); (D.R.)
| |
Collapse
|
3
|
Fyn kinase mediates pro-inflammatory response in a mouse model of endotoxemia: Relevance to translational research. Eur J Pharmacol 2020; 881:173259. [PMID: 32565338 DOI: 10.1016/j.ejphar.2020.173259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 01/14/2023]
Abstract
Systemic inflammation resulting from the release of pro-inflammatory cytokines and the chronic activation of the innate immune system remains a major cause of morbidity and mortality in the United States. After having demonstrated that Fyn, a Src family kinase, regulates microglial neuroinflammatory responses in cell culture and animal models of Parkinson's disease, we investigate here its role in modulating systemic inflammation using an endotoxic mouse model. Fyn knockout (KO) and their wild-type (WT) littermate mice were injected once intraperitoneally with either saline or 5 mg/kg lipopolysaccharide (LPS) and were killed 48 h later. LPS-induced mortality, endotoxic symptoms and hypothermia were significantly attenuated in Fyn KO, but not WT, mice. LPS reduced survival in Fyn WT mice to 49% compared to 84% in Fyn KO mice. Fyn KO mice were also protected from LPS-induced deficits in horizontal and vertical locomotor activities, total distance traveled and stereotypic movements. Surface body temperatures recorded at 24 h and 48 h post-LPS dropped significantly in Fyn WT, but not in KO, mice. Importantly, endotoxemia-associated changes to levels of the serum pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), splenocyte apoptosis and inducible nitric oxide synthase (iNOS) production in hepatocytes were also significantly attenuated in Fyn KO mice. Likewise, pharmacologically inhibiting Fyn with 10 mg/kg dasatinib (oral) significantly attenuated LPS-induced increases in plasma TNF-α and IL-6 protein levels and hepatic pro-IL-1β messenger ribonucleic acids (mRNAs). Collectively, these results indicate that genetic knockdown or pharmacological inhibition of Fyn dampens systemic inflammation, demonstrating for the first time that Fyn kinase plays a critical role in mediating the endotoxic inflammatory response.
Collapse
|
4
|
Kuepper MK, Bütow M, Herrmann O, Ziemons J, Chatain N, Maurer A, Kirschner M, Maié T, Costa IG, Eschweiler J, Koschmieder S, Brümmendorf TH, Müller-Newen G, Schemionek M. Stem cell persistence in CML is mediated by extrinsically activated JAK1-STAT3 signaling. Leukemia 2019; 33:1964-1977. [PMID: 30842608 DOI: 10.1038/s41375-019-0427-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
Tyrosine kinase inhibitor (TKI) therapy effectively blocks oncogenic Bcr-Abl signaling and induces molecular remission in the majority of CML patients. However, the disease-driving stem cell population is not fully targeted by TKI therapy in the majority of patients, and leukemic stem cells (LSCs) capable of re-inducing the disease can persist. In TKI-resistant CML, STAT3 inhibition was previously shown to reduce malignant cell survival. Here, we show therapy-resistant cell-extrinsic STAT3 activation in TKI-sensitive CML cells, using cell lines, HoxB8-immortalized murine BM cells, and primary human stem cells. Moreover, we identified JAK1 but not JAK2 as the STAT3-activating kinase by applying JAK1/2 selective inhibitors and genetic inactivation. Employing an IL-6-blocking peptide, we identified IL-6 as a mediator of STAT3 activation. Combined inhibition of Bcr-Abl and JAK1 further reduced CFUs from murine CML BM, human CML MNCs, as well as CD34+ CML cells, and similarly decreased LT-HSCs in a transgenic CML mouse model. In line with these observations, proliferation of human CML CD34+ cells was strongly reduced upon combined Bcr-Abl and JAK1 inhibition. Remarkably, the combinatory therapy significantly induced apoptosis even in quiescent LSCs. Our findings suggest JAK1 as a potential therapeutic target for curative CML therapies.
Collapse
Affiliation(s)
- Maja Kim Kuepper
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Marlena Bütow
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Oliver Herrmann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Janine Ziemons
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Angela Maurer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopedics, Aachen University Hospital, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|