1
|
Hintzen DC, Schubert M, Soto M, Medema RH, Raaijmakers JA. Reduction of chromosomal instability and inflammation is a common aspect of adaptation to aneuploidy. EMBO Rep 2024; 25:5169-5193. [PMID: 39294502 PMCID: PMC11549362 DOI: 10.1038/s44319-024-00252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024] Open
Abstract
Aneuploidy, while detrimental to untransformed cells, is notably prevalent in cancer. Aneuploidy is found as an early event during tumorigenesis which indicates that cancer cells have the ability to surmount the initial stress responses associated with aneuploidy, enabling rapid proliferation despite aberrant karyotypes. To generate more insight into key cellular processes and requirements underlying adaptation to aneuploidy, we generated a panel of aneuploid clones in p53-deficient RPE-1 cells and studied their behavior over time. As expected, de novo-generated aneuploid clones initially display reduced fitness, enhanced levels of chromosomal instability (CIN), and an upregulated inflammatory response. Intriguingly, after prolonged culturing, aneuploid clones exhibit increased proliferation rates while maintaining aberrant karyotypes, indicative of an adaptive response to the aneuploid state. Interestingly, all adapted clones display reduced CIN and reduced inflammatory signaling, suggesting that these are common aspects of adaptation to aneuploidy. Collectively, our data suggests that CIN and concomitant inflammation are key processes that require correction to allow for fast proliferation in vitro. Finally, we provide evidence that amplification of oncogenic KRAS can promote adaptation.
Collapse
Affiliation(s)
- Dorine C Hintzen
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Michael Schubert
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Mar Soto
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - René H Medema
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
- Oncode Institute, Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS, Utrecht, The Netherlands.
| | - Jonne A Raaijmakers
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Liang C, Zhou Y, Xin L, Kang K, Tian L, Zhang D, Li H, Zhao Q, Gao H, Shi Z. Hijacking monopolar spindle 1 (MPS1) for various cancer types by small molecular inhibitors: Deep insights from a decade of research and patents. Eur J Med Chem 2024; 273:116504. [PMID: 38795520 DOI: 10.1016/j.ejmech.2024.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Monopolar spindle 1 (MPS1) has garnered significant attention due to its pivotal role in regulating the cell cycle. Anomalous expression and hyperactivation of MPS1 have been associated with the onset and advancement of diverse cancers, positioning it as a promising target for therapeutic interventions. This review focuses on MPS1 small molecule inhibitors from the past decade, exploring design strategies, structure-activity relationships (SAR), safety considerations, and clinical performance. Notably, we propose prospects for MPS1 degraders based on proteolysis targeting chimeras (PROTACs), as well as reversible covalent bonding as innovative MPS1 inhibitor design strategies. The objective is to provide valuable information for future development and novel perspectives on potential MPS1 inhibitors.
Collapse
Affiliation(s)
- Chengyuan Liang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China.
| | - Ying Zhou
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Liang Xin
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Kairui Kang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Lei Tian
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science& Technology, Xi'an, 710021, China
| | - Dezhu Zhang
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, China
| | - Han Li
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710082, China
| | - Qianqian Zhao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, China; Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China
| | - Hong Gao
- Key Laboratory for Antiviral and Antimicrobial-Resistant Bacteria Research of Xi'an, Xi'an, 710021, China; Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710082, China
| | - Zhenfeng Shi
- Department of Urology Surgery Center, The People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, 830002, China
| |
Collapse
|
3
|
Foy R, Crozier L, Pareri AU, Valverde JM, Park BH, Ly T, Saurin AT. Oncogenic signals prime cancer cells for toxic cell overgrowth during a G1 cell cycle arrest. Mol Cell 2023; 83:4047-4061.e6. [PMID: 37977117 DOI: 10.1016/j.molcel.2023.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/10/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
CDK4/6 inhibitors are remarkable anti-cancer drugs that can arrest tumor cells in G1 and induce their senescence while causing only relatively mild toxicities in healthy tissues. How they achieve this mechanistically is unclear. We show here that tumor cells are specifically vulnerable to CDK4/6 inhibition because during the G1 arrest, oncogenic signals drive toxic cell overgrowth. This overgrowth causes permanent cell cycle withdrawal by either preventing progression from G1 or inducing genotoxic damage during the subsequent S-phase and mitosis. Inhibiting or reverting oncogenic signals that converge onto mTOR can rescue this excessive growth, DNA damage, and cell cycle exit in cancer cells. Conversely, inducing oncogenic signals in non-transformed cells can drive these toxic phenotypes and sensitize the cells to CDK4/6 inhibition. Together, this demonstrates that cell cycle arrest and oncogenic cell growth is a synthetic lethal combination that is exploited by CDK4/6 inhibitors to induce tumor-specific toxicity.
Collapse
Affiliation(s)
- Reece Foy
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Lisa Crozier
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Aanchal U Pareri
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Juan Manuel Valverde
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Ben Ho Park
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tony Ly
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Adrian T Saurin
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
4
|
Gyüre Z, Póti Á, Németh E, Szikriszt B, Lózsa R, Krawczyk M, Richardson AL, Szüts D. Spontaneous mutagenesis in human cells is controlled by REV1-Polymerase ζ and PRIMPOL. Cell Rep 2023; 42:112887. [PMID: 37498746 DOI: 10.1016/j.celrep.2023.112887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/09/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Translesion DNA synthesis (TLS) facilitates replication over damaged or difficult-to-replicate templates by employing specialized DNA polymerases. We investigate the effect on spontaneous mutagenesis of three main TLS control mechanisms: REV1 and PCNA ubiquitylation that recruit TLS polymerases and PRIMPOL that creates post-replicative gaps. Using whole-genome sequencing of cultured human RPE-1 cell clones, we find that REV1 and Polymerase ζ are wholly responsible for one component of base substitution mutagenesis that resembles homologous recombination deficiency, whereas the remaining component that approximates oxidative mutagenesis is reduced in PRIMPOL-/- cells. Small deletions in short repeats appear in REV1-/-PCNAK164R/K164R double mutants, revealing an alternative TLS mechanism. Also, 500-5,000 bp deletions appear in REV1-/- and REV3L-/- mutants, and chromosomal instability is detectable in REV1-/-PRIMPOL-/- cells. Our results indicate that TLS protects the genome from deletions and large rearrangements at the expense of being responsible for the majority of spontaneous base substitutions.
Collapse
Affiliation(s)
- Zsolt Gyüre
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; Doctoral School of Molecular Medicine, Semmelweis University, 1085 Budapest, Hungary; Turbine Simulated Cell Technologies, 1027 Budapest, Hungary
| | - Ádám Póti
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Eszter Németh
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Bernadett Szikriszt
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Rita Lózsa
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Michał Krawczyk
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | | | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; National Laboratory for Drug Research and Development, 1117 Budapest, Hungary.
| |
Collapse
|
5
|
Liu C, Kudo T, Ye X, Gascoigne K. Cell-to-cell variability in Myc dynamics drives transcriptional heterogeneity in cancer cells. Cell Rep 2023; 42:112401. [PMID: 37060565 DOI: 10.1016/j.celrep.2023.112401] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023] Open
Abstract
Cell-to-cell heterogeneity is vital for tumor evolution and survival. How cancer cells achieve and exploit this heterogeneity remains an active area of research. Here, we identify c-Myc as a highly heterogeneously expressed transcription factor and an orchestrator of transcriptional and phenotypic diversity in cancer cells. By monitoring endogenous c-Myc protein in individual living cells, we report the surprising pulsatile nature of c-Myc expression and the extensive cell-to-cell variability in its dynamics. We further show that heterogeneity in c-Myc dynamics leads to variable target gene transcription and that timing of c-Myc expression predicts cell-cycle progression rates and drug sensitivities. Together, our data advocate for a model in which cancer cells increase the heterogeneity of functionally diverse transcription factors such as c-Myc to rapidly survey transcriptional landscapes and survive stress.
Collapse
Affiliation(s)
- Chad Liu
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Takamasa Kudo
- Department of Cellular and Tissue Genomics, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Xin Ye
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Karen Gascoigne
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
6
|
TANG QINGLING, ATIQ WARDA, MAHNOOR SHAISTA, ABDEL-MAKSOUD MOSTAFAA, AUFY MOHAMMED, YAZ HAMID, ZHU JIANYU. Comprehensively analyzing the genetic alterations, and identifying key genes in ovarian cancer. Oncol Res 2023; 31:141-156. [PMID: 37304238 PMCID: PMC10207953 DOI: 10.32604/or.2023.028548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/02/2023] [Indexed: 06/13/2023] Open
Abstract
Though significant improvements have been made in the treatment methods for ovarian cancer (OC), the prognosis for OC patients is still poor. Exploring hub genes associated with the development of OC and utilizing them as appropriate potential biomarkers or therapeutic targets is highly valuable. In this study, the differentially expressed genes (DEGs) were identified from an independent GSE69428 Gene Expression Omnibus (GEO) dataset between OC and control samples. The DEGs were processed to construct the protein-protein interaction (PPI) network using STRING. Later, hub genes were identified through Cytohubba analysis of the Cytoscape. Expression and survival profiling of the hub genes were validated using GEPIA, OncoDB, and GENT2. For exploring promoter methylation levels and genetic alterations in hub genes, MEXPRESS and cBioPortal were utilized, respectively. Moreover, DAVID, HPA, TIMER, CancerSEA, ENCORI, DrugBank, and GSCAlite were used for gene enrichment analysis, subcellular localization analysis, immune cell infiltration analysis, exploring correlations between hub genes and different diverse states, lncRNA-miRNA-mRNA co-regulatory network analysis, predicting hub gene-associated drugs, and conducting drug sensitivity analysis, respectively. In total, 8947 DEGs were found between OC and normal samples in GSE69428. After STRING and Cytohubba analysis, 4 hub genes including TTK (TTK Protein Kinase), (BUB1 mitotic checkpoint serine/threonine kinase B) BUB1B, (Nucleolar and spindle-associated protein 1) NUSAP1, and (ZW10 interacting kinetochore protein) ZWINT were selected as the hub genes. Further, it was validated that these 4 hub genes were significantly up-regulated in OC samples compared to normal controls, but overexpression of these genes was not associated with overall survival (OS). However, genetic alterations in those genes were found to be linked with OS and disease-free (DFS) survival. Moreover, this study also revealed some novel links between TTK, BUB1B, NUSAP1, and ZWINT overexpression and promoter methylation status, immune cell infiltration, miRNAs, gene enrichment terms, and various chemotherapeutic drugs. Four hub genes, including TTK, BUB1B, NUSAP1, and ZWINT, were revealed as tumor-promotive factors in OC, having the potential to be utilized as novel biomarkers and therapeutic targets for OC management.
Collapse
Affiliation(s)
- QINGLING TANG
- Department of Gynecology and Obstetrics, Shanghai Songjiang District Jiuting Hospital, Shanghai, 20000, China
| | - WARDA ATIQ
- Department of Medicine, Fatima Jinnah Medical University, Lahore, 42000, Pakistan
| | - SHAISTA MAHNOOR
- Department of Medicine, Fatima Jinnah Medical University, Lahore, 42000, Pakistan
| | - MOSTAFA A. ABDEL-MAKSOUD
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - MOHAMMED AUFY
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, 1010, Austria
| | - HAMID YAZ
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - JIANYU ZHU
- Department of Trauma Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
7
|
Kooijman JJ, van Riel WE, Dylus J, Prinsen MBW, Grobben Y, de Bitter TJJ, van Doornmalen AM, Melis JJTM, Uitdehaag JCM, Narumi Y, Kawase Y, de Roos JADM, Willemsen-Seegers N, Zaman GJR. Comparative kinase and cancer cell panel profiling of kinase inhibitors approved for clinical use from 2018 to 2020. Front Oncol 2022; 12:953013. [PMID: 36185300 PMCID: PMC9516332 DOI: 10.3389/fonc.2022.953013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
During the last two decades, kinase inhibitors have become the major drug class for targeted cancer therapy. Although the number of approved kinase inhibitors increases rapidly, comprehensive in vitro profiling and comparison of inhibitor activities is often lacking in the public domain. Here we report the extensive profiling and comparison of 21 kinase inhibitors approved by the FDA for oncology indications since June 2018 and 13 previously approved comparators on panels of 255 biochemical kinase assays and 134 cancer cell line viability assays. Comparison of the cellular inhibition profiles of the EGFR inhibitors gefitinib, dacomitinib, and osimertinib identified the uncommon EGFR p.G719S mutation as a common response marker for EGFR inhibitors. Additionally, the FGFR inhibitors erdafitinib, infigratinib, and pemigatinib potently inhibited the viability of cell lines which harbored oncogenic alterations in FGFR1-3, irrespective of the specific clinical indications of the FGFR inhibitors. These results underscore the utility of in vitro kinase inhibitor profiling in cells for identifying new potential stratification markers for patient selection. Furthermore, comparison of the in vitro inhibition profiles of the RET inhibitors pralsetinib and selpercatinib revealed they had very similar biochemical and cellular selectivity. As an exception, an NTRK3 fusion-positive cell line was potently inhibited by pralsetinib but not by selpercatinib, which could be explained by the targeting of TRK kinases in biochemical assays by pralsetinib but not selpercatinib. This illustrates that unexpected differences in cellular activities between inhibitors that act through the same primary target can be explained by subtle differences in biochemical targeting. Lastly, FLT3-mutant cell lines were responsive to both FLT3 inhibitors gilteritinib and midostaurin, and the PI3K inhibitor duvelisib. Biochemical profiling revealed that the FLT3 and PI3K inhibitors targeted distinct kinases, indicating that unique dependencies can be identified by combined biochemical and cellular profiling of kinase inhibitors. This study provides the first large scale kinase assay or cell panel profiling study for newly approved kinase inhibitors, and shows that comprehensive in vitro profiling of kinase inhibitors can provide rationales for therapy selection and indication expansion of approved kinase inhibitors.
Collapse
|
8
|
Crozier L, Foy R, Mouery BL, Whitaker RH, Corno A, Spanos C, Ly T, Gowen Cook J, Saurin AT. CDK4/6 inhibitors induce replication stress to cause long-term cell cycle withdrawal. EMBO J 2022; 41:e108599. [PMID: 35037284 PMCID: PMC8922273 DOI: 10.15252/embj.2021108599] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 11/18/2021] [Accepted: 12/21/2021] [Indexed: 12/29/2022] Open
Abstract
CDK4/6 inhibitors arrest the cell cycle in G1-phase. They are approved to treat breast cancer and are also undergoing clinical trials against a range of other tumour types. To facilitate these efforts, it is important to understand why a cytostatic arrest in G1 causes long-lasting effects on tumour growth. Here, we demonstrate that a prolonged G1 arrest following CDK4/6 inhibition downregulates replisome components and impairs origin licencing. Upon release from that arrest, many cells fail to complete DNA replication and exit the cell cycle in a p53-dependent manner. If cells fail to withdraw from the cell cycle following DNA replication problems, they enter mitosis and missegregate chromosomes causing excessive DNA damage, which further limits their proliferative potential. These effects are observed in a range of tumour types, including breast cancer, implying that genotoxic stress is a common outcome of CDK4/6 inhibition. This unanticipated ability of CDK4/6 inhibitors to induce DNA damage now provides a rationale to better predict responsive tumour types and effective combination therapies, as demonstrated by the fact that CDK4/6 inhibition induces sensitivity to chemotherapeutics that also cause replication stress.
Collapse
Affiliation(s)
- Lisa Crozier
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| | - Reece Foy
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| | - Brandon L Mouery
- Curriculum in Genetics and Molecular BiologyUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Robert H Whitaker
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Andrea Corno
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| | - Christos Spanos
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Tony Ly
- Wellcome Trust Centre for Cell BiologyUniversity of EdinburghEdinburghUK
- Present address:
Centre for Gene Regulation and ExpressionSchool of Life SciencesUniversity of DundeeDundeeUK
| | - Jeanette Gowen Cook
- Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillNCUSA
| | - Adrian T Saurin
- Division of Cellular and Systems MedicineJacqui Wood Cancer CentreSchool of MedicineUniversity of DundeeDundeeUK
| |
Collapse
|
9
|
Pennycook BR, Barr AR. Palbociclib-mediated cell cycle arrest can occur in the absence of the CDK inhibitors p21 and p27. Open Biol 2021; 11:210125. [PMID: 34784791 PMCID: PMC8596008 DOI: 10.1098/rsob.210125] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
The use of CDK4/6 inhibitors in the treatment of a wide range of cancers is an area of ongoing investigation. Despite their increasing clinical use, there is limited understanding of the determinants of sensitivity and resistance to these drugs. Recent data have cast doubt on how CDK4/6 inhibitors arrest proliferation, provoking renewed interest in the role(s) of CDK4/6 in driving cell proliferation. As the use of CDK4/6 inhibitors in cancer therapies becomes more prominent, an understanding of their effect on the cell cycle becomes more urgent. Here, we investigate the mechanism of action of CDK4/6 inhibitors in promoting cell cycle arrest. Two main models explain how CDK4/6 inhibitors cause G1 cell cycle arrest, which differ in their dependence on the CDK inhibitor proteins p21 and p27. We have used live and fixed single-cell quantitative imaging, with inducible degradation systems, to address the roles of p21 and p27 in the mechanism of action of CDK4/6 inhibitors. We find that CDK4/6 inhibitors can initiate and maintain a cell cycle arrest without p21 or p27. This work clarifies our current understanding of the mechanism of action of CDK4/6 inhibitors and has implications for cancer treatment and patient stratification.
Collapse
Affiliation(s)
- Betheney R. Pennycook
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alexis R. Barr
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
10
|
Mass-spectrometry-based proteomic correlates of grade and stage reveal pathways and kinases associated with aggressive human cancers. Oncogene 2021; 40:2081-2095. [PMID: 33627787 PMCID: PMC7981264 DOI: 10.1038/s41388-021-01681-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 01/30/2023]
Abstract
Proteomic signatures associated with clinical measures of more aggressive cancers could yield molecular clues as to disease drivers. Here, utilizing the Clinical Proteomic Tumor Analysis Consortium (CPTAC) mass-spectrometry-based proteomics datasets, we defined differentially expressed proteins and mRNAs associated with higher grade or higher stage, for each of seven cancer types (breast, colon, lung adenocarcinoma, clear cell renal, ovarian, uterine, and pediatric glioma), representing 794 patients. Widespread differential patterns of total proteins and phosphoproteins involved some common patterns shared between different cancer types. More proteins were associated with higher grade than higher stage. Most proteomic signatures predicted patient survival in independent transcriptomic datasets. The proteomic grade signatures, in particular, involved DNA copy number alterations. Pathways of interest were enriched within the grade-associated proteins across multiple cancer types, including pathways of altered metabolism, Warburg-like effects, and translation factors. Proteomic grade correlations identified protein kinases having functional impact in vitro in uterine endometrial cancer cells, including MAP3K2, MASTL, and TTK. The protein-level grade and stage associations for all proteins profiled-along with corresponding information on phosphorylation, pathways, mRNA expression, and copy alterations-represent a resource for identifying new potential targets. Proteomic analyses are often concordant with corresponding transcriptomic analyses, but with notable exceptions.
Collapse
|
11
|
Perez-Pardo P, Grobben Y, Willemsen-Seegers N, Hartog M, Tutone M, Muller M, Adolfs Y, Pasterkamp RJ, Vu-Pham D, van Doornmalen AM, van Cauter F, de Wit J, Gerard Sterrenburg J, Uitdehaag JCM, de Man J, Buijsman RC, Zaman GJR, Kraneveld AD. Pharmacological validation of TDO as a target for Parkinson's disease. FEBS J 2021; 288:4311-4331. [PMID: 33471408 PMCID: PMC8359396 DOI: 10.1111/febs.15721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/24/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease patients suffer from both motor and nonmotor impairments. There is currently no cure for Parkinson’s disease, and the most commonly used treatment, levodopa, only functions as a temporary relief of motor symptoms. Inhibition of the expression of the L‐tryptophan‐catabolizing enzyme tryptophan 2,3‐dioxygenase (TDO) has been shown to inhibit aging‐related α‐synuclein toxicity in Caenorhabditis elegans. To evaluate TDO inhibition as a potential therapeutic strategy for Parkinson’s disease, a brain‐penetrable, small molecule TDO inhibitor was developed, referred to as NTRC 3531‐0. This compound potently inhibits human and mouse TDO in biochemical and cell‐based assays and is selective over IDO1, an evolutionary unrelated enzyme that catalyzes the same reaction. In mice, NTRC 3531‐0 increased plasma and brain L‐tryptophan levels after oral administration, demonstrating inhibition of TDO activity in vivo. The effect on Parkinson’s disease symptoms was evaluated in a rotenone‐induced Parkinson’s disease mouse model. A structurally dissimilar TDO inhibitor, LM10, was evaluated in parallel. Both inhibitors had beneficial effects on rotenone‐induced motor and cognitive dysfunction as well as rotenone‐induced dopaminergic cell loss and neuroinflammation in the substantia nigra. Moreover, both inhibitors improved intestinal transit and enhanced colon length, which indicates a reduction of the rotenone‐induced intestinal dysfunction. Consistent with this, mice treated with TDO inhibitor showed decreased expression of rotenone‐induced glial fibrillary acidic protein, which is a marker of enteric glial cells, and decreased α‐synuclein accumulation in the enteric plexus. Our data support TDO inhibition as a potential therapeutic strategy to decrease motor, cognitive, and gastrointestinal symptoms in Parkinson’s disease.
Collapse
Affiliation(s)
- Paula Perez-Pardo
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Yvonne Grobben
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | | | - Mitch Hartog
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michaela Tutone
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michelle Muller
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ronald Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Diep Vu-Pham
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | | | - Freek van Cauter
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | - Joeri de Wit
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | | | | | - Jos de Man
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | | | - Guido J R Zaman
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Grobben Y, de Man J, van Doornmalen AM, Muller M, Willemsen-Seegers N, Vu-Pham D, Mulder WR, Prinsen MBW, de Wit J, Sterrenburg JG, van Cauter F, den Ouden JE, van Altena AM, Massuger LF, Uitdehaag JCM, Buijsman RC, Zaman GJR. Targeting Indoleamine 2,3-Dioxygenase in Cancer Models Using the Novel Small Molecule Inhibitor NTRC 3883-0. Front Immunol 2021; 11:609490. [PMID: 33584686 PMCID: PMC7876453 DOI: 10.3389/fimmu.2020.609490] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO1) is a key regulator of immune suppression by catalyzing the oxidation of L-tryptophan. IDO1 expression has been related to poor prognosis in several cancers and to resistance to checkpoint immunotherapies. We describe the characterization of a novel small molecule IDO1 inhibitor, NTRC 3883-0, in a panel of biochemical and cell-based assays, and various cancer models. NTRC 3883-0 released the inhibitory effect of IDO1 on CD8-positive T cell proliferation in co-cultures of IDO1-overexpressing cells with healthy donor lymphocytes, demonstrating its immune modulatory activity. In a syngeneic mouse model using IDO1-overexpressing B16F10 melanoma cells, NTRC 3883-0 effectively counteracted the IDO1-induced modulation of L-tryptophan and L-kynurenine levels, demonstrating its in vivo target modulation. Finally, we studied the expression and activity of IDO1 in primary cell cultures established from the malignant ascites of ovarian cancer patients. In these cultures, IDO1 expression was induced upon stimulation with IFNγ, and its activity could be inhibited by NTRC 3883-0. Based on these results, we propose the use of ascites cell-based functional assays for future patient stratification. Our results are discussed in light of the recent discontinuation of clinical trials of more advanced IDO1 inhibitors and the reconsideration of IDO1 as a valid drug target.
Collapse
Affiliation(s)
- Yvonne Grobben
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | - Jos de Man
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | | | - Michelle Muller
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | | | - Diep Vu-Pham
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | | | | | - Joeri de Wit
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | | | - Freek van Cauter
- Netherlands Translational Research Center B.V., Oss, Netherlands
| | - Judith E. den Ouden
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Anne M. van Altena
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Leon F. Massuger
- Department of Obstetrics and Gynaecology, Radboud University Medical Centre, Nijmegen, Netherlands
| | | | | | | |
Collapse
|
13
|
Yan L, Zhao Z, Wang X, Lyu T, Li J, Qi Y, Wang X, Guo X. Short-term in vitro glutamine restriction differentially impacts the chromosomal stability of transformed and non-transformed cells. Mutagenesis 2020; 35:geaa026. [PMID: 33043986 DOI: 10.1093/mutage/geaa026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/10/2020] [Indexed: 11/13/2022] Open
Abstract
Glutamine (Gln) is a non-essential amino acid central for generating building blocks and cellular energy in tumours and rapidly proliferating non-transformed cells. However, the influence of Gln on regulating chromosomal stability of transformed and non-transformed cells remain poorly understand. We hypothesised that Gln is required for maintaining a homeostatic level of chromosomal stability. To this end, transformed cells HeLa and A375 and non-transformed cells NCM460 and HUVEC cells were intervened with varying concentrations of Gln (10, 1, 0.1 and 0.01 mM), with or without cisplatin (0.1 µg/ml), for 24 h. The cytokinesis-block micronucleus (MN) assay was used to determine chromosomal instability (CIN), the extent of which is reflected by the frequency of MN, nucleoplasmic bridge (NPB) and nuclear bud (NB). We demonstrated an unexpected decrease in the spontaneous rate of MN, but not NPB and NB, after Gln restriction in HeLa and A375 cells. Gln restriction reduced cisplatin-induced MN, but not NPB and NB, in HeLa and A375 cells. We further revealed that Gln restriction suppressed the proliferation of HeLa cells with high CIN induced by nocodazole, partially explaining why Gln restriction decreased the frequency of spontaneous and cisplatin-induced MN in transformed cells. In contrast, Gln restriction increased MN and NB, but not NPB, in NCM460 cells. In HUVEC cells, Gln restriction increased MN, NPB and NB. Meanwhile, Gln restriction sensitised NCM460 cells to cisplatin-induced genotoxicity. A similar but more pronounced pattern was observed in HUVEC cells. Collectively, these results suggest that the in vitro influences of Gln metabolism on CIN depend on cellular contexts: Transformed cells require high Gln to fine tune their CIN in an optimal rate to maximise genomic heterogeneity and fitness, whereas non-transformed cells need high Gln to prevent CIN.
Collapse
Affiliation(s)
- Ling Yan
- School of Life Sciences, Yunnan Normal University, Chenggong District, Kunming, Yunnan, China
| | - Ziru Zhao
- School of Life Sciences, Yunnan Normal University, Chenggong District, Kunming, Yunnan, China
| | - Xiaoran Wang
- School of Life Sciences, Yunnan Normal University, Chenggong District, Kunming, Yunnan, China
| | - Ting Lyu
- School of Life Sciences, Yunnan Normal University, Chenggong District, Kunming, Yunnan, China
| | - Jianfei Li
- School of Life Sciences, Yunnan Normal University, Chenggong District, Kunming, Yunnan, China
| | - Yanmei Qi
- School of Life Sciences, Yunnan Normal University, Chenggong District, Kunming, Yunnan, China
| | - Xu Wang
- School of Life Sciences, Yunnan Normal University, Chenggong District, Kunming, Yunnan, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Chenggong District, Kunming, Yunnan, China
- Yunnan Environmental Society, Chenggong District, Kunming, Yunnan, China
| | - Xihan Guo
- School of Life Sciences, Yunnan Normal University, Chenggong District, Kunming, Yunnan, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Chenggong District, Kunming, Yunnan, China
- Yunnan Environmental Society, Chenggong District, Kunming, Yunnan, China
| |
Collapse
|
14
|
VanGenderen C, Harkness TAA, Arnason TG. The role of Anaphase Promoting Complex activation, inhibition and substrates in cancer development and progression. Aging (Albany NY) 2020; 12:15818-15855. [PMID: 32805721 PMCID: PMC7467358 DOI: 10.18632/aging.103792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
The Anaphase Promoting Complex (APC), a multi-subunit ubiquitin ligase, facilitates mitotic and G1 progression, and is now recognized to play a role in maintaining genomic stability. Many APC substrates have been observed overexpressed in multiple cancer types, such as CDC20, the Aurora A and B kinases, and Forkhead box M1 (FOXM1), suggesting APC activity is important for cell health. We performed BioGRID analyses of the APC coactivators CDC20 and CDH1, which revealed that at least 69 proteins serve as APC substrates, with 60 of them identified as playing a role in tumor promotion and 9 involved in tumor suppression. While these substrates and their association with malignancies have been studied in isolation, the possibility exists that generalized APC dysfunction could result in the inappropriate stabilization of multiple APC targets, thereby changing tumor behavior and treatment responsiveness. It is also possible that the APC itself plays a crucial role in tumorigenesis through its regulation of mitotic progression. In this review the connections between APC activity and dysregulation will be discussed with regards to cell cycle dysfunction and chromosome instability in cancer, along with the individual roles that the accumulation of various APC substrates may play in cancer progression.
Collapse
Affiliation(s)
- Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Terra Gayle Arnason
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada.,Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
15
|
Piccoli M, Ghiroldi A, Monasky MM, Cirillo F, Ciconte G, Pappone C, Anastasia L. Reversine: A Synthetic Purine with a Dual Activity as a Cell Dedifferentiating Agent and a Selective Anticancer Drug. Curr Med Chem 2020; 27:3448-3462. [PMID: 30605049 DOI: 10.2174/0929867326666190103120725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/27/2022]
Abstract
The development of new therapeutic applications for adult and embryonic stem cells has dominated regenerative medicine and tissue engineering for several decades. However, since 2006, induced Pluripotent Stem Cells (iPSCs) have taken center stage in the field, as they promised to overcome several limitations of the other stem cell types. Nonetheless, other promising approaches for adult cell reprogramming have been attempted over the years, even before the generation of iPSCs. In particular, two years before the discovery of iPSCs, the possibility of synthesizing libraries of large organic compounds, as well as the development of high-throughput screenings to quickly test their biological activity, enabled the identification of a 2,6-disubstituted purine, named reversine, which was shown to be able to reprogram adult cells to a progenitor-like state. Since its discovery, the effect of reversine has been confirmed on different cell types, and several studies on its mechanism of action have revealed its central role in inhibitory activity on several kinases implicated in cell cycle regulation and cytokinesis. These key features, together with its chemical nature, suggested a possible use of the molecule as an anti-cancer drug. Remarkably, reversine exhibited potent cytotoxic activity against several tumor cell lines in vitro and a significant effect in decreasing tumor progression and metastatization in vivo. Thus, 15 years since its discovery, this review aims at critically summarizing the current knowledge to clarify the dual role of reversine as a dedifferentiating agent and anti-cancer drug.
Collapse
Affiliation(s)
- Marco Piccoli
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Andrea Ghiroldi
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Federica Cirillo
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, via Luigi Mangiagalli 31, 20133 Milan, Italy
| |
Collapse
|
16
|
Huang H, Yang Y, Zhang W, Liu X, Yang G. TTK regulates proliferation and apoptosis of gastric cancer cells through the Akt-mTOR pathway. FEBS Open Bio 2020; 10:1542-1549. [PMID: 32530571 PMCID: PMC7396433 DOI: 10.1002/2211-5463.12909] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/07/2020] [Accepted: 06/05/2020] [Indexed: 01/17/2023] Open
Abstract
TTK (also known as Mps1) is the core component of the spindle assembly checkpoint, which ensures proper distribution of chromosomes to daughter cells to maintain genome integrity and to balance growth and division. However, the function of TTK in tumorigenesis has not been extensively studied, especially in relation to the development of gastric cancer. In this study, survival and tumor recurrence data related to TTK expression level in gastric cancer patients were collected and analyzed. We observed that TTK expression was negatively correlated with survival and tumor recurrence in vivo. TTK was also upregulated in gastric cancer cells and was observed to be essential for the proliferation and survival of gastric cancer cells. Knockdown of TTK inhibited proliferation and increased apoptosis. Furthermore, we report that TTK regulates the proliferation and apoptosis of tumor cells through the Akt‐mTOR pathway. Knockdown of TTK inhibited activation of Akt‐mTOR signaling. In summary, our data indicate that TTK is involved in the regulation of gastric cancer proliferation and apoptosis.
Collapse
Affiliation(s)
- Hongxia Huang
- School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Yadong Yang
- Institute of Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Wenyuan Zhang
- Institute of Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Xinzhu Liu
- Institute of Bioengineering, Hangzhou Medical College, Hangzhou, China
| | - Geng Yang
- Institute of Bioengineering, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
17
|
Molecular design and anticancer activities of small-molecule monopolar spindle 1 inhibitors: A Medicinal chemistry perspective. Eur J Med Chem 2019; 175:247-268. [DOI: 10.1016/j.ejmech.2019.04.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022]
|
18
|
Baity M, Wang L, Correa AM, Zhang X, Zhang R, Pataer A, Wu S, Meng QH, Antonoff MB, Hofstetter WL, Mehran RJ, Rice DC, Roth JA, Sepesi B, Swisher SG, Vaporciyan AA, Walsh GL, Zhao M, Gu J, Fang B. Glutathione reductase ( GSR) gene deletion and chromosome 8 aneuploidy in primary lung cancers detected by fluorescence in situ hybridization. Am J Cancer Res 2019; 9:1201-1211. [PMID: 31285952 PMCID: PMC6610060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 06/09/2023] Open
Abstract
Our recent study demonstrated that cancer cells with compromised glutathione homeostasis, including reduced expression of the glutathione reductase (GSR) gene, were selectively killed by inhibition of thioredoxin reductase. The human GSR gene is located on chromosome 8p, a region often lost in lung and other cancers. However, whether GSR is altered in primary lung cancer remains unknown. To analyze alterations of GSR in lung cancer, we performed fluorescence in situ hybridization with probes for GSR and the chromosome 8 centromere (CEP8) in 45 surgical specimens of primary lung cancer, including 24 lung adenocarcinomas, 10 squamous cell carcinomas, 8 neuroendocrine cancers, and 3 small cell lung cancers. Twenty-five surgically resected normal lung tissue specimens from these lung cancer patients were used as a controls. The signal ratio of GSR to CEP8 per cell was used to identify gain or loss of GSR. GSR loss was detected in 6 of 24 (25%) adenocarcinoma specimens and 5 of 10 (50%) squamous cell carcinoma specimens, but not in neuroendocrine cancer or small cell lung cancer specimens. We also found that 19 of 45 (42%) specimens had chromosome 8 aneuploidy (more or less than 2 signals for CEP8), including 8 with both aneuploidy and GSR deletion. Chromosome 8 aneuploidy was detected in all types of lung cancer analyzed. Univariate and multivariable logistic regression analyses indicated that male patients had an increased risk of GSR deletion (hazard ratio [HR] = 4.77, 95% confidence interval [CI] = 1.00-22.86, P = 0.051), and patients who had undergone preoperative radiation therapy or had a self-reported history of cigarette smoking had an increased risk of chromosome 8 aneuploidy (preoperative radiation: HR = 18.63, 95% CI = 0.90-384.17, P = 0.058; smoking: HR = 7.59, 95% CI = 0.86-66.75, P = 0.068), although the p values did not reach significance. Because GSR deficiency and chromosome 8 aneuploidy have implications in targeted therapy and/or immunotherapy for cancer, they might serve as predictive biomarkers for precision therapy of lung cancers.
Collapse
Affiliation(s)
- Mohamed Baity
- School of Health Professions, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Li Wang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Arlene M Correa
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Xiaoshan Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Ran Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Apar Pataer
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Shuhong Wu
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Qing H Meng
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Mara B Antonoff
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Wayne L Hofstetter
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Reza J Mehran
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - David C Rice
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Boris Sepesi
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Stephen G Swisher
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Ara A Vaporciyan
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Garrett L Walsh
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Ming Zhao
- School of Health Professions, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Jun Gu
- School of Health Professions, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer CenterHouston, TX 77030, USA
| |
Collapse
|
19
|
TTK promotes mesenchymal signaling via multiple mechanisms in triple negative breast cancer. Oncogenesis 2018; 7:69. [PMID: 30206215 PMCID: PMC6133923 DOI: 10.1038/s41389-018-0077-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/16/2018] [Accepted: 06/15/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormal expression of TTK kinase has been associated with the initiation, progression, and therapeutic resistance of breast and other cancers, but its roles remain to be clarified. In this study, we examined the role of TTK in triple negative breast cancer (TNBC), and found that higher TTK expression correlated with mesenchymal and proliferative phenotypes in TNBC cells. Pharmacologic inhibition and genomic silencing of TTK not only reversed the epithelial-to-mesenchymal transition (EMT) in TNBC cells, but also increased the expression of KLF5, an effector of TGF-β signaling and inhibitor of EMT. In addition, TTK inhibition decreased the expression of EMT-associated micro-RNA miR-21 but increased the expression of miR-200 family members and suppressed TGF-β signaling. To test if upregulation of KLF5 plays a role in TTK-induced EMT, TTK and KLF5 were silenced simultaneously, which reversed the decreased EMT caused by loss of TTK. Consistently, the decrease in miR-21 expression and increase in miR-200 expression caused by TTK silencing were rescued by loss of KLF5. Altogether, this study highlights a novel role and signaling pathway for TTK in regulating EMT of TN breast cancer cells through TGF-β and KLF5 signaling, highlighting targetable signaling pathways for TTK inhibitors in aggressive breast cancer.
Collapse
|
20
|
Insights into Resistance Mechanisms of Inhibitors to Mps1 C604Y Mutation via a Comprehensive Molecular Modeling Study. Molecules 2018; 23:molecules23061488. [PMID: 29925769 PMCID: PMC6100145 DOI: 10.3390/molecules23061488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 11/17/2022] Open
Abstract
Mono-polar spindle 1 (Mps1/TTK) represents a protein kinase reported to be vital for cell division processes and is generally regarded as an attractive target for the treatment of hepatocellular carcinoma, breast carcinoma, and colon cancer. However, the C604Y mutation has been linked to acquired resistance. Recently, three potential small-molecule inhibitors of Mps1 (i.e., reversine, NMS-P715, and its derivative Cpd-5) were reported for the C604Y mutation that exhibit significant resistance to NMS-P715 and Cpd-5, but retain affinity for reversine. In this study, classical molecular dynamic (MD) simulations, accelerated MD (aMD) simulations, and umbrella sampling (US) simulations were performed to illustrate the resistance mechanisms of inhibitors to Mps1. The classical MD simulations combined with free energy calculations revealed that reversine features similar binding affinity characteristics to both Mps1WT and Mps1C604Y, but both NMS-P715 and Cpd-5 feature much higher binding affinities to Mps1WT than to Mps1C604Y. The major variations were shown to be controlled by electrostatic energy and the conformational change of A-loop-induced entropy increased. The large conformational changes of Mps1C604Y bound to NMS-P715 and Cpd-5 were also observed in aMD simulations. The US simulation results further suggest that reversine and Cpd-5 both exhibit similar dissociation processes from both Mps1WT and Mps1C604Y, but Cpd-5 and NMS-P715 were found to dissociate more easily from Mps1C604Y than from Mps1WT, thus a reduced residence time was responsible for the inhibitors resistance to the C604Y mutation. The physical principles provided by the present study may provide important clues for the discovery and rational design of novel inhibitors to combat the C604Y mutation of Mps1.
Collapse
|
21
|
Sen O, Saurin AT, Higgins JMG. The live cell DNA stain SiR-Hoechst induces DNA damage responses and impairs cell cycle progression. Sci Rep 2018; 8:7898. [PMID: 29785044 PMCID: PMC5962532 DOI: 10.1038/s41598-018-26307-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022] Open
Abstract
SiR-Hoechst (SiR-DNA) is a far-red fluorescent DNA probe being used widely for time-lapse imaging of living cells that is reported to be minimally toxic at concentrations as high as 10-25 µM. However, measuring nuclear import of Cyclin B1, inhibition of mitotic entry, and the induction of γH2AX foci in cultured human cells reveals that SiR-Hoechst induces DNA damage responses and G2 arrest at concentrations well below 1 µM. SiR-Hoechst is useful for live cell imaging, but it should be used with caution and at the lowest practicable concentration.
Collapse
Affiliation(s)
- Onur Sen
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Adrian T Saurin
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Jonathan M G Higgins
- Cell Division Biology Group, Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
22
|
Zaman GJR, de Roos JADM, Libouban MAA, Prinsen MBW, de Man J, Buijsman RC, Uitdehaag JCM. TTK Inhibitors as a Targeted Therapy for CTNNB1 ( β-catenin) Mutant Cancers. Mol Cancer Ther 2017; 16:2609-2617. [PMID: 28751540 DOI: 10.1158/1535-7163.mct-17-0342] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 11/16/2022]
Abstract
The spindle assembly checkpoint kinase TTK (Mps1) is a key regulator of chromosome segregation and is the subject of novel targeted therapy approaches by small-molecule inhibitors. Although the first TTK inhibitors have entered phase I dose escalating studies in combination with taxane chemotherapy, a patient stratification strategy is still missing. With the aim to identify a genomic biomarker to predict the response of tumor cells to TTK inhibitor therapy, we profiled a set of preclinical and clinical TTK inhibitors from different chemical series on a panel of 66 genetically characterized cell lines derived from different tumors (Oncolines). Cell lines harboring activating mutations in the CTNNB1 gene, encoding the Wnt pathway signaling regulator β-catenin, were on average up to five times more sensitive to TTK inhibitors than cell lines wild-type for CTNNB1 The association of CTNNB1-mutant status and increased cancer cell line sensitivity to TTK inhibition was confirmed with isogenic cell line pairs harboring either mutant or wild-type CTNNB1 Treatment of a xenograft model of a CTNNB1-mutant cell line with the TTK inhibitor NTRC 0066-0 resulted in complete inhibition of tumor growth. Mutations in CTNNB1 occur at relatively high frequency in endometrial cancer and hepatocellular carcinoma, which are known to express high TTK levels. We propose mutant CTNNB1 as a prognostic drug response biomarker, enabling the selection of patients most likely to respond to TTK inhibitor therapy in proof-of-concept clinical trials. Mol Cancer Ther; 16(11); 2609-17. ©2017 AACR.
Collapse
Affiliation(s)
- Guido J R Zaman
- Netherlands Translational Research Center B.V., Oss, the Netherlands.
| | | | | | | | - Jos de Man
- Netherlands Translational Research Center B.V., Oss, the Netherlands
| | - Rogier C Buijsman
- Netherlands Translational Research Center B.V., Oss, the Netherlands
| | | |
Collapse
|
23
|
Uitdehaag JCM, de Man J, Willemsen-Seegers N, Prinsen MBW, Libouban MAA, Sterrenburg JG, de Wit JJP, de Vetter JRF, de Roos JADM, Buijsman RC, Zaman GJR. Target Residence Time-Guided Optimization on TTK Kinase Results in Inhibitors with Potent Anti-Proliferative Activity. J Mol Biol 2017; 429:2211-2230. [PMID: 28539250 DOI: 10.1016/j.jmb.2017.05.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 05/10/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Abstract
The protein kinase threonine tyrosine kinase (TTK; also known as Mps1) is a critical component of the spindle assembly checkpoint and a promising drug target for the treatment of aggressive cancers, such as triple negative breast cancer. While the first TTK inhibitors have entered clinical trials, little is known about how the inhibition of TTK with small-molecule compounds affects cellular activity. We studied the selective TTK inhibitor NTRC 0066-0, which was developed in our own laboratory, together with 11 TTK inhibitors developed by other companies, including Mps-BAY2b, BAY 1161909, BAY 1217389 (Bayer), TC-Mps1-12 (Shionogi), and MPI-0479605 (Myrexis). Parallel testing shows that the cellular activity of these TTK inhibitors correlates with their binding affinity to TTK and, more strongly, with target residence time. TTK inhibitors are therefore an example where target residence time determines activity in in vitro cellular assays. X-ray structures and thermal stability experiments reveal that the most potent compounds induce a shift of the glycine-rich loop as a result of binding to the catalytic lysine at position 553. This "lysine trap" disrupts the catalytic machinery. Based on these insights, we developed TTK inhibitors, based on a (5,6-dihydro)pyrimido[4,5-e]indolizine scaffold, with longer target residence times, which further exploit an allosteric pocket surrounding Lys553. Their binding mode is new for kinase inhibitors and can be classified as hybrid Type I/Type III. These inhibitors have very potent anti-proliferative activity that rivals classic cytotoxic therapy. Our findings will open up new avenues for more applications for TTK inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Joost C M Uitdehaag
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | - Jos de Man
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | | | - Martine B W Prinsen
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | - Marion A A Libouban
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | - Jan Gerard Sterrenburg
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | - Joeri J P de Wit
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | - Judith R F de Vetter
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | - Jeroen A D M de Roos
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | - Rogier C Buijsman
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands
| | - Guido J R Zaman
- Netherlands Translational Research Center B.V., Kloosterstraat 9, 5349AB Oss, The Netherlands.
| |
Collapse
|