1
|
Ganekal P, Vastrad B, Vastrad C, Kotrashetti S. Identification of biomarkers, pathways, and potential therapeutic targets for heart failure using next-generation sequencing data and bioinformatics analysis. Ther Adv Cardiovasc Dis 2023; 17:17539447231168471. [PMID: 37092838 PMCID: PMC10134165 DOI: 10.1177/17539447231168471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Heart failure (HF) is the most common cardiovascular diseases and the leading cause of cardiovascular diseases related deaths. Increasing molecular targets have been discovered for HF prognosis and therapy. However, there is still an urgent need to identify novel biomarkers. Therefore, we evaluated biomarkers that might aid the diagnosis and treatment of HF. METHODS We searched next-generation sequencing (NGS) dataset (GSE161472) and identified differentially expressed genes (DEGs) by comparing 47 HF samples and 37 normal control samples using limma in R package. Gene ontology (GO) and pathway enrichment analyses of the DEGs were performed using the g: Profiler database. The protein-protein interaction (PPI) network was plotted with Human Integrated Protein-Protein Interaction rEference (HiPPIE) and visualized using Cytoscape. Module analysis of the PPI network was done using PEWCC1. Then, miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed by Cytoscape software. Finally, we performed receiver operating characteristic (ROC) curve analysis to predict the diagnostic effectiveness of the hub genes. RESULTS A total of 930 DEGs, 464 upregulated genes and 466 downregulated genes, were identified in HF. GO and REACTOME pathway enrichment results showed that DEGs mainly enriched in localization, small molecule metabolic process, SARS-CoV infections, and the citric acid tricarboxylic acid (TCA) cycle and respiratory electron transport. After combining the results of the PPI network miRNA-hub gene regulatory network and TF-hub gene regulatory network, 10 hub genes were selected, including heat shock protein 90 alpha family class A member 1 (HSP90AA1), arrestin beta 2 (ARRB2), myosin heavy chain 9 (MYH9), heat shock protein 90 alpha family class B member 1 (HSP90AB1), filamin A (FLNA), epidermal growth factor receptor (EGFR), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), cullin 4A (CUL4A), YEATS domain containing 4 (YEATS4), and lysine acetyltransferase 2B (KAT2B). CONCLUSIONS This discovery-driven study might be useful to provide a novel insight into the diagnosis and treatment of HF. However, more experiments are needed in the future to investigate the functional roles of these genes in HF.
Collapse
Affiliation(s)
- Prashanth Ganekal
- Department of General Medicine, Basaveshwara Medical College, Chitradurga, India
| | - Basavaraj Vastrad
- Department of Pharmaceutical Chemistry, K.L.E. College of Pharmacy, Gadag, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, #253, Bharthinagar, Dharwad 580001, India
| | | |
Collapse
|
2
|
Zanchettin AC, Barbosa LV, Dutra AA, Prá DMM, Pereira MRC, Stocco RB, Martins APC, Vaz de Paula CB, Nagashima S, de Noronha L, Machado-Souza C. Role of Genetic Polymorphism Present in Macrophage Activation Syndrome Pathway in Post Mortem Biopsies of Patients with COVID-19. Viruses 2022; 14:v14081699. [PMID: 36016321 PMCID: PMC9415703 DOI: 10.3390/v14081699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
COVID-19 is a viral disease associated with an intense inflammatory response. Macrophage Activation Syndrome (MAS), the complication present in secondary hemophagocytic lymphohistiocytosis (sHLH), shares many clinical aspects observed in COVID-19 patients, and investigating the cytolytic function of the responsible cells for the first line of the immune response is important. Formalin-fixed paraffin-embedded lung tissue samples obtained by post mortem necropsy were accessed for three groups (COVID-19, H1N1, and CONTROL). Polymorphisms in MAS cytolytic pathway (PRF1; STX11; STXBP2; UNC13D and GZMB) were selected and genotyping by TaqMan® assays (Thermo Fisher Scientific, MA, USA) using Real-Time PCR (Applied Biosystems, MA USA). Moreover, immunohistochemistry staining was performed with a monoclonal antibody against perforin, CD8+ and CD57+ proteins. Histopathological analysis showed high perforin tissue expression in the COVID-19 group; CD8+ was high in the H1N1 group and CD57+ in the CONTROL group. An association could be observed in two genes related to the cytolytic pathway (PRF1 rs885822 G/A and STXBP2 rs2303115 G/A). Furthermore, PRF1 rs350947132 was associated with increased immune tissue expression for perforin in the COVID-19 group. The genotype approach could help identify patients that are more susceptible, and for this reason, our results showed that perforin and SNPs in the PRF1 gene can be involved in this critical pathway in the context of COVID-19.
Collapse
Affiliation(s)
- Aline Cristina Zanchettin
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333, Curitiba 80230-020, Paraná, Brazil; (A.C.Z.); (L.V.B.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba 80250-200, Paraná, Brazil
| | - Leonardo Vinicius Barbosa
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333, Curitiba 80230-020, Paraná, Brazil; (A.C.Z.); (L.V.B.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba 80250-200, Paraná, Brazil
| | - Anderson Azevedo Dutra
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Daniele Margarita Marani Prá
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Marcos Roberto Curcio Pereira
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Rebecca Benicio Stocco
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Ana Paula Camargo Martins
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Caroline Busatta Vaz de Paula
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Seigo Nagashima
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Lucia de Noronha
- School of Medicine, Pontifícia Universidade Católica do Paraná, R. Imaculada Conceição, 1155, Curitiba 80215-901, Paraná, Brazil; (A.A.D.); (D.M.M.P.); (M.R.C.P.); (R.B.S.); (A.P.C.M.); (C.B.V.d.P.); (S.N.); (L.d.N.)
| | - Cleber Machado-Souza
- Faculdades Pequeno Príncipe, Av. Iguaçu, 333, Curitiba 80230-020, Paraná, Brazil; (A.C.Z.); (L.V.B.)
- Instituto de Pesquisa Pelé Pequeno Príncipe, Av. Silva Jardim, 1632, Curitiba 80250-200, Paraná, Brazil
- Correspondence:
| |
Collapse
|
3
|
Syntaxin binding protein 2 in sertoli cells regulates spermatogonial stem cell maintenance through directly interacting with connexin 43 in the testes of neonatal mice. Mol Biol Rep 2022; 49:7557-7566. [DOI: 10.1007/s11033-022-07564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022]
|
4
|
Yamada Y, Yasukochi Y, Kato K, Oguri M, Horibe H, Fujimaki T, Takeuchi I, Sakuma J. Identification of 26 novel loci that confer susceptibility to early-onset coronary artery disease in a Japanese population. Biomed Rep 2018; 9:383-404. [PMID: 30402224 PMCID: PMC6201041 DOI: 10.3892/br.2018.1152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/05/2018] [Indexed: 12/11/2022] Open
Abstract
Early-onset coronary artery disease (CAD) has a strong genetic component. Although genome-wide association studies have identified various genes and loci significantly associated with CAD mainly in European populations, genetic variants that contribute toward susceptibility to this condition in Japanese patients remain to be definitively identified. In the present study, exome-wide association studies (EWASs) were performed to identify genetic variants that confer susceptibility to early-onset CAD in Japanese. A total of 7,256 individuals aged ≤65 years were enrolled in the present study. EWAS were conducted on 1,482 patients with CAD and 5,774 healthy controls. Genotyping of single nucleotide polymorphisms (SNPs) was performed using Illumina Human Exome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The association between allele frequencies for 31,465 SNPs that passed quality control and CAD was examined using Fisher's exact test. To compensate for multiple comparisons of allele frequencies with CAD, a false discovery rate (FDR) of <0.05 was applied for statistically significant associations. The association between allele frequencies for 31,465 SNPs and CAD, as determined by Fisher's exact test, demonstrated that 170 SNPs were significantly (FDR <0.05) associated with CAD. Multivariable logistic regression analysis with adjustment for age, sex, and the prevalence of hypertension, diabetes mellitus and dyslipidemia revealed that 162 SNPs were significantly (P<0.05) associated with CAD. A stepwise forward selection procedure was performed to examine the effects of genotypes for the 162 SNPs on CAD. The 54 SNPs were significant (P<0.05) and independent [coefficient of determination (R2), 0.0008 to 0.0297] determinants of CAD. These SNPs together accounted for 15.5% of the cause of CAD. Following examination of results from previous genome-wide association studies and linkage disequilibrium of the identified SNPs, 21 genes (RNF2, YEATS2, USP45, ITGB8, TNS3, FAM170B-AS1, PRKG1, BTRC, MKI67, STIM1, OR52E4, KIAA1551, MON2, PLUT, LINC00354, TRPM1, ADAT1, KRT27, LIPE, GFY and EIF3L) and five chromosomal regions (2p13, 4q31.2, 5q12, 13q34 and 20q13.2) that were significantly associated with CAD were newly identified in the present study. Gene ontology analysis demonstrated that various biological functions were predicted in the 18 genes identified in the present study. The network analysis revealed that the 18 genes had potential direct or indirect interactions with the 30 genes previously revealed to be associated with CAD or with the 228 genes identified in previous genome-wide association studies. The present study newly identified 26 loci that confer susceptibility to CAD. Determination of genotypes for the SNPs at these loci may prove informative for assessment of the genetic risk for CAD in Japanese patients.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514-8507, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514-8507, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514-8507, Japan.,Department of Internal Medicine, Meitoh Hospital, Nagoya, Aichi 465-0025, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514-8507, Japan.,Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Aichi 486-8510, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Gifu 507-8522, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Northern Mie Medical Center Inabe General Hospital, Inabe, Mie 511-0428, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.,Department of Computer Science, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan.,Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
5
|
Yamada Y, Kato K, Oguri M, Horibe H, Fujimaki T, Yasukochi Y, Takeuchi I, Sakuma J. Identification of 13 novel susceptibility loci for early-onset myocardial infarction, hypertension, or chronic kidney disease. Int J Mol Med 2018; 42:2415-2436. [PMID: 30226566 PMCID: PMC6192728 DOI: 10.3892/ijmm.2018.3852] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/13/2018] [Indexed: 12/28/2022] Open
Abstract
Early-onset cardiovascular and renal diseases have a strong genetic component. In the present study, exome-wide association studies (EWASs) were performed to identify genetic variants that confer susceptibility to early-onset myocardial infarction (MI), hypertension, or chronic kidney disease (CKD) in Japanese individuals. A total of 8,093 individuals aged ≤65 years was enrolled in the study. The EWASs for MI, hypertension, and CKD were performed in 6,926 subjects (1,152 cases, 5,774 controls), 8,080 subjects (3,444 cases, 4,636 controls), and 2,556 subjects (1,051 cases, 1,505 controls), respectively. Genotyping of single nucleotide polymorphisms (SNPs) was performed with Illumina Human Exome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The associations of allele frequencies for 31,245, 31,276, or 31,514 SNPs that passed quality control to MI, hypertension, and CKD, respectively, was examined with Fisher's exact test. Bonferroni's correction for statistical significance of association was applied to compensate for multiple comparisons of genotypes with MI, hypertension, or CKD. The EWASs of allele frequencies revealed that 25, 11, and 11 SNPs were significantly associated with MI (P<1.60×10−6), hypertension (P<1.60×10−6), or CKD (P<1.59×10−6), respectively. Multivariable logistic regression analysis with adjustment for covariates showed that all 25, 11, and 11 SNPs were significantly associated with MI (P<0.0005), hypertension (P<0.0011), or CKD (P<0.0011), respectively. On examination of the results from previous genome-wide association studies and linkage disequilibrium of the identified SNPs, 11 loci (TMOD4, COL6A3, ADGRL3-CXCL8-MARCH1, OR52E4, TCHP-GIT2, CCDC63, 12q24.1, OAS3, PLCB2-VPS33B, GOSR2, ZNF77), six loci (MOB3C-TMOD4, COL6A3, COL6A5, CXCL8-MARCH1, NFKBIL1-6p21.3-NCR3, PLCB2-VPS33B), and seven loci (MOB3C-TMOD4, COL6A3, COL6A5, ADGRL3-CXCL8-MARCH1, MUC17, PLCB2-VPS33B, ZNF77) were identified as novel loci significantly associated with MI, hypertension, and CKD, respectively. Furthermore, six genes (TMOD4, COL6A3, CXCL8, MARCH1, PLCB2, VPS33B) were significantly associated with MI, hypertension and CKD; two genes (ADGRL3, ZNF77) with MI and CKD; and two genes (COL6A5, MOB3C) with hypertension and CKD. Therefore, 13 novel loci (MOB3C-TMOD4, COL6A3, ADGRL3-CXCL8-MARCH1, OR52E4, TCHP- GIT2, CCDC63, 12q24.1, OAS3, PLCB2-VPS33B, ZNF77, COL6A5, NFKBIL1-NCR3, MUC17) were identified that confer susceptibility to early-onset MI, hypertension, or CKD. The determination of genotypes for the SNPs at these loci may provide informative for assessment of the genetic risk for MI, hypertension, or CKD.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Gifu 507‑8522, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Northern Mie Medical Center Inabe General Hospital, Inabe, Mie 511‑0428, Japan
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Mie 514‑8507, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332‑0012, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332‑0012, Japan
| |
Collapse
|
6
|
Identification of rs7350481 at chromosome 11q23.3 as a novel susceptibility locus for metabolic syndrome in Japanese individuals by an exome-wide association study. Oncotarget 2018; 8:39296-39308. [PMID: 28445147 PMCID: PMC5503614 DOI: 10.18632/oncotarget.16945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/14/2017] [Indexed: 12/12/2022] Open
Abstract
We have performed exome-wide association studies to identify genetic variants that influence body mass index or confer susceptibility to obesity or metabolic syndrome in Japanese. The exome-wide association study for body mass index included 12,890 subjects, and those for obesity and metabolic syndrome included 12,968 subjects (3954 individuals with obesity, 9014 controls) and 6817 subjects (3998 individuals with MetS, 2819 controls), respectively. Exome-wide association studies were performed with Illumina HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. The relation of genotypes of single nucleotide polymorphisms to body mass index was examined by linear regression analysis, and that of allele frequencies of single nucleotide polymorphisms to obesity or metabolic syndrome was evaluated with Fisher's exact test. The exome-wide association studies identified six, 11, and 40 single nucleotide polymorphisms as being significantly associated with body mass index, obesity (P <1.21 × 10−6), or metabolic syndrome (P <1.20 × 10−6), respectively. Subsequent multivariable logistic regression analysis with adjustment for age and sex revealed that three and five single nucleotide polymorphisms were related (P < 0.05) to obesity or metabolic syndrome, respectively, with one of these latter polymorphisms—rs7350481 (C/T) at chromosome 11q23.3—also being significantly (P < 3.13 × 10−4) associated with metabolic syndrome. The polymorphism rs7350481 may thus be a novel susceptibility locus for metabolic syndrome in Japanese. In addition, single nucleotide polymorphisms in three genes (CROT, TSC1, RIN3) and at four loci (ANKK1, ZNF804B, CSRNP3, 17p11.2) were implicated as candidate determinants of obesity and metabolic syndrome, respectively.
Collapse
|
7
|
Yamada Y, Sakuma J, Takeuchi I, Yasukochi Y, Kato K, Oguri M, Fujimaki T, Horibe H, Muramatsu M, Sawabe M, Fujiwara Y, Taniguchi Y, Obuchi S, Kawai H, Shinkai S, Mori S, Arai T, Tanaka M. Identification of polymorphisms in 12q24.1, ACAD10, and BRAP as novel genetic determinants of blood pressure in Japanese by exome-wide association studies. Oncotarget 2018; 8:43068-43079. [PMID: 28562329 PMCID: PMC5522128 DOI: 10.18632/oncotarget.17474] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 04/05/2017] [Indexed: 12/29/2022] Open
Abstract
We performed exome-wide association studies to identify genetic variants that influence systolic or diastolic blood pressure or confer susceptibility to hypertension in Japanese. The exome-wide association studies were performed with the use of Illumina HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays and with 14,678 subjects, including 8215 individuals with hypertension and 6463 controls. The relation of genotypes of 41,843 single nucleotide polymorphisms to systolic or diastolic blood pressure was examined by linear regression analysis. After Bonferroni's correction, 44 and eight polymorphisms were significantly (P < 1.19 × 10−6) associated with systolic or diastolic blood pressure, respectively, with six polymorphisms (rs12229654, rs671, rs11066015, rs2074356, rs3782886, rs11066280) being associated with both systolic and diastolic blood pressure. Examination of the relation of allele frequencies to hypertension with Fisher's exact test revealed that 100 of the 41,843 single nucleotide polymorphisms were significantly (P < 1.19 × 10−6) associated with hypertension. Subsequent multivariable logistic regression analysis with adjustment for age and sex showed that five polymorphisms (rs150854849, rs202069030, rs139012426, rs12229654, rs76974938) were significantly (P < 1.25 × 10−4) associated with hypertension. The polymorphism rs12229654 was thus associated with both systolic and diastolic blood pressure and with hypertension. Six polymorphisms (rs12229654 at 12q24.1, rs671 of ALDH2, rs11066015 of ACAD10, rs2074356 and rs11066280 of HECTD4, and rs3782886 of BRAP) were found to be associated with both systolic and diastolic blood pressure, with those at 12q24.1 or in ACAD10 or BRAP being novel determinants of blood pressure in Japanese.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.,Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Internal Medicine, Meitoh Hospital, Nagoya, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motoji Sawabe
- Section of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yu Taniguchi
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shuichi Obuchi
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hisashi Kawai
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shoji Shinkai
- Research Team for Social Participation and Health Promotion, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Seijiro Mori
- Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| |
Collapse
|
8
|
Yamada Y, Sakuma J, Takeuchi I, Yasukochi Y, Kato K, Oguri M, Fujimaki T, Horibe H, Muramatsu M, Sawabe M, Fujiwara Y, Taniguchi Y, Obuchi S, Kawai H, Shinkai S, Mori S, Arai T, Tanaka M. Identification of five genetic variants as novel determinants of type 2 diabetes mellitus in Japanese by exome-wide association studies. Oncotarget 2017; 8:80492-80505. [PMID: 29113320 PMCID: PMC5655215 DOI: 10.18632/oncotarget.19287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 12/20/2022] Open
Abstract
We performed exome-wide association studies to identify single nucleotide polymorphisms that either influence fasting plasma glucose level or blood hemoglobin A1c content or confer susceptibility to type 2 diabetes mellitus in Japanese. Exome-wide association studies were performed with the use of Illumina Human Exome-12 DNA Analysis or Infinium Exome-24 BeadChip arrays and with 11,729 or 8635 subjects for fasting plasma glucose level or blood hemoglobin A1c content, respectively, or with 14,023 subjects for type 2 diabetes mellitus (3573 cases, 10,450 controls). The relation of genotypes of 41,265 polymorphisms to fasting plasma glucose level or blood hemoglobin A1c content was examined by linear regression analysis. After Bonferroni's correction, 41 and 17 polymorphisms were significantly (P < 1.21 × 10-6) associated with fasting plasma glucose level or blood hemoglobin A1c content, respectively, with two polymorphisms (rs139421991, rs189305583) being associated with both. Examination of the relation of allele frequencies to type 2 diabetes mellitus with Fisher's exact test revealed that 87 polymorphisms were significantly (P < 1.21 × 10-6) associated with type 2 diabetes mellitus. Subsequent multivariable logistic regression analysis with adjustment for age and sex showed that four polymorphisms (rs138313632, rs76974938, rs139012426, rs147317864) were significantly (P < 1.44 × 10-4) associated with type 2 diabetes mellitus, with rs138313632 and rs139012426 also being associated with fasting plasma glucose and rs76974938 with blood hemoglobin A1c. Five polymorphisms-rs139421991 of CAT, rs189305583 of PDCL2, rs138313632 of RUFY1, rs139012426 of LOC100505549, and rs76974938 of C21orf59-may be novel determinants of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.,Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Internal Medicine, Meitoh Hospital, Nagoya, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motoji Sawabe
- Section of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yu Taniguchi
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shuichi Obuchi
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hisashi Kawai
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shoji Shinkai
- Research Team for Social Participation and Health Promotion, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Seijiro Mori
- Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| |
Collapse
|
9
|
Yamada Y, Sakuma J, Takeuchi I, Yasukochi Y, Kato K, Oguri M, Fujimaki T, Horibe H, Muramatsu M, Sawabe M, Fujiwara Y, Taniguchi Y, Obuchi S, Kawai H, Shinkai S, Mori S, Arai T, Tanaka M. Identification of C21orf59 and ATG2A as novel determinants of renal function-related traits in Japanese by exome-wide association studies. Oncotarget 2017; 8:45259-45273. [PMID: 28410202 PMCID: PMC5542184 DOI: 10.18632/oncotarget.16696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
We have performed exome-wide association studies to identify genetic variants that influence renal function-related traits or confer susceptibility to chronic kidney disease or hyperuricemia in Japanese. Exome-wide association studies for estimated glomerular filtration rate and the serum concentration of creatinine were performed with 12,565 individuals, that for the serum concentration of uric acid with 9934 individuals, and those for chronic kidney disease or hyperuricemia with 5161 individuals (3270 cases, 1891 controls) or 11,686 individuals (2045 cases, 9641 controls), respectively. The relation of genotypes of single nucleotide polymorphisms to estimated glomerular filtration rate or the serum concentrations of creatinine or uric acid was examined by linear regression analysis, and that of allele frequencies of single nucleotide polymorphisms to chronic kidney disease or hyperuricemia was examined with Fisher's exact test. The exome-wide association studies revealed that 25, seven, and six single nucleotide polymorphisms were significantly (P <1.21 × 10-6) associated with estimated glomerular filtration rate or the serum concentrations of creatinine or uric acid, respectively, and that 49 and 35 polymorphisms were significantly associated with chronic kidney disease or hyperuricemia, respectively. Subsequent multivariable logistic regression analysis with adjustment for covariates revealed that four and three single nucleotide polymorphisms were related (P < 0.05) to chronic kidney disease or hyperuricemia, respectively. Among polymorphisms identified in the present study, rs76974938 [C/T (D67N)] of C21orf59 and rs188780113 [G/A (R478C)] of ATG2A may be novel determinants of estimated glomerular filtration rate and chronic kidney disease or of the serum concentration of uric acid, respectively.
Collapse
Affiliation(s)
- Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
- Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
- Department of Internal Medicine, Meitoh Hospital, Nagoya, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan
- Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Motoji Sawabe
- Section of Molecular Pathology, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yoshinori Fujiwara
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yu Taniguchi
- Research Team for Social Participation and Community Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shuichi Obuchi
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Hisashi Kawai
- Research Team for Promoting Support System for Home Care, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Shoji Shinkai
- Research Team for Social Participation and Health Promotion, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Seijiro Mori
- Center for Promotion of Clinical Investigation, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| | - Masashi Tanaka
- Department of Clinical Laboratory, Tokyo Metropolitan Geriatric Hospital, Tokyo, Japan
| |
Collapse
|
10
|
Identification of eight genetic variants as novel determinants of dyslipidemia in Japanese by exome-wide association studies. Oncotarget 2017; 8:38950-38961. [PMID: 28473662 PMCID: PMC5503585 DOI: 10.18632/oncotarget.17159] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/04/2017] [Indexed: 11/29/2022] Open
Abstract
We have performed exome-wide association studies to identify single nucleotide polymorphisms that influence serum concentrations of triglycerides, high density lipoprotein (HDL)–cholesterol, or low density lipoprotein (LDL)–cholesterol or confer susceptibility to hypertriglyceridemia, hypo–HDL-cholesterolemia, or hyper–LDL-cholesterolemia in Japanese. Exome-wide association studies for serum triglycerides (13,414 subjects), HDL-cholesterol (14,119 subjects), LDL-cholesterol (13,577 subjects), hypertriglyceridemia (4742 cases, 8672 controls), hypo–HDL-cholesterolemia (2646 cases, 11,473 controls), and hyper–LDL-cholesterolemia (4489 cases, 9088 controls) were performed with HumanExome-12 DNA Analysis BeadChip or Infinium Exome-24 BeadChip arrays. Twenty-four, 69, or 32 loci were significantly (P < 1.21 × 10−6) associated with serum triglycerides, HDL-cholesterol, or LDL-cholesterol, respectively, with 13, 16, or 9 of these loci having previously been associated with triglyceride-, HDL-cholesterol–, or LDL-cholesterol–related traits, respectively. Two single nucleotide polymorphisms (rs10790162, rs7350481) were significantly related to both serum triglycerides and hypertriglyceridemia; three polymorphisms (rs146515657, rs147317864, rs12229654) were significantly related to both serum HDL-cholesterol and hypo–HDL-cholesterolemia; and six polymorphisms (rs2853969, rs7771335, rs2071653, rs2269704, rs2269703, rs2269702) were significantly related to both serum LDL-cholesterol and hyper–LDL-cholesterolemia. Among polymorphisms identified in the present study, two polymorphisms (rs146515657, rs147317864) may be novel determinants of hypo–HDL-cholesterolemia, and six polymorphisms (rs2853969, rs7771335, rs2071653, rs2269704, rs2269703, rs2269702) may be new determinants of hyper–LDL-cholesterolemia. In addition, 12, 61, 23, or 3 polymorphisms may be new determinants of the serum triglyceride, HDL-cholesterol, or LDL-cholesterol concentrations or of hyper–LDL-cholesterolemia, respectively.
Collapse
|