1
|
Tan J, Li C, Ren L, Zhu X, Hua F, Fu Y. miR-451a suppresses papillary thyroid cancer cell proliferation and invasion and facilitates apoptosis through targeting DCBLD2 and AKT1. Mol Cell Probes 2022; 66:101863. [PMID: 36252912 DOI: 10.1016/j.mcp.2022.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/18/2022] [Accepted: 09/18/2022] [Indexed: 11/07/2022]
Abstract
Papillary thyroid cancer (PTC) is a common malignancy. MicroRNAs (miRNAs) may act as oncogenes or tumor suppressor genes. However, the role of miR-451a in PTC is not fully understood. Hence, the objective of the study was to research the effect and mechanism of miR-451a in PTC. Differentially expressed miRNAs between GSE113629 and GSE103996 databases were assessed by Venn diagram. miR-451a and its downstream target genes were assessed by RT-PCR and Western blot. The proliferation, invasion, and apoptosis were determined by CCK-8, EdU, transwell, and flow cytometry assays. Dual-luciferase reporter assay were used to evaluated the target of miR-451a. Xenografted tumors was used to explore the function of miR-451a in vivo. Pathological changes and related protein expression were measured by HE staining and immunohistochemistry. MiR-451a was downregulated in PTC tissues and blood, and low expression of miR-451a was related to short overall survival, serious lymph node metastasis and high TNM grade in PTC patients. Moreover, increase of miR-451a restrained the proliferation and invasion and accelerated the apoptosis. Furthermore, miR-451a repressed VEGF signaling pathway. Importantly, miR-451a was demonstrated to target DCBLD2 and AKT1. Overexpression of DCBLD2 and AKT1 could restore the effect of miR-451a on PTC cells. In addition, miR-451a reduced the growth of xenografted tumors in vivo. The data suggested that miR-451a attenuated the proliferation, invasion and promoted apoptosis in PTC cells via inhibiting DCBLD2 and AKT1.
Collapse
Affiliation(s)
- Jiuting Tan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 21300, China; Department of Endocrinology and Metabolism, Xinghua People's Hospital, Xinghua, Jiangsu, 225700, China
| | - Chunpu Li
- Department of Endocrinology and Metabolism, Xinghua People's Hospital, Xinghua, Jiangsu, 225700, China
| | - Lijue Ren
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 21300, China
| | - Xiaohui Zhu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 21300, China
| | - Fei Hua
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 21300, China.
| | - Yuming Fu
- Department of Endocrinology and Metabolism, Xinghua People's Hospital, Xinghua, Jiangsu, 225700, China
| |
Collapse
|
2
|
Irfan M, Javed Z, Khan K, Khan N, Docea AO, Calina D, Sharifi-Rad J, Cho WC. Apoptosis evasion via long non-coding RNAs in colorectal cancer. Cancer Cell Int 2022; 22:280. [PMID: 36076273 PMCID: PMC9461221 DOI: 10.1186/s12935-022-02695-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/31/2022] [Indexed: 01/03/2023] Open
Abstract
Long non-coding RNA (LncRNA) is a novel and diverse class of regulatory transcripts that are frequently dysregulated in numerous tumor types. LncRNAs are involved in a complicated molecular network, regulating gene expression, and modulating diverse cellular activities in different cancers including colorectal cancer (CRC). Evidence indicates that lncRNAs can be used as a potential biomarker for the prognosis and diagnosis of CRC as they are aberrantly expressed in CRC cells. The high expression or silencing of lncRNAs is associated with cell proliferation, invasion, metastasis, chemoresistance and apoptosis in CRC. LncRNAs exert both pro-apoptotic and anti-apoptotic functions in CRC. The expression of some oncogene lncRNAs is upregulated which leads to the inhibition of apoptotic pathways, similarly, the tumor suppressor lncRNAs are downregulated in CRC. In this review, we describe the function and mechanisms of lncRNAs to regulate the expression of genes that are involved directly or indirectly in controlling cellular apoptosis in CRC. Furthermore, we also discussed the different apoptotic pathways in normal cells and the mechanisms by which CRC evade apoptosis.
Collapse
Affiliation(s)
- Muhammad Irfan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Lahore, Pakistan
| | - Khushbukhat Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Naila Khan
- Atta-Ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong.
| |
Collapse
|
3
|
Skryabin GO, Vinokurova SV, Galetsky SA, Elkin DS, Senkovenko AM, Denisova DA, Komelkov AV, Stilidi IS, Peregorodiev IN, Malikhova OA, Imaraliev OT, Enikeev AD, Tchevkina EM. Isolation and Characterization of Extracellular Vesicles from Gastric Juice. Cancers (Basel) 2022; 14:cancers14143314. [PMID: 35884376 PMCID: PMC9318556 DOI: 10.3390/cancers14143314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/24/2022] [Accepted: 07/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Gastric cancer (GC) is one of the most common cancers and the fifth leading cause of cancer-related deaths worldwide. The steadily growing interest in secreted extracellular vesicles (EVs) is related to their ability to carry a variety of biologically active molecules, which can be used as markers for liquid noninvasive diagnosis of malignant neoplasms. For these applications, blood is the most widely used source of EVs. However, this body fluid contains an extremely heterogeneous mixture of EVs originating from different types of normal cells and tissues. The aim of this study was to assess the possibility of using gastric juice (GJ) as an alternative source of EVs since it is expected to be enriched in vesicles of tumor origin. We validated the presence of EVs in GJ using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western-blot analysis of exosomal markers, showed for the first time the feasibility of their isolation by ultracentrifugation and demonstrated the prospect of using GJ-derived EVs as a source of GC miRNA markers. Abstract EVs are involved in local and distant intercellular communication and play a vital role in cancer development. Since EVs have been found in almost all body fluids, there are currently active attempts for their application in liquid diagnostics. Blood is the most commonly used source of EVs for the screening of cancer markers, although the percentage of tumor-derived EVs in the blood is extremely low. In contrast, GJ, as a local biofluid, is expected to be enriched with GC-associated EVs. However, EVs from GJ have never been applied for the screening and are underinvestigated overall. Here we show that EVs can be isolated from GJ by ultracentrifugation. TEM analysis showed high heterogeneity of GJ-derived EVs, including those with exosome-like size and morphology. In addition to morphological diversity, EVs from individual GJ samples differed in the composition of exosomal markers. We also show the presence of stomatin within GJ-derived EVs for the first time. The first conducted comparison of miRNA content in EVs from GC patients and healthy donors performed using a pilot sampling revealed the significant differences in several miRNAs (-135b-3p, -199a-3p, -451a). These results demonstrate the feasibility of the application of GJ-derived EVs for screening for miRNA GC markers.
Collapse
Affiliation(s)
- Gleb O. Skryabin
- Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115478 Moscow, Russia; (G.O.S.); (S.V.V.); (S.A.G.); (D.S.E.); (D.A.D.); (A.D.E.)
| | - Svetlana V. Vinokurova
- Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115478 Moscow, Russia; (G.O.S.); (S.V.V.); (S.A.G.); (D.S.E.); (D.A.D.); (A.D.E.)
| | - Sergey A. Galetsky
- Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115478 Moscow, Russia; (G.O.S.); (S.V.V.); (S.A.G.); (D.S.E.); (D.A.D.); (A.D.E.)
| | - Danila S. Elkin
- Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115478 Moscow, Russia; (G.O.S.); (S.V.V.); (S.A.G.); (D.S.E.); (D.A.D.); (A.D.E.)
| | - Alexey M. Senkovenko
- Department of Bioengineering, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory, 1/12, 111234 Moscow, Russia;
| | - Darya A. Denisova
- Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115478 Moscow, Russia; (G.O.S.); (S.V.V.); (S.A.G.); (D.S.E.); (D.A.D.); (A.D.E.)
| | - Andrey V. Komelkov
- Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115478 Moscow, Russia; (G.O.S.); (S.V.V.); (S.A.G.); (D.S.E.); (D.A.D.); (A.D.E.)
- Correspondence: (A.V.K.); (E.M.T.)
| | - Ivan S. Stilidi
- Research Institute of Clinical Oncology, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115478 Moscow, Russia; (I.S.S.); (I.N.P.); (O.A.M.); (O.T.I.)
| | - Ivan N. Peregorodiev
- Research Institute of Clinical Oncology, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115478 Moscow, Russia; (I.S.S.); (I.N.P.); (O.A.M.); (O.T.I.)
| | - Olga A. Malikhova
- Research Institute of Clinical Oncology, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115478 Moscow, Russia; (I.S.S.); (I.N.P.); (O.A.M.); (O.T.I.)
| | - Oiatiddin T. Imaraliev
- Research Institute of Clinical Oncology, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115478 Moscow, Russia; (I.S.S.); (I.N.P.); (O.A.M.); (O.T.I.)
| | - Adel D. Enikeev
- Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115478 Moscow, Russia; (G.O.S.); (S.V.V.); (S.A.G.); (D.S.E.); (D.A.D.); (A.D.E.)
| | - Elena M. Tchevkina
- Institute of Carcinogenesis, N. N. Blokhin National Medical Research Center of Oncology, Kashirskoye Sh. 24, 115478 Moscow, Russia; (G.O.S.); (S.V.V.); (S.A.G.); (D.S.E.); (D.A.D.); (A.D.E.)
- Correspondence: (A.V.K.); (E.M.T.)
| |
Collapse
|
4
|
Zhao Z, Shen Y, Zhao J, Chen X. microRNA expression profile of fish erythrocytes. AQUACULTURE AND FISHERIES 2021. [DOI: 10.1016/j.aaf.2020.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Jang HJ, Lee SI. MicroRNA expression profiling during the suckling-to-weaning transition in pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:854-863. [PMID: 34447961 PMCID: PMC8367414 DOI: 10.5187/jast.2021.e69] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/21/2021] [Accepted: 05/01/2021] [Indexed: 11/20/2022]
Abstract
Weaning induces physiological changes in intestinal development that affect
pigs’ growth performance and susceptibility to disease. As a
posttranscriptional regulator, microRNAs (miRNAs) regulate cellular homeostasis
during intestinal development. We performed small RNA expression profiling in
the small intestine of piglets before weaning (BW), 1 week after weaning (1W),
and 2 weeks after weaning (2W) to identify weaning-associated differentially
expressed miRNAs. We identified 38 differentially expressed miRNAs with varying
expression levels among BW, 1W, and 2W. Then, we classified expression patterns
of the identified miRNAs into four types. ssc-miR-196a and ssc-miR-451 represent
pattern 1, which had an increased expression at 1W and a decreased expression at
2W. ssc-miR-499-5p represents pattern 2, which had an increased expression at 1W
and a stable expression at 2W. ssc-miR-7135-3p and ssc-miR-144 represent pattern
3, which had a stable expression at 1W and a decreased expression at 2W. Eleven
miRNAs (ssc-miR-542-3p, ssc-miR-214, ssc-miR-758, ssc-miR-4331, ssc-miR-105-1,
ssc-miR-1285, ssc-miR-10a-5p, ssc-miR-4332, ssc-miR-503, ssc-miR-6782-3p, and
ssc-miR-424-5p) represent pattern 4, which had a decreased expression at 1W and
a stable expression at 2W. Moreover, we identified 133 candidate targets for
miR-196a using a target prediction database. Gene ontology and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that the
target genes were associated with 19 biological processes, 4 cellular
components, 8 molecular functions, and 7 KEGG pathways, including
anterior/posterior pattern specification as well as the cancer, PI3K–Akt,
MAPK, GnRH, and neurotrophin signaling pathways. These findings suggest that
miRNAs regulate the development of the small intestine during the weaning
process in piglets by anterior/posterior pattern specification as well as the
cancer, PI3K–Akt, MAPK, GnRH, and neurotrophin signaling pathways.
Collapse
Affiliation(s)
- Hyun Jun Jang
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
| | - Sang In Lee
- Department of Animal Biotechnology, Kyungpook National University, Sangju 37224, Korea
| |
Collapse
|
6
|
Ozyerli-Goknar E, Bagci-Onder T. Epigenetic Deregulation of Apoptosis in Cancers. Cancers (Basel) 2021; 13:3210. [PMID: 34199020 PMCID: PMC8267644 DOI: 10.3390/cancers13133210] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer cells possess the ability to evade apoptosis. Genetic alterations through mutations in key genes of the apoptotic signaling pathway represent a major adaptive mechanism of apoptosis evasion. In parallel, epigenetic changes via aberrant modifications of DNA and histones to regulate the expression of pro- and antiapoptotic signal mediators represent a major complementary mechanism in apoptosis regulation and therapy response. Most epigenetic changes are governed by the activity of chromatin modifying enzymes that add, remove, or recognize different marks on histones and DNA. Here, we discuss how apoptosis signaling components are deregulated at epigenetic levels, particularly focusing on the roles of chromatin-modifying enzymes in this process. We also review the advances in cancer therapies with epigenetic drugs such as DNMT, HMT, HDAC, and BET inhibitors, as well as their effects on apoptosis modulation in cancer cells. Rewiring the epigenome by drug interventions can provide therapeutic advantage for various cancers by reverting therapy resistance and leading cancer cells to undergo apoptotic cell death.
Collapse
Affiliation(s)
- Ezgi Ozyerli-Goknar
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey;
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| | - Tugba Bagci-Onder
- Brain Cancer Research and Therapy Laboratory, Koç University School of Medicine, Istanbul 34450, Turkey;
- Research Center for Translational Medicine, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
7
|
Fan B, Jin X, Ding Q, Cao C, Shi Y, Zhu H, Zhou W. Expression of miR-451a in Prostate Cancer and Its Effect on Prognosis. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:772-779. [PMID: 34183927 PMCID: PMC8219609 DOI: 10.18502/ijph.v50i4.6002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: To investigate the expression of miR-451a in prostate cancer tissues and its effect on prognosis. Methods: Each of 78 specimens of prostate cancer tissues and corresponding adjacent normal tissues were collected from patients in Changshu Hospital Affiliated to Soochow University, Changshu, China from Apr 2014 to Jun 2015. Real-time quantitative RT-PCR (qRT-PCR) was used to detect the expression of miR-451a in tissues. The relationship between the expression of miR-451a and clinical pathological parameters was analyzed. The median expression of miR-451a in the experimental group was used to distinguish the high and low expressions of miR-451a in the experimental group. Kaplan-Meier was used to analyze the survival of miR-451a high and low expression groups. Results: The expressions of miR-451a in the patient’s tissues and serum were decreased, and the correlation analysis found that they were positively correlated. ROC curve analysis showed that miR-451a had a high clinical value in the diagnosis of prostate cancer and the area under the curve was 0.921. The incidence of stage III+IV lymph node metastasis, Gleason score of >7 points and a serum Prostate-specific antigen (PSA) level of >20 ng/ml in patients of the low expression group increased significantly. The 5-yr survival rate of patients with low expression was significantly lower than that of those with high expression (P=0.005). MiR-451a was an independent factor affecting the prognosis of patients. Conclusion: miR-451a is lowly expressed in prostate cancer, and patients with low expression have a poor prognosis.
Collapse
Affiliation(s)
- Bo Fan
- Department of Urology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, P.R. China
| | - Xiaohua Jin
- Department of Urology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, P.R. China
| | - Qi Ding
- Department of Urology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, P.R. China
| | - Cheng Cao
- Department of Urology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, P.R. China
| | - Yi Shi
- Department of Urology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, P.R. China
| | - Hailiang Zhu
- Department of Urology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, P.R. China
| | - Wenjun Zhou
- Department of Urology, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Changshu 215500, P.R. China
| |
Collapse
|
8
|
Zhang MF, Fei ZW, Huang L. Micro-RNA-451 Reduces Proliferation of B-CPAP Human Papillary Thyroid Cancer Cells by Downregulating Expression of Activating Transcription Factor 2. Med Sci Monit 2021; 27:e929774. [PMID: 33724979 PMCID: PMC7980498 DOI: 10.12659/msm.929774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background MicroRNAs (miRNAs) are novel biomarkers that are important in tumorigenesis and cancer treatment resistance. miR-451 is expressed in human papillary thyroid carcinoma (PTC) tissues and is associated with tumor progression. This study investigated the molecular mechanism associated with the effects of miR-451 on B-CPAP human PTC cells in vitro. Material/Methods Binding of miRNAs to the 3′ untranslated region (3′UTR) of messenger RNA (mRNA) was determined with a luciferase reporter assay. miRNAs and plasmids were transfected into human PTC B-CPAP cells with Lipofectamine 2000 Transfection Reagent. Cell viability was tested with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. The levels of miRNAs and mRNA were determined with quantitative polymerase chain reaction and protein levels were analyzed with immunoblotting. Results miR-451 bound to wild-type but not mutant 3′-UTR of activating transcription factor 2 (ATF2). MiR-451 mimics inhibited the growth of B-CPAP cells and reduced mRNA and protein levels in ATF2, whereas miR-451 inhibitors promoted the growth of B-CPAP cells and increased mRNA and protein levels in ATF2. Conclusions miR-451 directly bound to the 3′UTR of ATF2, decreased mRNA and protein levels in ATF2, and inhibited growth of B-CPAP cells. Our findings suggest that miR-451 may be a potential therapeutic target for PTC.
Collapse
Affiliation(s)
- Mei-Feng Zhang
- Department of General Surgery, Chongming Branch of Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China (mainland)
| | - Zhe-Wei Fei
- Department of General Surgery, Chongming Branch of Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China (mainland)
| | - Lei Huang
- Department of General Surgery, Chongming Branch of Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
9
|
Wang H, Cui W, Qiao L, Hu G. Overexpression of miR-451a in sepsis and septic shock patients is involved in the regulation of sepsis-associated cardiac dysfunction and inflammation. Genet Mol Biol 2020; 43:e20200009. [PMID: 33211058 PMCID: PMC7678258 DOI: 10.1590/1678-4685-gmb-2020-0009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
The purpose of this study was to investigate the expression and clinical value of microRNA-451a
(miR-451a) in septic patients and analyze its effect on sepsis-associated cardiac dysfunction and
inflammation response. A rat model of sepsis was constructed by cecal ligation and puncture. The
expression of miR-451a was measured by quantitative real-time PCR. Receiver operating characteristic
(ROC) analysis was used to assess the diagnostic value of serum miR-451a. The cardiac function and
inflammatory responses in septic rats were measured to explore the functional role of miR-451a.
Serum expression of miR-451a was increased in septic patients compared with healthy controls, and
had the ability to distinguish septic patients from healthy volunteers with a sensitivity and
specificity of 87.8% and 81.5%, respectively. Elevated serum miR-451a was associated with sepsis
severity, as evidenced by the increased expression of miR-451a in septic shock patients and its
correlation with key clinical indicators. Significantly upregulated expression of miR-451a was found
in septic patients with cardiac dysfunction, and the knockdown of miR-451a in sepsis rats improved
cardiac function and inhibited inflammatory responses. All the data revealed that serum miR-451a
serves as a candidate diagnostic biomarker of sepsis and a potential parameter to indicate disease
severity. The reduction of miR-451a may mitigate sepsis-induced cardiac dysfunction and inflammatory
responses.
Collapse
Affiliation(s)
- Heng Wang
- Shengli Oilfield Central Hospital, Department of Intensive Medicine, Dongying, Shandong, China
| | - Wenjuan Cui
- Shengli Oilfield Central Hospital, Department of Intensive Medicine, Dongying, Shandong, China
| | - Lujun Qiao
- Shengli Oilfield Central Hospital, Department of Intensive Medicine, Dongying, Shandong, China
| | - Guoxin Hu
- Shengli Oilfield Central Hospital, Department of Intensive Medicine, Dongying, Shandong, China
| |
Collapse
|
10
|
Wang Y, Lin Z, Song J, Wei S, Ye Z, Chen S, Zeng Y, Lin Z, Chen X, Chen L. MicroRNA-451a targets caveolin-1 in stomach cancer cells. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:2524-2533. [PMID: 33165443 PMCID: PMC7642723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
MicroRNA-451 (miR-451) is lowly expressed in stomach cancer cells and improves their metastatic ability by down-regulating extracellular signal-regulated kinase 2 (ERK2). Many studies have found that caveolin-1 (CAV1) plays an important role in cancer progression. Additionally, miR-451 has been reported to regulate the expression of CAV1 in chronic obstructive pulmonary disease. Therefore, this study aims to determine if miR-451 regulates the biological functions of stomach cancer cells by regulating CAV1 expression. Through a bioinformatics analysis, we found that miR-451a regulates CAV1 expression, and miR-451a expression is relatively low in stomach cancer cells. Next, we confirmed that miR-451a negatively regulates CAV1 expression using a dual-luciferase reporter assay. Then MTT, 5-ethynyl-2'-deoxyuridine (EdU), propidium iodide (PI), an Annexin V-FITC/PI apoptosis kit, and transwell assays were used to measure the changes in cell proliferation, the cell cycle, apoptosis, cell migration, and invasiveness in stomach cancer cells overexpressing miR-451a or both miR-451a and CAV1. It was found that increasing the miR-451a expression in stomach cancer cells inhibits cell growth, migration, and invasiveness, and promotes apoptosis. After restoring the CAV1 expression, these biological processes resumed. In summary, in stomach cancer cells, the overexpression of miR-451a can restrain cell growth and promote apoptosis, so it is a potential treatment for stomach cancer.
Collapse
Affiliation(s)
- Yi Wang
- Department of Gastrointestinal Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital Fuzhou 350014, Fujian, China
| | - Zhenmeng Lin
- Department of Gastrointestinal Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital Fuzhou 350014, Fujian, China
| | - Jintian Song
- Department of Gastrointestinal Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital Fuzhou 350014, Fujian, China
| | - Shenghong Wei
- Department of Gastrointestinal Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital Fuzhou 350014, Fujian, China
| | - Zaisheng Ye
- Department of Gastrointestinal Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital Fuzhou 350014, Fujian, China
| | - Shu Chen
- Department of Gastrointestinal Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital Fuzhou 350014, Fujian, China
| | - Yi Zeng
- Department of Gastrointestinal Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital Fuzhou 350014, Fujian, China
| | - Zhitao Lin
- Department of Gastrointestinal Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital Fuzhou 350014, Fujian, China
| | - Xiaoling Chen
- Department of Gastrointestinal Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital Fuzhou 350014, Fujian, China
| | - Luchuan Chen
- Department of Gastrointestinal Surgery, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital Fuzhou 350014, Fujian, China
| |
Collapse
|
11
|
Lin L, Huang Y, Zhuang W, Lin P, Ma X. miR-100 inhibits cell proliferation in mantle cell lymphoma by targeting mTOR. Exp Hematol Oncol 2020; 9:25. [PMID: 32999755 PMCID: PMC7519521 DOI: 10.1186/s40164-020-00182-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/20/2020] [Indexed: 12/27/2022] Open
Abstract
Background miR-100 is reported to be associated with cell proliferation and apoptosis. However, the function of miR-100 in mantle cell lymphoma (MCL) is unknown. The purpose of this study is to analyze the abnormal expression of miR-100 and mTOR in MCL together with their potential biological function and pathogenesis. Method Eighteen MCL tissue samples and 3 cell lines (Jeko-1, Mino, Granta-519) were investigated in this research study, while eighteen samples of proliferative lymphadenitis from patients and peripheral lymphocyte cells from healthy volunteers served as controls. The expression and alteration of miR-100 and mTOR mRNA were detected by RT-PCR. The expression and alteration of mTOR protein were explored by Western blot. LV-miR-100-up and LV-mTOR-RNAi were constructed and transfected by lentivirus transfection. Cell proliferation, cell apoptosis and the cell cycle were detected using CCK-8 and flow cytometry. Bioinformatics prediction software was used to predict the miR-100 target gene of mTOR. A double luciferase experiment was used to verify miR-100 targeting at the mTOR-3′-UTR. The interaction between miR-100 and mTOR was further studied using recovery experiments. GraphPad Prism 7 software (version 7.2) was used for statistical analysis, and a P value < 0.05 was considered statistically significant. Results We found that the expression of miR-100 mRNA in MCL tissues and cell lines was lower, while that of the mTOR protein was higher. There was a negative correlation between miR-100 and mTOR in both MCL tissues and cell lines. Promoting miR-100 and inhibiting mTOR could inhibit cell proliferation, induce cell apoptosis and block the cell cycle in the G1 phase. A double luciferase reporter assay showed that mTOR was one of the target genes of miR-100. The recovery experiment demonstrated that PV-mTOR-up partially set off the effect of LV-miR-100-up on decreasing mTOR expression, inhibiting proliferation, inducing apoptosis and blocking the cell cycle in G1 phase in both Jeko-1 and Mino cells. Conclusions Abnormal expression of miR-100 and mTOR was found in MCL, which included downregulation of miR-100 and upregulation of mTOR. The expression of mTOR is negatively correlated with miR-100. It may play an important role in MCL pathogenesis. miR-100 up-regulation can inhibit cell proliferation, promote cell apoptosis, and inhibit cell cycle in G1 phase by targeting the mTOR gene. miR-100 may potentially be an anti-mantle cell lymphoma gene.
Collapse
Affiliation(s)
- Luhui Lin
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian China
| | - Yiqun Huang
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian China
| | - Wei Zhuang
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian China
| | - Ping Lin
- Graduate School, Fujian Medical University, Fuzhou, Fujian China
| | - Xudong Ma
- Department of Hematology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian China
| |
Collapse
|
12
|
Zhu F, Li H, Ding F, Guo H, Mou H, Ma J. MiR-422a in gastric cancer cells directly targets CDC40 and modulates cell proliferation. Am J Transl Res 2020; 12:4693-4701. [PMID: 32913542 PMCID: PMC7476107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs have been shown to be involved in a variety of different human cancers, including gastric cancer, functioning as post-transcriptional regulators of oncogenes or tumor suppressors. This study aimed to clarify the role of miR-422a in gastric cancer and further elucidate the pathogenesis thereof. To this end, miR-422a expression was initially determined in gastric cancer tissues and cells. Our results showed decreased miR-422a and increased cell division cycle 40 (CDC40) expression in gastric cancer. Dual-luciferase reporter assay further confirmed that miR-422a targeted CDC40. Altogether, this study showed that miR-422a downregulated CDC40, thereby affecting cell cycle progression. Moreover, restoration of miR-422a inhibited gastric cancer cell proliferation. In summary, this study has been the first to show that miR-422a was associated with CDC40 levels in human gastric cancer cells and that disease development may be attributed to CDC40.
Collapse
Affiliation(s)
- Fanglai Zhu
- Department of Gastroenterology, The First People’s Hospital of AnqingAnqing, Anhui, China
| | - Hao Li
- Department of Gastroenterology, The First People’s Hospital of AnqingAnqing, Anhui, China
| | - Fei Ding
- Department of Gastroenterology, The First People’s Hospital of AnqingAnqing, Anhui, China
| | - Hao Guo
- Department of Gastroenterology, The First People’s Hospital of AnqingAnqing, Anhui, China
| | - Hong Mou
- Department of Pathology, Zhejiang Provincial People’s Hospital, Hangzhou Medical CollegeHangzhou, Zhejiang, China
| | - Jie Ma
- Department of Pathology, Zhejiang Provincial People’s Hospital, Hangzhou Medical CollegeHangzhou, Zhejiang, China
| |
Collapse
|
13
|
Lai H, Zhang J, Zuo H, Liu H, Xu J, Feng Y, Lin Y, Mo X. Overexpression of miR-17 is correlated with liver metastasis in colorectal cancer. Medicine (Baltimore) 2020; 99:e19265. [PMID: 32118734 PMCID: PMC7478658 DOI: 10.1097/md.0000000000019265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in men and women. The presence of systemic disease, with metastatic spread to distant sites such as the liver, considerably reduces the survival rate in CRC. Cancer stem cells contribute to the metastatic potential of CRC. However, the mechanism underlying metastasis in CRC remains unclear. Thus, this study aimed to examine the expression of microRNAs (miRNAs) in CRC stem cells in cases of liver metastases and assess their correlation with clinicopathological features. METHODS miRNAs showing high expression in liver metastases and primary lesions were selected through data mining of gene expression omnibus datasets, and miRNAs characteristic of stem cells were selected through COREMINE medical text mining. Subsequently, paired formalin-fixed paraffin-embedded tissue samples of primary CRC and liver metastasis from 30 patients were examined for the expression of miRNAs common to these lists (hsa-miR-20a, hsa-miR-26b, hsa-miR-146a, hsa-miR-17, hsa-miR-451, hsa-miR-23a, and hsa-miR-29a) using quantitative real-time polymerase chain reaction. Further, miRNA expression was compared between liver metastases and the primary tumor in each patient and the factors associated with differential expression were analyzed. RESULTS hsa-miR-17 was significantly upregulated in liver metastases (P < .05), but no significant difference in the expression of hsa-miR-26b, hsa-miR-146a, hsa-miR-451, hsa-miR-23a, and hsa-miR-29a was observed between primary tumors and liver metastases. The higher expression of hsa-miR-17 in liver metastases was associated with the administration of neoadjuvant chemotherapy and tumor differentiation (P < .05) but was not associated with age, sex, tumor location, or lymphatic metastasis. CONCLUSIONS High expression of miR-17 may contribute to liver metastasis in CRC. Therefore, an in-depth understanding of its downstream pathways could help in elucidating the mechanisms underlying liver metastases in CRC. However, additional studies are warranted to validate these findings.
Collapse
Affiliation(s)
- Hao Lai
- Gastrointestinal Surgery Department, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer
| | - Jie Zhang
- Gastrointestinal Surgery Department, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer
| | - Hongqun Zuo
- Gastrointestinal Surgery Department, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer
| | - Haizhou Liu
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Jing Xu
- Gastrointestinal Surgery Department, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer
| | - Yan Feng
- Research Department, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, P.R. China
| | - Yuan Lin
- Gastrointestinal Surgery Department, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer
| | - Xianwei Mo
- Gastrointestinal Surgery Department, Guangxi Medical University Cancer Hospital
- Guangxi Clinical Research Center for Colorectal Cancer
| |
Collapse
|
14
|
Bai H, Wu S. miR-451: A Novel Biomarker and Potential Therapeutic Target for Cancer. Onco Targets Ther 2019; 12:11069-11082. [PMID: 31908476 PMCID: PMC6924581 DOI: 10.2147/ott.s230963] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/28/2019] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding, single-stranded small RNAs involved in a variety of cellular processes, including ontogeny, cell proliferation, differentiation, and apoptosis. They can also function as oncogenes or tumor suppressor genes. Recent studies have revealed that miRNA-451 (miR-451) is involved in the regulation of various human physiological and pathological processes. Furthermore, it has been shown that miR-451 not only directly affects the biological functions of tumor cells but also indirectly affects tumor cell invasion and metastasis upon secretion into the tumor microenvironment via exosomes. Thus, miR-451 also influences the progression of tumorigenesis and drug resistance. This review summarizes the expression of miR-451 in various cancer types and the relationship between miR-451 and the diagnosis, treatment, and drug resistance of solid tumors. In addition, we address possible mechanisms of action of miR-451 and its potential application as a biomarker in the diagnosis and treatment of human cancers.
Collapse
Affiliation(s)
- Hua Bai
- Department of Gynecology and Obstetrics, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Suhui Wu
- Department of Gynecology and Obstetrics, Shanxi Dayi Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
15
|
Kong W, Feng L, Yang M, Chen Q, Wang H, Wang X, Hou J. Prognostic value of microRNA-451 in various cancers: A meta-analysis. Pathol Res Pract 2019; 215:152726. [PMID: 31708373 DOI: 10.1016/j.prp.2019.152726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/13/2019] [Accepted: 10/26/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Increasing evidence shows microRNA-451 plays a crucial role in various tumors, but there is inconsistency. The aim of this study was to explore the prognostic role of miR-451 in various tumors. METHODS Online PubMed, EMBASE, Web of Science, and the Cochrane library database were searched through February 2019. Hazard ratios (HRs) were extracted and used to describe the association between expression of microRNA-451 and survival outcome, and the correlation between microRNA-451 and clinicopathologic features were described by pooled odds ratios (ORs). RESULTS Sixteen retrospective studies containing 2122 patients were incorporated in this meta-analysis. High expression of miR-451 was considered statistically associated with prolonged overall survival (OS) (HR = 0.62, 95% CI 0.49-0.80, p < 0.001) as well as RFS/DFS (HR = 0.55, 95% CI 0.42-0.71, p < 0.001) compared with low expression of miR-451. Besides, the pooled ORs revealed significant association between high expression of miR-451 with lymph node invasion (yes vs. no) (OR = 0.64, 95% CI 0.46-0.90, P = 0.01), tumor diameter (big vs. small) (OR = 0.77, 95% CI 0.60-0.97, P = 0.028) and tumor stage (III + IV vs. I + II) (OR = 0.62, 95% CI 0.42-0.93, P = 0.019). CONCLUSION MicroRNA-451 may serve as a promising clinical prognostic biomarker in various carcinomas.
Collapse
Affiliation(s)
- Weihao Kong
- Department of Emergency Surgery, Department of Emergency Medicine, The First affiliated hospital of Anhui Medical University, Heifei, China
| | - Linfei Feng
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingwei Yang
- Department of Radiation Oncology, The First affiliated hospital of Anhui Medical University, Heifei, China
| | - Qihang Chen
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hengyi Wang
- Department of Emergency Surgery, Department of Emergency Medicine, The First affiliated hospital of Anhui Medical University, Heifei, China.
| | - Xingyu Wang
- Department of Emergency Surgery, Department of Emergency Medicine, The First affiliated hospital of Anhui Medical University, Heifei, China.
| | - Jun Hou
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
16
|
Khordadmehr M, Jigari-Asl F, Ezzati H, Shahbazi R, Sadreddini S, Safaei S, Baradaran B. A comprehensive review on miR-451: A promising cancer biomarker with therapeutic potential. J Cell Physiol 2019; 234:21716-21731. [PMID: 31140618 DOI: 10.1002/jcp.28888] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are proposed as a family of short noncoding molecules able to manage and control the expression of the gene targets at the posttranscriptional level. They contribute in several fundamental physiological mechanisms as well as a verity of human and animal diseases such as cancer progression. Among these tiny RNAs, miR-451 placed on chromosome 17 at 17q11.2 presents an essential role in many biological processes in health condition and also in pathogenesis of different diseases. Besides, it has been recently considered as a valuable biomarker for cancer detection, prognosis and treatment. Therefore, this review will provide the critical functions of miR-451 on biological mechanisms including cell cycle and proliferation, cell survival and apoptosis, differentiation and development as well as disease initiation and progression such as tumor formation, migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Monireh Khordadmehr
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Farinaz Jigari-Asl
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamed Ezzati
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Roya Shahbazi
- Department of Pathology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sanam Sadreddini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahar Safaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Marín-Romero A, Robles-Remacho A, Tabraue-Chávez M, López-Longarela B, Sánchez-Martín RM, Guardia-Monteagudo JJ, Fara MA, López-Delgado FJ, Pernagallo S, Díaz-Mochón JJ. A PCR-free technology to detect and quantify microRNAs directly from human plasma. Analyst 2019; 143:5676-5682. [PMID: 30411757 DOI: 10.1039/c8an01397g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel sensitive, specific and rapid method for the detection and quantification of microRNAs without requiring extraction from their biological sources is now available using a novel chemical based, PCR-free technology for nucleic acid testing. In this study, we both demonstrate how this method can be used to profile miR-451a, an important miRNA in erythropoiesis, and compare with the gold standard RT-qPCR.
Collapse
Affiliation(s)
- Antonio Marín-Romero
- DestiNA Genomica S.L. Parque Tecnológico Ciencias de la Salud (PTS), Avenida de la Innovación 1, Edificio BIC, Armilla, Granada 18100, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang Z, Zhang J, Zhang Z, Jiang Y, Li M, Li Q, Bai L, Yao D, Wang M, Wang X. Prognostic value of miR-17-5 p in gastrointestinal cancers: a systematic review and meta-analysis. Onco Targets Ther 2018; 11:5991-5999. [PMID: 30275704 PMCID: PMC6157989 DOI: 10.2147/ott.s157670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND There are accumulating studies investigating the aberrant expression of microRNAs in tumor patients. As an important member of miR-17/92 cluster, miR-17-5 p has been identified as a potential prognostic factor for survival in tumor patients. We conducted this meta-analysis aimed to assess the effect of miR-17-5 p as a prognostic biomarker for gastrointestinal tumor patients. MATERIALS AND METHODS Eligible studies were enrolled by searching the online databases of PubMed, Embase, Web of Science, China National Knowledge Infrastructure, and WanFang Data until September 2017. We calculated pooled hazard ratios (HRs) and 95% CI of miR-17-5 p for overall survival and disease-free survival. RESULTS In the categorical variable analysis, we identified 11 studies with 1,279 patients. The pooled analyses suggested that overexpression of miR-17-5 p may predict poor overall survival (HR = 1.86, 95% CI: 1.55-2.25, P<0.001) and disease-free survival (HR = 1.43, 95% CI: 1.01-2.03, P=0.046) in patients with gastrointestinal tumors. Subgroup analysis showed the pooled HR of overall survival was more significant in tissue specimen, Asian patients, and digestive tract tumors. But there was no correlation between the outcomes and European patients. CONCLUSIONS This meta-analysis suggested that miR-17-5 p has predictive effects on overall survival and disease-free survival of patients with gastrointestinal tumors.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Gastroenterology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China,
| | - Jing Zhang
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zhiguang Zhang
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yong Jiang
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Man Li
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Qian Li
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Lu Bai
- Department of Gastroenterology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Dongying Yao
- Department of Gastroenterology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China,
| | - Miao Wang
- Department of Gastroenterology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China,
| | - Xiaoping Wang
- Department of Gastroenterology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, China,
| |
Collapse
|
19
|
Liu F, Bu Z, Zhao F, Xiao D. Increased T-helper 17 cell differentiation mediated by exosome-mediated microRNA-451 redistribution in gastric cancer infiltrated T cells. Cancer Sci 2017; 109:65-73. [PMID: 29059496 PMCID: PMC5765284 DOI: 10.1111/cas.13429] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
MicroRNA (miR)‐451 is a cell metabolism‐related miRNA that can mediate cell energy‐consuming models by several targets. As miR‐451 can promote mechanistic target of rapamycin (mTOR) activity, and increased mTOR activity is related to increased differentiation of T‐helper 17 (Th17) cells, we sought to investigate whether miR‐451 can redistribute from cancer cells to infiltrated T cells and enhance the distribution of Th17 cells through mTOR. Real‐time PCR was used for detecting expression of miR‐451 in gastric cancer, tumor infiltrated T cells and exosomes, and distribution of Th17 was evaluated by both flow cytometry and immunohistochemistry (IHC). Immunofluorescence staining was used in monitoring the exosome‐enveloped miR‐451 from cancer cells to T cells with different treatments, and signaling pathway change was analyzed by western blot. miR‐451 decreased significantly in gastric cancer (GC) tissues but increased in infiltrated T cells and exosomes; tumor miR‐451 was negatively related to infiltrated T cells and exosome miR‐451. Exosome miR‐451 can not only serve as an indicator for poor prognosis of post‐operation GC patients but is also related to increased Th17 distribution in gastric cancer. miR‐451 can redistribute from cancer cells to T cells with low glucose treatment. Decreased 5′ AMP‐activated protein kinase (AMPK) and increased mTOR activity was investigated in miR‐451 redistributed T cells and the Th17 polarized differentiation of these T cells were also increased. Exosome miR‐451 derived from tumor tissues can serve as an indicator for poor prognosis and redistribution of miR‐451 from cancer cells to infiltrated T cells in low glucose treatment can enhance Th17 differentiation by enhancing mTOR activity.
Collapse
Affiliation(s)
- Feng Liu
- Department of ICU, the 359th Hospital of PLA, Zhenjiang, China
| | - Zhouyan Bu
- Changzhou Zhengheng Middle School, Changzhou, China
| | - Feng Zhao
- Department of Ultrasonography, Hospital Affiliated to Jiangsu University, Zhenjiang, China
| | - Daping Xiao
- Department of Clinical Laboratory, the 359th Hospital of PLA, Zhenjiang, China
| |
Collapse
|
20
|
Cao Y, Song J, Ge J, Song Z, Chen J, Wu C. MicroRNA-100 suppresses human gastric cancer cell proliferation by targeting CXCR7. Oncol Lett 2017; 15:453-458. [PMID: 29422961 DOI: 10.3892/ol.2017.7305] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/12/2017] [Indexed: 12/20/2022] Open
Abstract
microRNAs (miRs) are a class of small non-coding RNAs that have been demonstrated to have a crucial role in tumorigenesis of human cancers, including gastric cancer (GC). Previous results have established that miR-100 participated in the development of GC; however, the underlying mechanism remains largely unknown. The preesent study utilized reverse transcription-quantitative polymerase chain reaction to analyze the expression of miR-100 in GC tissues and adjacent normal tissues. The present results indicated that the expression of miR-100 was downregulated in GC tissues when compared to the adjacent normal tissues. Furthermore, low miR-100 expression was observed to be associated with lymph node metastasis, tumor diameter and tumor stage. In addition, Kaplan-Meier analysis revealed that patients with low miR-100 expression tended to have a shorter overall survival. The miR-100 was further identified as an independent prognostic factor for overall survival. Notably, the levels of chemokine (CXC motif) receptor 7 (CXCR7) were inversely correlated with miR-100 in GC cell lines. Furthermore, miR-100 overexpression or CXCR7 depletion decreased in vitro GC cell proliferation. Bioinformatics analysis indicated that miR-100 may bind to the 3'-untranslated region of CXCR7 to prevent the initiation of protein translation. Thus, miR-100 may function as a tumor suppressor in GC, partly by regulating the expression of CXCR7, and the regulation of miR-100 expression may be a potential strategy for the treatment of GC patients.
Collapse
Affiliation(s)
- Yongfeng Cao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Tianning, Changzhou, Jiangsu 213000, P.R. China
| | - Jiaye Song
- Department of Medical Oncology, Nantong Cancer Hospital, Tongzhou, Nantong, Jiangsu 226361, P.R. China
| | - Jianjuan Ge
- Department of Medical Oncology, Nantong Cancer Hospital, Tongzhou, Nantong, Jiangsu 226361, P.R. China
| | - Zhuchen Song
- Department of Medical Oncology, Nantong Cancer Hospital, Tongzhou, Nantong, Jiangsu 226361, P.R. China
| | - Jia Chen
- Department of Medical Oncology, Nantong Cancer Hospital, Tongzhou, Nantong, Jiangsu 226361, P.R. China
| | - Changping Wu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Tianning, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
21
|
Zhou LL, Shen Y, Gong JM, Sun P, Sheng JH. MicroRNA-466 with tumor markers for cervical cancer screening. Oncotarget 2017; 8:70821-70827. [PMID: 29050322 PMCID: PMC5642597 DOI: 10.18632/oncotarget.19992] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/13/2017] [Indexed: 02/01/2023] Open
Abstract
Cervical cancer is the second most common cancer in women in the world. In this study, we explore tumor markers and microRNA-466 combination for cervical cancer screening. Tumor markers were measured by the methods of electro-chemiluminescent immunoassay and enzyme immunoassay. The microRNA-466 was performed by quantitative real-time polymerase chain reaction. Among normal group, hyperplasia group and cancer group, the CEA expression levels were 2.26 ng/ml, 3.85 ng/ml and 16.08 ng/ml, respectively. While the CA125 expression levels were 13.61 u/ml, 27.32 u/ml and 44.93 u/ml, respectively. The SCCA expression levels were 13.61 ng/ml, 27.32 ng/ml and 44.93 ng/ml, respectively. The expression levels of tumor markers were all gradually increased with the development of cervical lesions. The expression levels of microRNA-466 in cervical cancers (0.62) were greater than that in normal (0.076) and hyperplasia (0.24). The expression of microRNA-466 was correlated with lymphnode metastasis (P=0.000). There is a lower overall survival rate of patient with large tumor or lymphnode metastasis. Thus, the combination of tumor markers and microRNA-466 can be useful for early detection of cervical cancer and indicators for advanced stage and prognosis of the disease.
Collapse
Affiliation(s)
- Li-Li Zhou
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yong Shen
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jiao-Mei Gong
- Department of Clinical Laboratory, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ping Sun
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jia-He Sheng
- Department of Clinical Laboratory, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|