1
|
Di Pastena F, Pond G, Tsakiridis EE, Gouveia A, Ahmadi E, Biziotis OD, Ali A, Swaminath A, Okawara G, Ellis PM, Abdulkarim B, Ahmed N, Robinson A, Roa W, Valdes M, Kavsak P, Wierzbicki M, Wright J, Steinberg G, Tsakiridis T. Growth differentiation factor 15 (GDF15) predicts relapse free and overall survival in unresected locally advanced non-small cell lung cancer treated with chemoradiotherapy. Radiat Oncol 2024; 19:155. [PMID: 39511611 PMCID: PMC11542377 DOI: 10.1186/s13014-024-02546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION Growth differentiation factor 15 (GDF15) is a cytokine of the TGFβ family. Here, we analyzed GDF15 levels in patients with locally advanced non-small cell lung cancer (LA-NSCLC) who participated in OCOG-ALMERA (NCT02115464), a phase II randomized clinical trial, that investigated metformin in combination with standard of care concurrent chemoradiotherapy (cCRT). OCOG-ALMERA was not able to demonstrate benefit in the metformin arm. Therefore, biomarker studies are needed to better define stratification parameters for future trials. METHODS Patients were randomized to treatment with platinum-based chemotherapy and concurrent chest radiotherapy (60-66 Gy), with or without metformin (2000 mg/d). The trial collected tumor volume parameters, survival outcomes, and patient blood plasma at baseline, during (weeks 1 and 6) and 6 months after cCRT. Plasma GDF15 levels were assayed with the ELISA method. Statistical analyses explored associations between GDF15, survival outcomes, and radiotherapy tumor volumes. RESULTS Baseline plasma levels of GDF15 were elevated in study patients, they increased during cCRT (p < 0.001), and the addition of metformin was associated with a further increase (week 6, p = 0.033). Baseline GDF15 levels correlated with the radiotherapy gross target volume (GTV, p < 0.01), while week 1 of radiotherapy levels correlated with radiotherapy planned target volume (PTV, p < 0.006). In multivariate analysis, baseline plasma GDF15 was prognostic for poor relapse-free (RFS) and overall survival (OS) (p = 0.005 and p = 0.002, respectively). CONCLUSIONS GDF15 is a plasma marker that responds to the treatment of unresected LA-NSCLC with cCRT and metformin. GDF15 levels correspond with tumor volume and increased GDF15 levels predict for poor RFS and OS. These results require validation in larger clinical trial datasets.
Collapse
Affiliation(s)
- Fiorella Di Pastena
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Gregory Pond
- Department of Oncology, McMaster University, Hamilton, ON, Canada
- Ontario Clinical Oncology Group, McMaster University, Hamilton, ON, Canada
| | - Evangelia E Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Andre Gouveia
- Department of Oncology, McMaster University, Hamilton, ON, Canada
- Radiation Oncology, Juravinski Cancer Center, Hamilton Health Science, Hamilton, ON, Canada
| | - Elham Ahmadi
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Oncology, McMaster University, Hamilton, ON, Canada
- Center for Discovery and Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Olga-Demetra Biziotis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Oncology, McMaster University, Hamilton, ON, Canada
- Center for Discovery and Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Amr Ali
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Department of Oncology, McMaster University, Hamilton, ON, Canada
- Center for Discovery and Cancer Research, McMaster University, Hamilton, ON, Canada
| | - Anand Swaminath
- Department of Oncology, McMaster University, Hamilton, ON, Canada
- Radiation Oncology, Juravinski Cancer Center, Hamilton Health Science, Hamilton, ON, Canada
| | - Gordon Okawara
- Department of Oncology, McMaster University, Hamilton, ON, Canada
- Radiation Oncology, Juravinski Cancer Center, Hamilton Health Science, Hamilton, ON, Canada
| | - Peter M Ellis
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| | | | | | | | - Wilson Roa
- Cross Cancer Institute, Edmonton, AB, Canada
| | - Mario Valdes
- Grand River Cancer Center, Kitchener, ON, Canada
| | - Peter Kavsak
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Marcin Wierzbicki
- Radiation Physics Program, Juravinski Cancer Centre, Hamilton, ON, Canada
| | - James Wright
- Department of Oncology, McMaster University, Hamilton, ON, Canada
- Ontario Clinical Oncology Group, McMaster University, Hamilton, ON, Canada
- Radiation Oncology, Juravinski Cancer Center, Hamilton Health Science, Hamilton, ON, Canada
| | - Gregory Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Theodoros Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.
- Department of Oncology, McMaster University, Hamilton, ON, Canada.
- Ontario Clinical Oncology Group, McMaster University, Hamilton, ON, Canada.
- Radiation Oncology, Juravinski Cancer Center, Hamilton Health Science, Hamilton, ON, Canada.
- Center for Discovery and Cancer Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
2
|
Galal MA, Al-Rimawi M, Hajeer A, Dahman H, Alouch S, Aljada A. Metformin: A Dual-Role Player in Cancer Treatment and Prevention. Int J Mol Sci 2024; 25:4083. [PMID: 38612893 PMCID: PMC11012626 DOI: 10.3390/ijms25074083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer continues to pose a significant global health challenge, as evidenced by the increasing incidence rates and high mortality rates, despite the advancements made in chemotherapy. The emergence of chemoresistance further complicates the effectiveness of treatment. However, there is growing interest in the potential of metformin, a commonly prescribed drug for type 2 diabetes mellitus (T2DM), as an adjuvant chemotherapy agent in cancer treatment. Although the precise mechanism of action of metformin in cancer therapy is not fully understood, it has been found to have pleiotropic effects, including the modulation of metabolic pathways, reduction in inflammation, and the regulation of cellular proliferation. This comprehensive review examines the anticancer properties of metformin, drawing insights from various studies conducted in vitro and in vivo, as well as from clinical trials and observational research. This review discusses the mechanisms of action involving both insulin-dependent and independent pathways, shedding light on the potential of metformin as a therapeutic agent for different types of cancer. Despite promising findings, there are challenges that need to be addressed, such as conflicting outcomes in clinical trials, considerations regarding dosing, and the development of resistance. These challenges highlight the importance of further research to fully harness the therapeutic potential of metformin in cancer treatment. The aims of this review are to provide a contemporary understanding of the role of metformin in cancer therapy and identify areas for future exploration in the pursuit of effective anticancer strategies.
Collapse
Affiliation(s)
- Mariam Ahmed Galal
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1QU, UK
| | - Mohammed Al-Rimawi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | | | - Huda Dahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Samhar Alouch
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (M.A.G.); (M.A.-R.); (H.D.); (S.A.)
| |
Collapse
|
3
|
Qiu C, Li C, Zheng Q, Fang S, Xu J, Wang H, Guo H. Metformin suppresses lung adenocarcinoma by downregulating long non-coding RNA (lncRNA) AFAP1-AS1 and secreted phosphoprotein 1 (SPP1) while upregulating miR-3163. Bioengineered 2022; 13:11987-12002. [PMID: 35603556 PMCID: PMC9275981 DOI: 10.1080/21655979.2021.2005981] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AFAP1-AS1 plays a pro-tumor role in lung cancer. However, no investigation has focused on whether it is involved in the anticancer activity of metformin (Met) in the treatment of lung adenocarcinoma (LUAD). Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was performed to detect the expression of long non-coding (lnc)RNA AFAP1-AS1, the microRNA (miR)-3163, and secreted phosphoprotein 1 (SPP1) in LUAD tissues, or of A549 and H3122 cells. Cell Counting Kit-8, wound scratch, and cell invasion assays were performed to evaluate the effect of the overexpression of lncRNA AFAP1-AS1, miR-3163, and SPP1 on the malignant behaviors of A549 and H3122 cells. Phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway-related proteins were detected by Western blot analysis. Dual luciferase reporter or RIP assays were used to determine the interplay between AFAP1-AS1 and miR-3163, or of miR-3163 and SPP1. Met inhibits the malignant characteristics of A549 and H3122 cells in vitro. GEPIA database analysis showed that AFAP1-AS1 is a highly expressed lncRNA in LUAD tissues, which was validated by RT-qPCR. Overexpression of AFAP1-AS1 suppressed the met-mediated anti-tumor activity in A549 and H3122 cells, while AFAP1-AS1 silencing promoted it. Met inhibited AFAP1-AS1 expression, which resulted in reduced proliferation, migration, and invasion in A549 and H3122 cells. This led to AFAP1-AS1-mediated suppression of miR-3163 and, subsequently, the upregulation of SPP1. Met exerts its antitumor activities by regulating the AFAP1-AS1/miR-3163/SPP1/PI3K/Akt/mTOR axis. Our findings deepen our understanding of mechanisms underlying anti-tumor effect of Met in LUAD.
Collapse
Affiliation(s)
- Caiyu Qiu
- Department of Physical Examination Center, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Chuanxiang Li
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Quan Zheng
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Si Fang
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Jianqun Xu
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Hongjuan Wang
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| | - Hongrong Guo
- Department of Respiratory and Critical Care Medicine, Wuhan Third Hospital, Wuhan, Hubei, China
| |
Collapse
|
4
|
Sanaei MJ, Razi S, Pourbagheri-Sigaroodi A, Bashash D. The PI3K/Akt/mTOR pathway in lung cancer; oncogenic alterations, therapeutic opportunities, challenges, and a glance at the application of nanoparticles. Transl Oncol 2022; 18:101364. [PMID: 35168143 PMCID: PMC8850794 DOI: 10.1016/j.tranon.2022.101364] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/15/2022] [Accepted: 02/05/2022] [Indexed: 12/20/2022] Open
Abstract
Lung cancer is the most common and deadliest human malignancies. The alterations of PI3K/Akt/mTOR pathway are related to lung cancer progression. PI3K axis regulates proliferation, apoptosis, metastasis, and EMT of lung cancer. Agents inhibiting components of PI3K axis diminish lung tumor growth and invasion. Low efficacy and off-target toxicity could be improved by nanoparticle application.
Lung cancer is the leading cause of cancer-related mortality worldwide. Although the PI3K/Akt/mTOR signaling pathway has recently been considered as one of the most altered molecular pathways in this malignancy, few articles reviewed the task. In this review, we aim to summarize the original data obtained from international research laboratories on the oncogenic alterations in each component of the PI3K/Akt/mTOR pathway in lung cancer. This review also responds to questions on how aberrant activation in this axis contributes to uncontrolled growth, drug resistance, sustained angiogenesis, as well as tissue invasion and metastatic spread. Besides, we provide a special focus on pharmacologic inhibitors of the PI3K/Akt/mTOR axis, either as monotherapy or in a combined-modal strategy, in the context of lung cancer. Despite promising outcomes achieved by using these agents, however, the presence of drug resistance as well as treatment-related adverse events is the other side of the coin. The last section allocates a general overview of the challenges associated with the inhibitors of the PI3K pathway in lung cancer patients. Finally, we comment on the future research aspects, especially in which nano-based drug delivery strategies might increase the efficacy of the therapy in this malignancy.
Collapse
|
5
|
Chen N, Zhou YS, Wang LC, Huang JB. Advances in metformin‑based metabolic therapy for non‑small cell lung cancer (Review). Oncol Rep 2022; 47:55. [PMID: 35039878 PMCID: PMC8808708 DOI: 10.3892/or.2022.8266] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
Therapeutic approaches that target the metabolism of tumor cells have been a popular research topic in recent years. Previous studies have demonstrated that glycolysis inhibitors reduce the proliferation of non‑small cell lung cancer (NSCLC) cells by interfering with the aerobic glycolytic pathway. However, the mitochondrial oxidative phosphorylation (OXPHOS) pathway in tumor cells has also been implicated in lung cancer metabolism. Metformin, a known inhibitor of mitochondrial OXPHOS, has been indicated to reduce NSCLC morbidity and mortality in clinical studies. The present article reviewed the therapeutic effects of metformin against NSCLC, both as a single agent and combined with other anticancer treatments, in order to provide a theoretical basis for its clinical use in adjuvant therapy for NSCLC.
Collapse
Affiliation(s)
- Na Chen
- Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China
| | - Yi-Shu Zhou
- Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China
| | - Li-Cui Wang
- Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China
| | - Jin-Bai Huang
- Department of Medical Imaging, Faculty of Medicine, Yangtze University, Yangtze University Research and Experimentation Centre, Jingzhou, Hubei 434000, P.R. China
| |
Collapse
|
6
|
Kim TS, Lee M, Park M, Kim SY, Shim MS, Lee CY, Choi DH, Cho Y. Metformin and Dichloroacetate Suppress Proliferation of Liver Cancer Cells by Inhibiting mTOR Complex 1. Int J Mol Sci 2021; 22:ijms221810027. [PMID: 34576192 PMCID: PMC8467948 DOI: 10.3390/ijms221810027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
The Warburg effect is important for cancer cell proliferation. This phenomenon can be flexible by interaction between glycolysis and mitochondrial oxidation for energy production. We aimed to investigate the anticancer effects of the pyruvate dehydrogenase kinase inhibitor, dichloroacetate (DCA) and the mitochondrial respiratory complex I inhibitor metformin in liver cancer cells. The anticancer effect of DCA and/or metformin on HepG2, PLC/PRF5 human liver cancer cell lines, MH-134 murine hepatoma cell lines, and primary normal hepatocytes using MTT assay. Inhibition of lactate/ATP production and intracellular reactive oxygen species generation by DCA and metformin was investigated. Inhibition of PI3K/Akt/mTOR complex I was evaluated to see whether it occurred through AMPK signaling. Anticancer effects of a combination treatment of DCA and metformin were evaluated in HCC murine model. The results showed that metformin and DCA effectively induced apoptosis in liver cancer cells. A combination treatment of metformin and DCA did not affect viability of primary normal hepatocytes. Metformin upregulated glycolysis in liver cancer cells, thereby increasing sensitivity to the DCA treatment. Metformin and DCA inhibited mTOR complex I signaling through upregulated AMPK-independent REDD1. In addition, metformin and DCA increased reactive oxygen species levels in liver cancer cells, which induced apoptosis. A combination treatment of metformin and DCA significantly suppressed the tumor growth of liver cancer cells using in vivo xenograft model. Taken together, the combined treatment of metformin and DCA suppressed the growth of liver cancer cells. This strategy may be effective for patients with advanced liver cancer.
Collapse
Affiliation(s)
- Tae Suk Kim
- Department of Internal Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24341, Korea; (T.S.K.); (C.Y.L.); (D.H.C.)
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea;
- Department of Internal Medicine, Ewha Womans University Medical Center, Seoul 07804, Korea
- Correspondence: (M.L.); (Y.C.); Tel.: +82-2-6986-1761 (M.L.); +82-31-920-1605 (Y.C.)
| | - Minji Park
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul 07804, Korea;
- Department of Internal Medicine, Ewha Womans University Medical Center, Seoul 07804, Korea
- Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul 06135, Korea
| | - Sae Yun Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Korea;
| | - Chea Yeon Lee
- Department of Internal Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24341, Korea; (T.S.K.); (C.Y.L.); (D.H.C.)
| | - Dae Hee Choi
- Department of Internal Medicine, Kangwon National University Hospital, Kangwon National University School of Medicine, Chuncheon 24341, Korea; (T.S.K.); (C.Y.L.); (D.H.C.)
| | - Yuri Cho
- Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul 06135, Korea
- Center for Liver and Pancreatobiliary Cancer, Research Institute and Hospital, National Cancer Center, Goyang 10408, Korea
- Correspondence: (M.L.); (Y.C.); Tel.: +82-2-6986-1761 (M.L.); +82-31-920-1605 (Y.C.)
| |
Collapse
|
7
|
Lusica PMM, Eugenio KPY, Sacdalan DBL, Jimeno CA. A systematic review and meta-analysis on the efficacy and safety of metformin as adjunctive therapy among women with metastatic breast cancer. Cancer Treat Res Commun 2021; 29:100457. [PMID: 34543887 DOI: 10.1016/j.ctarc.2021.100457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Breast cancer is the most common cancer among women worldwide and is one of the leading causes of cancer-related mortalities. Metformin has been found to have direct and indirect antitumor mechanisms, and because of its availability and good safety profile, it has been investigated to be useful in various malignancies including breast cancer. OBJECTIVE This study aims to determine the efficacy and safety of metformin administration as adjunctive therapy on mortality among females with breast cancer. METHODS This is a systematic review and meta-analysis of randomized clinical trials (RCTs) on the use of metformin as adjunctive therapy when combined with standard chemotherapy on the outcomes of progression-free survival (PFS), overall survival (OS), overall response rate (ORR), and clinical benefit rate (CBR). RESULTS After a comprehensive literature search, only three phase 2 RCTs on the use of metformin as adjunctive therapy for locally advanced and metastatic breast cancer were included. Clinical trials on early breast cancer are still ongoing and none were included in the present review. This study, based on the systematic review, revealed that metformin added to standard chemotherapy does not improve the PFS and OS among women with metastatic breast cancer, and likewise, has no impact on the ORR with a relative risk of 1.42 95% CI 0.45-4.55 and CBR with an RR of 0.87, 95% CI 0.55-1.37. It appears to be safe and may even be protective for the development of neutropenia based on at least one study. CONCLUSION This study clarifies that there is insufficient evidence on the benefits of metformin on survival among women with metastatic breast cancer.
Collapse
Affiliation(s)
- Patricia Marie M Lusica
- University of the Philippines - Philippine General Hospital, Department of Medicine, Philippines.
| | - Kyle Patrick Y Eugenio
- University of the Philippines - Philippine General Hospital, Department of Medicine, Philippines
| | - Danielle Benedict L Sacdalan
- University of the Philippines - Philippine General Hospital, Department of Medicine, Philippines; University of the Philippines College of Medicine, Department of Pharmacology and Toxicology, Philippines
| | - Cecilia A Jimeno
- University of the Philippines - Philippine General Hospital, Department of Medicine, Philippines; University of the Philippines College of Medicine, Department of Pharmacology and Toxicology, Philippines
| |
Collapse
|
8
|
Tsakiridis EE, Broadfield L, Marcinko K, Biziotis OD, Ali A, Mekhaeil B, Ahmadi E, Singh K, Mesci A, Zacharidis PG, Anagnostopoulos AE, Berg T, Muti P, Steinberg GR, Tsakiridis T. Combined metformin-salicylate treatment provides improved anti-tumor activity and enhanced radiotherapy response in prostate cancer; drug synergy at clinically relevant doses. Transl Oncol 2021; 14:101209. [PMID: 34479029 PMCID: PMC8411238 DOI: 10.1016/j.tranon.2021.101209] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 11/05/2022] Open
Abstract
Combined metformin + salicylate treatment has improved anti-tumor efficacy in prostate cancer. At clinically achievable doses, it induces increased metabolic stress and sensitizes tumors to radiation. Metformin + salicylate blocks pathways of de novo lipogenesis and protein synthesis. In combination with radiation suppresses HIF1a and DNA replication. This work supports clinical investigation of metformin + salicylate in combination with radiotherapy.
Background There is need for well-tolerated therapies for prostate cancer (PrCa) secondary prevention and to improve response to radiotherapy (RT). The anti-diabetic agent metformin (MET) and the aspirin metabolite salicylate (SAL) are shown to activate AMP-activated protein kinase (AMPK), suppress de novo lipogenesis (DNL), the mammalian target of rapamycin (mTOR) pathway and reduce PrCa proliferation in-vitro. The purpose of this study was to examine whether combined MET+SAL treatment could provide enhanced PrCa tumor suppression and improve response to RT. Methods Androgen-sensitive (22RV1) and resistant (PC3, DU-145) PrCa cells and PC3 xenografts were used to examine whether combined treatment with MET+SAL can provide improved anti-tumor activity compared to each agent alone in non-irradiated and irradiated PrCa cells and tumors. Mechanisms of action were investigated with analysis of signaling events, mitochondria respiration and DNL activity assays. Results We observed that PrCa cells are resistant to clinically relevant doses of MET. Combined MET + SAL treatment provides synergistic anti-proliferative activity at clinically relevant doses and enhances the anti-proliferative effects of RT. This was associated with suppression of oxygen consumption rate (OCR), activation of AMPK, suppression of acetyl-CoA carboxylase (ACC)-DNL and mTOR-p70s6k/4EBP1 and HIF1α pathways. MET + SAL reduced tumor growth in non-irradiated tumors and enhanced the effects of RT. Conclusion MET+SAL treatment suppresses PrCa cell proliferation and tumor growth and enhances responses to RT at clinically relevant doses. Since MET and SAL are safe, widely-used and inexpensive agents, these data support the investigation of MET+SAL in PrCa clinical trials alone and in combination with RT.
Collapse
Affiliation(s)
- Evangelia E Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Lindsay Broadfield
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katarina Marcinko
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Olga-Demetra Biziotis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Amr Ali
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Bassem Mekhaeil
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Elham Ahmadi
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Kanwaldeep Singh
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Aruz Mesci
- Department of Radiation Oncology, Juravinski Cancer Center, 699 Concession Street, Hamilton, Ontario L8V 5C2, Canada
| | - Panayiotis G Zacharidis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Alexander E Anagnostopoulos
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Tobias Berg
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Paola Muti
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Theodoros Tsakiridis
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada; Department of Oncology, McMaster University, Hamilton, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada; Department of Radiation Oncology, Juravinski Cancer Center, 699 Concession Street, Hamilton, Ontario L8V 5C2, Canada.
| |
Collapse
|
9
|
Tsakiridis T, Pond GR, Wright J, Ellis PM, Ahmed N, Abdulkarim B, Roa W, Robinson A, Swaminath A, Okawara G, Wierzbicki M, Valdes M, Levine M. Metformin in Combination With Chemoradiotherapy in Locally Advanced Non-Small Cell Lung Cancer: The OCOG-ALMERA Randomized Clinical Trial. JAMA Oncol 2021; 7:1333-1341. [PMID: 34323924 DOI: 10.1001/jamaoncol.2021.2328] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance Unresected locally advanced non-small cell lung cancer (LA-NSCLC) shows poor survival outcomes even after aggressive concurrent chemoradiotherapy. Whether metformin, a diabetes agent that inhibits the mitochondria oxidative phosphorylation chain, could improve radiotherapy and chemotherapy response in LA-NSCLC remains to be studied. Objective To examine whether metformin, given concurrently with chemoradiotherapy and as consolidation treatment, could improve outcomes in patients with LA-NSCLC. Design, Setting, and Participants The Ontario Clinical Oncology Group Advanced Lung Cancer Treatment With Metformin and Chemoradiotherapy (OCOG-ALMERA) study was a multicenter phase 2 randomized clinical trial. Patients were stratified for stage IIIA vs IIIB LA-NSCLC and use of consolidation chemotherapy. The trial was designed to enroll 96 patients with unresected LA-NSCLC who did not have diabetes. The trial was conducted from September 24, 2014, to March 8, 2019. Interventions Patients were randomized to platinum-based chemotherapy, concurrent with chest radiotherapy (60-63 Gy), with or without consolidation chemotherapy or the same treatment plus metformin, 2000 mg/d, during chemoradiotherapy and afterward for up to 12 months. Main Outcomes and Measures The primary outcome was the proportion of patients who experienced a failure event (ie, locoregional disease progression, distant metastases, death, and discontinuation of trial treatment or planned evaluations for any reason within 12 months). Proportions were compared using a 2-sided Fisher exact test. Conventional progression-free and overall survival were estimated using the Kaplan-Meier method. Adverse events were graded with Common Terminology Criteria for Adverse Events, version 4.03. All randomized patients were included in an intention-to-treat analysis. Results The trial was stopped early due to slow accrual. Between 2014 and 2019, 54 patients were randomized (26 in experimental arm and 28 in control arm). Participants included 30 women (55.6%); mean (SD) age was 65.6 (7.6) years. Treatment failure was detected in 18 patients (69.2%) receiving metformin within 1 year vs 12 (42.9%) control patients (P = .05). The 1-year progression-free survival rate was 34.8% (95% CI, 16.6%-53.7%) in the metformin arm and 63.0% (95% CI, 42.1%-78.1%) in the control arm (hazard ratio, 2.42; 95% CI, 1.14-5.10) The overall survival rates were 47.4% (95% CI, 26.3%-65.9%) in the metformin arm and 85.2% (95% CI, 65.2%-94.2%) in the control arm (hazard ratio, 3.80; 95% CI, 1.49-9.73). More patients in the experimental arm vs control arm (53.8% vs 25.0%) reported at least 1 grade 3 or higher adverse event. Conclusions and Relevance In this randomized clinical trial, the addition of metformin to chemoradiotherapy was associated with worse treatment efficacy and increased toxic effects compared with combined modality therapy alone. Metformin is not recommended in patients with LA-NSCLC who are candidates for chemoradiotherapy. Trial Registration ClinicalTrials.gov Identifier: NCT02115464.
Collapse
Affiliation(s)
- Theodoros Tsakiridis
- Juravinski Cancer Center, Hamilton Health Science, Hamilton, Ontario, Canada.,Department of Oncology, McMaster University, Hamilton, Ontario, Canada.,Walker Family Cancer Center, St Catharines, Ontario, Canada
| | - Gregory R Pond
- Juravinski Cancer Center, Hamilton Health Science, Hamilton, Ontario, Canada.,Department of Oncology, McMaster University, Hamilton, Ontario, Canada.,Ontario Clinical Oncology Group, Hamilton, Ontario, Canada
| | - Jim Wright
- Juravinski Cancer Center, Hamilton Health Science, Hamilton, Ontario, Canada.,Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Peter M Ellis
- Juravinski Cancer Center, Hamilton Health Science, Hamilton, Ontario, Canada.,Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Naseer Ahmed
- Cancer Care Manitoba, Winnipeg, Manitoba, Canada
| | | | - Wilson Roa
- Cross Cancer Institute, Edmonton, Alberta, Canada
| | | | - Anand Swaminath
- Juravinski Cancer Center, Hamilton Health Science, Hamilton, Ontario, Canada.,Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Gordon Okawara
- Juravinski Cancer Center, Hamilton Health Science, Hamilton, Ontario, Canada.,Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Marcin Wierzbicki
- Juravinski Cancer Center, Hamilton Health Science, Hamilton, Ontario, Canada.,Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Mario Valdes
- Grand River Cancer Center, Kitchener, Ontario, Canada
| | - Mark Levine
- Juravinski Cancer Center, Hamilton Health Science, Hamilton, Ontario, Canada.,Department of Oncology, McMaster University, Hamilton, Ontario, Canada.,Ontario Clinical Oncology Group, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Skinner H, Hu C, Tsakiridis T, Santana-Davila R, Lu B, Erasmus JJ, Doemer AJ, Videtic GMM, Coster J, Yang AX, Lee RY, Werner-Wasik M, Schaner PE, McCormack SE, Esparaz BT, McGarry RC, Bazan J, Struve T, Paulus R, Bradley JD. Addition of Metformin to Concurrent Chemoradiation in Patients With Locally Advanced Non-Small Cell Lung Cancer: The NRG-LU001 Phase 2 Randomized Clinical Trial. JAMA Oncol 2021; 7:1324-1332. [PMID: 34323922 DOI: 10.1001/jamaoncol.2021.2318] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance Non-small cell lung cancer (NSCLC) has relatively poor outcomes. Metformin has significant data supporting its use as an antineoplastic agent. Objective To compare chemoradiation alone vs chemoradiation and metformin in stage III NSCLC. Design, Setting, and Participants The NRG-LU001 randomized clinical trial was an open-label, phase 2 study conducted from August 24, 2014, to December 15, 2016. Patients without diabetes who were diagnosed with unresectable stage III NSCLC were stratified by performance status, histology, and stage. The setting was international and multi-institutional. This study examined prespecified endpoints, and data were analyzed on an intent-to-treat basis. Data were analyzed from February 25, 2019, to March 6, 2020. Interventions Chemoradiation and consolidation chemotherapy with or without metformin. Main Outcomes and Measures The primary outcome was 1-year progression-free survival (PFS), designed to detect 15% improvement in 1-year PFS from 50% to 65% (hazard ratio [HR], 0.622). Secondary end points included overall survival, time to local-regional recurrence, time to distant metastasis, and toxicity per Common Terminology Criteria for Adverse Events, version 4.03. Results A total of 170 patients were enrolled, with 167 eligible patients analyzed after exclusions (median age, 64 years [interquartile range, 58-72 years]; 97 men [58.1%]; 137 White patients [82.0%]), with 81 in the control group and 86 in the metformin group. Median follow-up was 27.7 months (range, 0.03-47.21 months) among living patients. One-year PFS rates were 60.4% (95% CI, 48.5%-70.4%) in the control group and 51.3% (95% CI, 39.8%-61.7%) in the metformin group (HR, 1.15; 95% CI, 0.77-1.73; P = .24). Clinical stage was the only factor significantly associated with PFS on multivariable analysis (HR, 1.79; 95% CI, 1.19-2.69; P = .005). One-year overall survival was 80.2% (95% CI, 69.3%-87.6%) in the control group and 80.8% (95% CI, 70.2%-87.9%) in the metformin group. There were no significant differences in local-regional recurrence or distant metastasis at 1 or 2 years. No significant difference in adverse events was observed between treatment groups. Conclusions and Relevance In this randomized clinical trial, the addition of metformin to concurrent chemoradiation was well tolerated but did not improve survival among patients with unresectable stage III NSCLC. Trial Registration ClinicalTrials.gov Identifier: NCT02186847.
Collapse
Affiliation(s)
- Heath Skinner
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Chen Hu
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | | | - Bo Lu
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | | - Steven E McCormack
- Metro-Minnesota Community Oncology Research Consortium, St Louis Park, Minnesota
| | | | | | - Jose Bazan
- Ohio State University Comprehensive Cancer Center, Columbus
| | - Timothy Struve
- University of Cincinnati/Barrett Cancer Center, Cincinnati, Ohio
| | - Rebecca Paulus
- NRG Oncology Statistics and Data Management Center, Philadelphia, Pennsylvania
| | | |
Collapse
|
11
|
Quantitative Proteomic Approach Reveals Altered Metabolic Pathways in Response to the Inhibition of Lysine Deacetylases in A549 Cells under Normoxia and Hypoxia. Int J Mol Sci 2021; 22:ijms22073378. [PMID: 33806075 PMCID: PMC8036653 DOI: 10.3390/ijms22073378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Growing evidence is showing that acetylation plays an essential role in cancer, but studies on the impact of KDAC inhibition (KDACi) on the metabolic profile are still in their infancy. Here, we analyzed, by using an iTRAQ-based quantitative proteomics approach, the changes in the proteome of KRAS-mutated non-small cell lung cancer (NSCLC) A549 cells in response to trichostatin-A (TSA) and nicotinamide (NAM) under normoxia and hypoxia. Part of this response was further validated by molecular and biochemical analyses and correlated with the proliferation rates, apoptotic cell death, and activation of ROS scavenging mechanisms in opposition to the ROS production. Despite the differences among the KDAC inhibitors, up-regulation of glycolysis, TCA cycle, oxidative phosphorylation and fatty acid synthesis emerged as a common metabolic response underlying KDACi. We also observed that some of the KDACi effects at metabolic levels are enhanced under hypoxia. Furthermore, we used a drug repositioning machine learning approach to list candidate metabolic therapeutic agents for KRAS mutated NSCLC. Together, these results allow us to better understand the metabolic regulations underlying KDACi in NSCLC, taking into account the microenvironment of tumors related to hypoxia, and bring new insights for the future rational design of new therapies.
Collapse
|
12
|
Investigation into the role of anti-diabetic agents in cachexia associated with metastatic cancer. Life Sci 2021; 274:119329. [PMID: 33711389 DOI: 10.1016/j.lfs.2021.119329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/19/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022]
Abstract
Cancer cachexia (CC) is a syndrome associated with cancer, and the global burden is increasing rapidly. Alteration in carbohydrate, lipid and protein metabolism along with systemic inflammation are characteristics of CC. Until now the available treatment for CC is limited to controlling inflammation and nutrition. Anti-diabetics are widely used agents to treat diabetics, this agent's act by regulating the carbohydrate metabolism, also they are known to have beneficial effects in maintaining protein and lipid balance. Role of anti-diabetics in cancer is being evaluated continuously and biguanides, dipeptidyl peptidase 4 (DPP4) inhibitors and Sodium glucose co-transporter 2 (SGLT2) inhibitors have proven anti-cancer potential. In this study, metastatic B16-F1 cell line induced cancer cachexia model used to evaluate potential of biguanides (metformin), DPP-4 inhibitors (teneligliptin and vildagliptin) and SGLT2 inhibitors (empagliflozin and dapagliflozin) in cancer cachexia. Our results suggest that anti-diabetic agents have potential to decrease rate of proliferation of tumor, restrict body mass markers, decrease inflammation, regulate carbohydrate mechanism and induce skeletal muscle hypertrophy. These findings may be helpful in management of cancer cachexia and increase the quality of life and survival chances of cancer cachexia patient.
Collapse
|
13
|
Emerging role of metabolic reprogramming in tumor immune evasion and immunotherapy. SCIENCE CHINA-LIFE SCIENCES 2020; 64:534-547. [PMID: 32815067 DOI: 10.1007/s11427-019-1735-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/20/2020] [Indexed: 12/11/2022]
Abstract
Mounting evidence has revealed that the therapeutic efficacy of immunotherapies is restricted to a small portion of cancer patients. A deeper understanding of how metabolic reprogramming in the tumor microenvironment (TME) regulates immunity remains a major challenge to tumor eradication. It has been suggested that metabolic reprogramming in the TME may affect metabolism in immune cells and subsequently suppress immune function. Tumor cells compete with infiltrating immune cells for nutrients and metabolites. Notably, the immunosuppressive TME is characterized by catabolic and anabolic processes that are critical for immune cell function, and elevated inhibitory signals may favor cancer immune evasion. The major energy sources that supply different immune cell subtypes also undergo reprogramming. We herein summarize the metabolic remodeling in tumor cells and different immune cell subtypes and the latest advances underlying the use of metabolic checkpoints in antitumor immunotherapies. In this context, targeting both tumor and immune cell metabolic reprogramming may enhance therapeutic efficacy.
Collapse
|
14
|
Schmoll D, Ziegler N, Viollet B, Foretz M, Even PC, Azzout-Marniche D, Nygaard Madsen A, Illemann M, Mandrup K, Feigh M, Czech J, Glombik H, Olsen JA, Hennerici W, Steinmeyer K, Elvert R, Castañeda TR, Kannt A. Activation of Adenosine Monophosphate-Activated Protein Kinase Reduces the Onset of Diet-Induced Hepatocellular Carcinoma in Mice. Hepatol Commun 2020; 4:1056-1072. [PMID: 32626837 PMCID: PMC7327225 DOI: 10.1002/hep4.1508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/19/2022] Open
Abstract
The worldwide obesity and type 2 diabetes epidemics have led to an increase in nonalcoholic fatty liver disease (NAFLD). NAFLD covers a spectrum of hepatic pathologies ranging from simple steatosis to nonalcoholic steatohepatitis, characterized by fibrosis and hepatic inflammation. Nonalcoholic steatohepatitis predisposes to the onset of hepatocellular carcinoma (HCC). Here, we characterized the effect of a pharmacological activator of the intracellular energy sensor adenosine monophosphate–activated protein kinase (AMPK) on NAFLD progression in a mouse model. The compound stimulated fat oxidation by activating AMPK in both liver and skeletal muscle, as revealed by indirect calorimetry. This translated into an ameliorated hepatic steatosis and reduced fibrosis progression in mice fed a diet high in fat, cholesterol, and fructose for 20 weeks. Feeding mice this diet for 80 weeks caused the onset of HCC. The administration of the AMPK activator for 12 weeks significantly reduced tumor incidence and size. Conclusion: Pharmacological activation of AMPK reduces NAFLD progression to HCC in preclinical models.
Collapse
Affiliation(s)
| | | | - Benoit Viollet
- Université de Paris Institut Cochin CNRS UMR 8104 INSERM U1016 Paris France
| | - Marc Foretz
- Université de Paris Institut Cochin CNRS UMR 8104 INSERM U1016 Paris France
| | - Patrick C Even
- UMR Nutrition Physiology and Ingestive Behavior AgroParisTech INRA Université Paris-Saclay Paris France
| | - Dalila Azzout-Marniche
- UMR Nutrition Physiology and Ingestive Behavior AgroParisTech INRA Université Paris-Saclay Paris France
| | | | | | | | | | | | | | | | | | | | | | | | - Aimo Kannt
- Sanofi R&D Frankfurt Germany.,Institute of Experimental Pharmacology Medical Faculty Mannheim University of Heidelberg Mannheim Germany.,Fraunhofer IME Translational Medicine and Pharmacology Frankfurt Germany
| |
Collapse
|
15
|
Xu H, Zhang J, Wang Q, Li Y, Zhang B. Fraxetin inhibits the proliferation of RL95-2 cells through regulation of metabolism. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1500-1505. [PMID: 32782668 PMCID: PMC7414476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE This project investigated the inhibitory effect of Fraxetin on endometrial cancer cell proliferation, and explored the possibility of applying Fraxetin in the treatment of endometrial cancer. METHODS Human endometrial cancer RL95-2 cell line was cultured in vitro, and the cells were administered different concentrations of Fraxetin. MTS was used to detect the inhibitory effect of Fraxetin on proliferation. Flow cytometry was applied to detect the effect of Fraxetin on RL95-2 cell cycle. Western blot was employed to determine the expression of apoptosis-related proteins, such as caspase-3, caspase-9, p-AMPK, AMPK, p-mTOR, and mTOR. JC-1 staining was used to measure the mitochondrial membrane potential changes in the cells before and after the administration. The glucose oxidase method and the lactate oxidase method were used to detect changes in glucose consumption and lactic acid production in endometrial cancer cells before and after drug intervention, respectively. RESULTS Fraxetin inhibited cell proliferation and promoted apoptosis. The expressions of caspase-3 and caspase-9 increased significantly, p-AMPK gradually increased, and mitochondrial membrane potential weakened. Glucose consumption and lactic acid production increased significantly. CONCLUSION Fraxetin can inhibit the proliferation of RL95-2 cells, promote apoptosis, inhibit mitochondrial oxidation of endometrial cancer cells, promote anaerobic metabolism of cells, and exert an inhibitory effect on endometrial cancer cells by inhibiting mitochondria.
Collapse
Affiliation(s)
- Hui Xu
- Department of Obstetrics and Gynecology of Xuzhou Central Hospital Xuzhou 221009, China
| | - Jingbo Zhang
- Department of Obstetrics and Gynecology of Xuzhou Central Hospital Xuzhou 221009, China
| | - Qing Wang
- Department of Obstetrics and Gynecology of Xuzhou Central Hospital Xuzhou 221009, China
| | - Yanyu Li
- Department of Obstetrics and Gynecology of Xuzhou Central Hospital Xuzhou 221009, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology of Xuzhou Central Hospital Xuzhou 221009, China
| |
Collapse
|
16
|
Exploiting Cancer's Tactics to Make Cancer a Manageable Chronic Disease. Cancers (Basel) 2020; 12:cancers12061649. [PMID: 32580319 PMCID: PMC7352192 DOI: 10.3390/cancers12061649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/26/2022] Open
Abstract
The history of modern oncology started around eighty years ago with the introduction of cytotoxic agents such as nitrogen mustard into the clinic, followed by multi-agent chemotherapy protocols. Early success in radiation therapy in Hodgkin lymphoma gave birth to the introduction of radiation therapy into different cancer treatment protocols. Along with better understanding of cancer biology, we developed drugs targeting cancer-related cellular and genetic aberrancies. Discovery of the crucial role of vasculature in maintenance, survival, and growth of a tumor opened the way to the development of anti-angiogenic agents. A better understanding of T-cell regulatory pathways advanced immunotherapy. Awareness of stem-like cancer cells and their role in cancer metastasis and local recurrence led to the development of drugs targeting them. At the same time, sequential and rapidly accelerating advances in imaging and surgical technology have markedly increased our ability to safely remove ≥90% of tumor cells. While we have advanced our ability to kill cells from multiple directions, we have still failed to stop most types of cancer from recurring. Here we analyze the tactics employed in cancer evolution; namely, chromosomal instability (CIN), intra-tumoral heterogeneity (ITH), and cancer-specific metabolism. These tactics govern the resistance to current cancer therapeutics. It is time to focus on maximally delaying the time to recurrence, with drugs that target these fundamental tactics of cancer evolution. Understanding the control of CIN and the optimal state of ITH as the most important tactics in cancer evolution could facilitate the development of improved cancer therapeutic strategies designed to transform cancer into a manageable chronic disease.
Collapse
|
17
|
Li X, Liu J, Liu M, Xia C, Zhao Q. The Lnc LINC00461/miR-30a-5p facilitates progression and malignancy in non-small cell lung cancer via regulating ZEB2. Cell Cycle 2020; 19:825-836. [PMID: 32106756 PMCID: PMC7145333 DOI: 10.1080/15384101.2020.1731946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Studies have found that Lnc LINC00461 is an important regulator of cancer. However, the function of Lnc LINC00461 in NSCLC is not known. Therefore, this experimental design was based on Lnc LINC00461 to explore the pathogenesis of Non-small cell lung cancer (NSCLC). RT-qPCR was used to detect the expression of lnc LINC00461 and miR-30a-5p in NSCLC. The CCK-8 method and Transwell assay were used to detect the effects of lnc LINC00461 and miR-30a-5p on proliferation, migration in NSCLC. Target gene prediction and screening, luciferase reporter assays were used to validate downstream target genes of lnc LINC00461 and miR-30a-5p. The protein expression of ZEB2 was detected by Western blot. The tumor changes in mice were detected by in vivo experiments. Lnc LINC00461 was significantly elevated in NSCLC. Lnc LINC00461 knockdown significantly inhibited proliferation and migration in NSCLC. miR-30a-5p was a direct target of lnc LINC00461 and miR-30a-5p was significantly reduced in NSCLC. shLINC00461 and miR-30a-5p inhibitor partially eliminated the effect of shLINC00461 on cell proliferation. And lnc LINC00461 was negatively correlated with miR-30a-5p expression. ZEB2 was a direct target of miR-30a-5p, and miR-30a-5p mimic and sh lnc LINC00461 significantly reduced ZEB2 expression levels. Finally, In vivo, lnc LINC00461 promoted tumor growth by modulating the miR-30a-5p / ZEB2 axis. In conclusion, LncLINC00461 promoted the progression of NSCLC by the miR-30a-5p / ZEB2 axis, and lnc LINC00461 may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xin Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin, China,Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China,CONTACT Xin Li
| | - Jinghao Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin, China,Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Minghui Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin, China,Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunqiu Xia
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin, China,Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Qingchun Zhao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin, China,Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
18
|
Jung JH, Hwang J, Kim JH, Sim DY, Im E, Park JE, Park WY, Shim BS, Kim B, Kim SH. Phyotochemical candidates repurposing for cancer therapy and their molecular mechanisms. Semin Cancer Biol 2019; 68:164-174. [PMID: 31883914 DOI: 10.1016/j.semcancer.2019.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/18/2019] [Accepted: 12/15/2019] [Indexed: 12/24/2022]
Abstract
Though limited success through chemotherapy, radiotherapy and surgery has been obtained for efficient cancer therapy for modern decades, cancers are still considered high burden to human health worldwide to date. Recently repurposing drugs are attractive with lower cost and shorter time compared to classical drug discovery, just as Metformin from Galega officinalis, originally approved for treating Type 2 diabetes by FDA, is globally valued at millions of US dollars for cancer therapy. As most previous reviews focused on FDA approved drugs and synthetic agents, current review discussed the anticancer potential of phytochemicals originally approved for treatment of cardiovascular diseases, diabetes, infectious diarrhea, depression and malaria with their molecular mechanisms and efficacies and suggested future research perspectives.
Collapse
Affiliation(s)
- Ji Hoon Jung
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Jisung Hwang
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Ju-Ha Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Deok Yong Sim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Eunji Im
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Ji Eon Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Woon Yi Park
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Bum-Sang Shim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Bonglee Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Laboratory, College of Korean Medicine, Seoul 02447, Republic of Korea.
| |
Collapse
|
19
|
Kusano Y, Tsujihara N, Masui H, Shibata T, Uchida K, Takeuchi W. Diosgenin Supplementation Prevents Lipid Accumulation and Induces Skeletal Muscle-Fiber Hypertrophy in Rats. J Nutr Sci Vitaminol (Tokyo) 2019; 65:421-429. [PMID: 31666479 DOI: 10.3177/jnsv.65.421] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Diosgenin (Dio) is a steroid sapogenin found in plants such as Dioscorea species, and is recognized as a phytochemical against various disorders as well as a natural precursor of steroidal drugs. The present study used rats fed high-cholesterol (Chol) diets supplemented with or without 0.5% Dio for 6 wk to investigate the effects of dietary Dio on lipid metabolism. Dio supplementation significantly increased serum high-density lipoprotein Chol concentrations and fecal Chol content, and significantly decreased fecal bile acid content compared rats fed a high-Chol diet alone, showing that dietary Dio may facilitate excretion of Chol rather than bile acids. A reduction in the liver triglyceride content and intra-abdominal visceral fat was observed in Dio-supplemented rats. Interestingly, dietary Dio also significantly increased the skeletal muscle-fiber diameter and area in the thigh muscles of the rats. Mouse myoblast-derived C2C12 cells were used to examine whether Dio directly affected skeletal muscle. Dio promoted fusion of myoblasts into multinucleated cells or myotubes. Furthermore, in myotube C2C12 cells, protein levels of phosphorylated AMP-activated protein kinase (AMPK) increased with Dio treatment in a dose-dependent manner. These results indicate that Dio may not only induce myoblast fusion and enhance skeletal muscle as an energy expenditure organ, but may also activate the catabolic pathway via AMPK in skeletal muscle cells. Thus, these effects of Dio on skeletal muscles may contribute to inhibition of visceral fat accumulation.
Collapse
Affiliation(s)
- Yuri Kusano
- College of Bioscience and Biotechnology, Chubu University
| | - Nobuko Tsujihara
- Faculty of Human Life and Environmental Sciences, Nagoya Women's University
| | - Hironori Masui
- Department of Human Life and Environmental Sciences, Mukogawa Women's University
| | - Takahiro Shibata
- Graduate School of Bioagricultural Sciences and School of Agricultural Sciences, Nagoya University
| | - Koji Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Wakako Takeuchi
- Faculty of Human Life and Environmental Sciences, Nagoya Women's University
| |
Collapse
|
20
|
Shen JH, Chen PH, Liu HD, Huang DA, Li MM, Guo K. HSF1/AMPKα2 mediated alteration of metabolic phenotypes confers increased oxaliplatin resistance in HCC cells. Am J Cancer Res 2019; 9:2349-2363. [PMID: 31815039 PMCID: PMC6895450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023] Open
Abstract
Recent studies suggest that up-regulated HSF1 possesses metabolic phenotypes switch and chemoresistance in cancer cells. However, the mechanism in which these characteristics are still ambiguous. Our study aims to identify how HSF1 confers chemoresistance through regulating metabolic pathway in hepatocellular carcinoma (HCC). Oxaliplatin (OXA)-resistant HCC cells (HCC-OXR) in both of abundant glucose (AG; 25 mM) and low glucose (LG; 5.5 mM) conditions were constructed; then glucose consumption, lactate production, intracellular ATP level and oxygen consumption of parental and OXA-resistant cells were determined by using the associated detected kits. Moreover, HSF1 was knocked down to analyze its effects on metabolic phenotypes alteration and chemoresistance formation in HCC cells. Compared to cells in AG condition, HCC cells delayed to form chemoresistance to OXA in LG condition; and OXA-resistant cells underwent a metabolic switch from glycolysis to oxidative phosphorylation (OXPHOS), which presented decreased glucose uptake and lactate production with increased levels of oxygen consumption and intercellular ATP; interestingly, this energy-producing pathway was blocked in HSF1-knockdown OXA-resistant cells, especially in LG condition. Analysis on previous data revealed that AMPK pathway was a critical regulator in the metabolism of OXA-resistance HCC cells. Furthermore, AMPKα2 was identified as an important factor regulated by HSF1 to achieve metabolic phenotype switch in OXA-resistance HCC cells. Consequently, these results suggest that combining restrictive glucose uptake and targeting HSF1/AMPKα2 is an attractive strategy to prevent chemoresistance to OXA in HCC patients.
Collapse
Affiliation(s)
- Jia Hu Shen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationShanghai, China
| | - Ping Hua Chen
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, China
| | - He Deng Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationShanghai, China
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, China
| | - Dan Ai Huang
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi, China
| | - Miao Miao Li
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationShanghai, China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of EducationShanghai, China
| |
Collapse
|
21
|
Agrawal S, Vamadevan P, Mazibuko N, Bannister R, Swery R, Wilson S, Edwards S. A New Method for Ethical and Efficient Evidence Generation for Off-Label Medication Use in Oncology (A Case Study in Glioblastoma). Front Pharmacol 2019; 10:681. [PMID: 31316378 PMCID: PMC6610246 DOI: 10.3389/fphar.2019.00681] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/27/2019] [Indexed: 12/23/2022] Open
Abstract
In oncology, preclinical and early clinical data increasingly support the use of a number of candidate "non-cancer" drugs in an off-label setting against multiple tumor types. In particular, metabolically targeted drugs show promise as adjuvant chemo and radiosensitizers, improving or restoring sensitivity to standard therapies. The time has come for large scale clinical studies of off-label drugs in this context. However, it is well recognized that high-cost randomized controlled trials may not be an economically viable option for studying patent-expired off-label drugs. In some cases, randomized trials could also be considered as ethically controversial. This perspective article presents a novel approach to generating additional clinical data of sufficient quality to support changes in clinical practice and relabeling of such drugs for use in oncology. Here, we suggest that a pluralistic evidence base and triangulation of evidence can support clinical trial data for off-label drug use in oncology. An example of an off-label drug protocol brought to the clinic for glioblastoma patients is presented, along with preliminary retrospective data from the METRICS study (NCT02201381). METRICS is a novel participant-funded, open-label, non-randomized, single-arm real-world study designed to gather high-quality evidence on the safety, tolerability, and effectiveness of four off-label metabolically targeted medicines as an adjunctive cancer treatment for glioblastoma patients.
Collapse
Affiliation(s)
- Samir Agrawal
- Blizard Institute, Queen Mary University of London, London, United Kingdom
- St Bartholomew’s Hospital, Bart’s Health NHS Trust, London, United Kingdom
| | | | - Ndaba Mazibuko
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | | | | | | | - Sarah Edwards
- Department of Science and Technology Studies, University College London, London, United Kingdom
| |
Collapse
|
22
|
Ricci F, Brunelli L, Affatato R, Chilà R, Verza M, Indraccolo S, Falcetta F, Fratelli M, Fruscio R, Pastorelli R, Damia G. Overcoming platinum-acquired resistance in ovarian cancer patient-derived xenografts. Ther Adv Med Oncol 2019; 11:1758835919839543. [PMID: 31258626 PMCID: PMC6591669 DOI: 10.1177/1758835919839543] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/11/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Epithelial ovarian cancer is the most lethal gynecological cancer and the
high mortality is due to the frequent presentation at advanced stage, and to
primary or acquired resistance to platinum-based therapy. Methods: We developed three new models of ovarian cancer patient-derived xenografts
(ovarian PDXs) resistant to cisplatin (cDDP) after multiple in
vivo drug treatments. By different and complementary approaches
based on integrated metabolomics (both targeted and untargeted mass
spectrometry-based techniques), gene expression, and functional assays
(Seahorse technology) we analyzed and compared the tumor metabolic profile
in each sensitive and their corresponding cDDP-resistant PDXs. Results: We found that cDDP-sensitive and -resistant PDXs have a different metabolic
asset. In particular, we found, through metabolomic and gene expression
approaches, that glycolysis, tricarboxylic acid cycle and urea cycle
pathways were deregulated in resistant versus sensitive
PDXs. In addition, we observed that oxygen consumption rate and
mitochondrial respiration were higher in resistant PDXs than in sensitive
PDXs under acute stress conditions. An increased oxidative phosphorylation
in cDDP-resistant sublines led us to hypothesize that its interference could
be of therapeutic value. Indeed, in vivo treatment of
metformin and cDDP was able to partially reverse platinum resistance. Conclusions: Our data strongly reinforce the idea that the development of acquired cDDP
resistance in ovarian cancer can bring about a rewiring of tumor metabolism,
and that this might be exploited therapeutically.
Collapse
Affiliation(s)
- Francesca Ricci
- Department of Oncology, Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Brunelli
- Department of Environmental Health Sciences, Laboratory of Mass Spectometry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberta Affatato
- Department of Oncology, Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Rosaria Chilà
- Department of Oncology, Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Martina Verza
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - Stefano Indraccolo
- Immunology and Molecular Oncology Unit, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | | | | | - Robert Fruscio
- Department of Medicine and Surgery, University of Milan Bicocca, 20900, Monza, Italy
| | - Roberta Pastorelli
- Department of Environmental Health Sciences, Laboratory of Mass Spectometry, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Giovanna Damia
- Department of Oncology, Laboratory of Molecular Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
23
|
Broadfield LA, Marcinko K, Tsakiridis E, Zacharidis PG, Villani L, Lally JSV, Menjolian G, Maharaj D, Mathurin T, Smoke M, Farrell T, Muti P, Steinberg GR, Tsakiridis T. Salicylate enhances the response of prostate cancer to radiotherapy. Prostate 2019; 79:489-497. [PMID: 30609074 DOI: 10.1002/pros.23755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/29/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Radiotherapy (RT) is a key therapeutic modality for prostate cancer (PrCa), but RT resistance necessitates dose-escalation, often causing bladder and rectal toxicity. Aspirin, a prodrug of salicylate (SAL), has been associated with improved RT response in clinical PrCa cases, but the potential mechanism mediating this effect is unknown. SAL activates the metabolic stress sensor AMP-activated protein kinase (AMPK), which inhibits de novo lipogenesis, and protein synthesis via inhibition of Acetyl-CoA Carboxylase (ACC), and the mammalian Target of Rapamycin (mTOR), respectively. RT also activates AMPK through a mechanism distinctly different from SAL. Therefore, combining these two therapies may have synergistic effects on suppressing PrCa. Here, we examined the potential of SAL to enhance the response of human PrCa cells and tumors to RT. METHODS Androgen-insensitive (PC3) and -sensitive (LNCaP) PrCa cells were subjected to proliferation and clonogenic survival assays after treatment with clinically relevant doses of SAL and RT. Balb/c nude mice with PC3 xenografts were fed standard chow diet or chow diet supplemented with 2.5 g/kg salsalate (SAL pro-drug dimer) one week prior to a single dose of 0 or 10 Gy RT. Immunoblotting analysis of signaling events in the DNA repair and AMPK-mTOR pathways and lipogenesis were assessed in cells treated with SAL and RT. RESULTS SAL inhibited proliferation and clonogenic survival in PrCa cells and enhanced the inhibition mediated by RT. Salsalate, added to diet, enhanced the anti-tumor effects of RT in PC3 tumor xenografts. RT activated genotoxic stress markers and the activity of mTOR pathway and AMPK and mediated inhibitory phosphorylation of ACC. Interestingly, SAL enhanced the effects of RT on AMPK and ACC but blocked markers of mTOR activation. CONCLUSIONS Our results show that SAL can enhance RT responses in PrCa. Salsalate is a promising agent to investigate this concept in prospective clinical trials of PrCa in combination with RT.
Collapse
Affiliation(s)
- Lindsay A Broadfield
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Katarina Marcinko
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Evangelia Tsakiridis
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Panayiotis G Zacharidis
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Linda Villani
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - James S V Lally
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gabe Menjolian
- Division of Radiotherapy, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Danitra Maharaj
- Division of Radiotherapy, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Tammy Mathurin
- Division of Radiotherapy, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Marcia Smoke
- Division of Radiotherapy, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Thomas Farrell
- Division of Physics, Juravinski Cancer Center, Hamilton, Ontario, Canada
| | - Paola Muti
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Theodoros Tsakiridis
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
- Divisions of Radiation Oncology, Juravinski Cancer Center, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
24
|
Sánchez BG, Bort A, Mateos-Gómez PA, Rodríguez-Henche N, Díaz-Laviada I. Combination of the natural product capsaicin and docetaxel synergistically kills human prostate cancer cells through the metabolic regulator AMP-activated kinase. Cancer Cell Int 2019; 19:54. [PMID: 30899201 PMCID: PMC6408806 DOI: 10.1186/s12935-019-0769-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
Background Current chemotherapy for castration-resistant prostate cancer is established on taxane-based compounds like docetaxel. However, eventually, the development of toxic side effects and resistance limits the therapeutic benefit being the major concern in the treatment of prostate cancer. Combination therapies in many cases, enhance drug efficacy and delay the appearance of undesired effects, representing an important option for the treatment of castration-resistant prostate cancer. In this study, we tested the efficacy of the combination of docetaxel and capsaicin, the pungent ingredient of hot chili peppers, on prostate cancer cells proliferation. Methods Prostate cancer LNCaP and PC3 cell lines were used in this study. Levels of total and phosphorylated forms of Akt, mTOR, S6, LKB1, AMPK and ACC were determined by Western blot. AMPK, LKB1 and Akt knock down was performed by siRNA. PTEN was overexpressed by transient transfection with plasmids. Xenograft prostate tumors were induced in nude mice and treatments (docetaxel and capsaicin) were administered intraperitoneally. Statistical analyses were performed with GraphPad software. Combination index was calculated with Compusyn software. Results Docetaxel and capsaicin synergistically inhibited the growth of LNCaP and PC3 cells, with a combination index lower than 1 for most of the combinations tested. Co-treatment with docetaxel and capsaicin notably decreased Akt and its downstream targets mTOR and S6 phosphorylation. Overexpression of PTEN phosphatase abrogated the synergistic antiproliferative effect of docetaxel and capsaicin. The combined treatment also increased the phosphorylation of AMP-activated kinase (AMPK) and the phosphorylation of its substrate ACC. In addition, pharmacological inhibition of AMPK with dorsomorphin (compound C) as well as knock down by siRNA of AMPK or its upstream kinase LKB1, abolished the synergy of docetaxel and capsaicin. Mechanistically, we showed that the synergistic anti-proliferative effect may be attributed to two independent effects: Inhibition of the PI3K/Akt/mTOR signaling pathway by one side, and AMPK activation by the other. In vivo experiments confirmed the synergistic effects of docetaxel and capsaicin in reducing the tumor growth of PC3 cells. Conclusion Combination of docetaxel and capsaicin represents a therapeutically relevant approach for the treatment of Prostate Cancer.
Collapse
Affiliation(s)
- Belén G Sánchez
- 1Department of Systems Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, Alcala University, Alcalá de Henares, Ctra A-2 Km 32., 28871 Madrid, Spain
| | - Alicia Bort
- 1Department of Systems Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, Alcala University, Alcalá de Henares, Ctra A-2 Km 32., 28871 Madrid, Spain
| | - Pedro A Mateos-Gómez
- 1Department of Systems Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, Alcala University, Alcalá de Henares, Ctra A-2 Km 32., 28871 Madrid, Spain
| | - Nieves Rodríguez-Henche
- 1Department of Systems Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, Alcala University, Alcalá de Henares, Ctra A-2 Km 32., 28871 Madrid, Spain
| | - Inés Díaz-Laviada
- 1Department of Systems Biology, Biochemistry and Molecular Biology Unit, School of Medicine and Health Sciences, Alcala University, Alcalá de Henares, Ctra A-2 Km 32., 28871 Madrid, Spain.,2Chemical Research Institute "Andrés M. del Río" (IQAR), Alcalá University, Alcalá de Henares, 28871 Madrid, Spain
| |
Collapse
|
25
|
Metformin Use and Lung Cancer Risk in Diabetic Patients: A Systematic Review and Meta-Analysis. DISEASE MARKERS 2019; 2019:6230162. [PMID: 30881522 PMCID: PMC6387718 DOI: 10.1155/2019/6230162] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/16/2018] [Indexed: 02/06/2023]
Abstract
Background Antidiabetic medications (ADMs) can alter the risk of different types of cancer, but the relationship between lung cancer incidence and metformin remains controversial. Our aim was to quantitatively estimate the relationship between incidences of lung cancer and metformin in patients with diabetes in this meta-analysis. Methods We performed a search in PubMed, Embase, ISI Web of Science, and Cochrane Library until September 20, 2017. The odds ratio (OR), relative risk (RR) or hazard ratio (HR), and 95% confidence interval (95% CI) were estimated using the random-effect model. The Newcastle-Ottawa Scale (NOS) was used to assess the study quality. Results A total of 13 studies (10 cohort studies and 3 case-control studies) were included in the meta-analysis. Compared to nonmetformin users, metformin probably decreased lung cancer incidence in diabetic patients (RR = 0.89; 95% CI, 0.83-0.96; P = 0.002) with significant heterogeneity (Q = 35.47, I2 = 66%, P = 0.0004). Subgroup analysis showed that cohort studies (RR = 0.91; 95% CI, 0.85-0.98; P = 0.008), location in Europe (RR = 0.90; 95% CI, 0.86-0.94; P < 0.0001), the control drug of the sulfonylurea group (RR = 0.91; 95% CI, 0.86-0.96; P = 0.001), and adjusting for smoking (RR = 0.86; 95% CI, 0.75-1.00; P = 0.05) may be related to lower lung cancer risk. No significant publication bias was detected using a funnel plot. Conclusion Metformin use was related to a lower lung cancer risk in diabetic patients compared to nonusers, but this result was retrieved from observational studies and our findings need more well-designed RCTs to confirm the association.
Collapse
|
26
|
Zhou X, Liu S, Lin X, Xu L, Mao X, Liu J, Zhang Z, Jiang W, Zhou H. Metformin Inhibit Lung Cancer Cell Growth and Invasion in Vitro as Well as Tumor Formation in Vivo Partially by Activating PP2A. Med Sci Monit 2019; 25:836-846. [PMID: 30693913 PMCID: PMC6362762 DOI: 10.12659/msm.912059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The aim of this study was to investigate whether PP2A activation is involved in the anti-cancer activity of metformin. Material/Methods A549 and H1651 human lung cancer cells were constructed with stable α4 overexpression (O/E α4) or knockdown of PP2A catalytic subunit A/B(sh-PP2Ac). Influences of okadaic acid (OA) treatment, O/E α4 or sh-PP2Ac on metformin treated cells were investigated by cell viability, proliferation, apoptosis, and Transwell invasion assay in vitro. Protein expression levels of Bax, Bcl-2, Myc, and Akt as well as serine phosphorylation level of Bax, Myc, and Akt were examined by western blot. For in vivo assays, wild type (WT) or modified A549 cells were subcutaneously injected in nude mice, and metformin treatment on these xenografted tumors were assayed by tumor formation assay and western blot detecting cell proliferation marker PCNA (proliferating cell nuclear antigen) as well as protein expression level and serine phosphorylation level of Akt and Myc. Results Metformin treatment significantly reduced A549 or H1651 cell growth and invasive capacity in vitro as well as Ser184 phosphorylation of Bax, Ser62 phosphorylation of Myc, and Ser473 phosphorylation of Akt, all of which could be partially attenuated by OA treatment, O/E α4 or sh-PP2Ac. Metformin treatment also significantly reduced tumor formation in vivo as well as protein expression of PCNA, Akt, Myc, and serine phosphorylation of the latter 2, which can be partially blocked by O/E α4 or sh-PP2Ac. Conclusions Metformin reduced lung cancer cell growth and invasion in vitro as well as tumor formation in vivo partially by activating PP2A.
Collapse
Affiliation(s)
- Xiaohu Zhou
- Department of Respiration, Jiangshan People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Shanshan Liu
- Department of Internal Medicine, Jiangshan People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Xuemei Lin
- Department of Respiration, Jiangshan People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Liping Xu
- Department of Respiration, Jiangshan People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Xiaoming Mao
- Department of Respiration, Jiangshan People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Jun Liu
- Department of Respiration, Jiangshan People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Zixing Zhang
- Department of Respiration, Jiangshan People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Wenhong Jiang
- Department of Respiration, Jiangshan People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Hua Zhou
- Department of Respiration, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
27
|
Craig PM, Moyes CD, LeMoine CM. Sensing and responding to energetic stress: Evolution of the AMPK network. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:156-169. [DOI: 10.1016/j.cbpb.2017.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 01/24/2023]
|
28
|
De Bruycker S, Vangestel C, Van den Wyngaert T, Pauwels P, Wyffels L, Staelens S, Stroobants S. 18F-Flortanidazole Hypoxia PET Holds Promise as a Prognostic and Predictive Imaging Biomarker in a Lung Cancer Xenograft Model Treated with Metformin and Radiotherapy. J Nucl Med 2018; 60:34-40. [PMID: 29980581 DOI: 10.2967/jnumed.118.212225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/23/2018] [Indexed: 12/15/2022] Open
Abstract
Metformin may improve tumor oxygenation and thus radiotherapy response, but imaging biomarkers for selection of suitable patients are still under investigation. First, we assessed the effect of acute metformin administration on non-small cell lung cancer xenograft tumor hypoxia using PET imaging with the hypoxia tracer 18F-flortanidazole. Second, we verified the effect of a single dose of metformin before radiotherapy on long-term treatment outcome. Third, we examined the potential of baseline 18F-flortanidazole as a prognostic or predictive biomarker for treatment response. Methods: A549 tumor-bearing mice underwent a 18F-flortanidazole PET/CT scan to determine baseline tumor hypoxia. The next day, mice received a 100 mg/kg intravenous injection of metformin. 18F-flortanidazole was administered intravenously 30 min later, and a second PET/CT scan was performed to assess changes in tumor hypoxia. Two days later, the mice were divided into 3 therapy groups: controls (group 1), radiotherapy (group 2), and metformin + radiotherapy (group 3). Animals received saline (groups 1-2) or metformin (100 mg/kg; group 3) intravenously, followed by a single radiotherapy dose of 10 Gy (groups 2-3) or sham irradiation (group 1) 30 min later. Tumor growth was monitored triweekly by caliper measurement, and tumor volume relative to baseline was calculated. The tumor doubling time (TDT), that is, the time to reach twice the preirradiation tumor volume, was defined as the endpoint. Results: Thirty minutes after metformin treatment, 18F-flortanidazole demonstrated a significant change in tumor hypoxia, with a mean intratumoral reduction in 18F-flortanidazole tumor-to-background ratio (TBR) from 3.21 ± 0.13 to 2.87 ± 0.13 (P = 0.0001). Overall, relative tumor volume over time differed across treatment groups (P < 0.0001). Similarly, the median TDT was 19, 34, and 52 d in controls, the radiotherapy group, and the metformin + radiotherapy group, respectively (log-rank P < 0.0001). Both baseline 18F-flortanidazole TBR (hazard ratio, 2.0; P = 0.0004) and change from baseline TBR (hazard ratio, 0.39; P = 0.04) were prognostic biomarkers for TDT irrespective of treatment, and baseline TBR predicted metformin-specific treatment effects that were dependent on baseline tumor hypoxia. Conclusion: Using 18F-flortanidazole PET imaging in a non-small cell lung cancer xenograft model, we showed that metformin may act as a radiosensitizer by increasing tumor oxygenation and that baseline 18F-flortanidazole shows promise as an imaging biomarker.
Collapse
Affiliation(s)
- Sven De Bruycker
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Christel Vangestel
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium; and
| | - Tim Van den Wyngaert
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium; and
| | - Patrick Pauwels
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Belgium
| | - Leonie Wyffels
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium.,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium; and
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium
| | - Sigrid Stroobants
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Wilrijk, Belgium .,Department of Nuclear Medicine, Antwerp University Hospital, Edegem, Belgium; and
| |
Collapse
|
29
|
Wang JC, Sun X, Ma Q, Fu GF, Cong LL, Zhang H, Fan DF, Feng J, Lu SY, Liu JL, Li GY, Liu PJ. Metformin's antitumour and anti-angiogenic activities are mediated by skewing macrophage polarization. J Cell Mol Med 2018; 22:3825-3836. [PMID: 29726618 PMCID: PMC6050465 DOI: 10.1111/jcmm.13655] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022] Open
Abstract
Beneficial effects of metformin on cancer risk and mortality have been proved by epidemiological and clinical studies, thus attracting research interest in elucidating the underlying mechanisms. Recently, tumour‐associated macrophages (TAMs) appeared to be implicated in metformin‐induced antitumour activities. However, how metformin inhibits TAMs‐induced tumour progression remains ill‐defined. Here, we report that metformin‐induced antitumour and anti‐angiogenic activities were not or only partially contributed by its direct inhibition of functions of tumour and endothelial cells. By skewing TAM polarization from M2‐ to M1‐like phenotype, metformin inhibited both tumour growth and angiogenesis. Depletion of TAMs by clodronate liposomes eliminated M2‐TAMs‐induced angiogenic promotion, while also abrogating M1‐TAMs‐mediated anti‐angiogenesis, thus promoting angiogenesis in tumours from metformin treatment mice. Further in vitro experiments using TAMs‐conditioned medium and a coculture system were performed, which demonstrated an inhibitory effect of metformin on endothelial sprouting and tumour cell proliferation promoted by M2‐polarized RAW264.7 macrophages. Based on these results, metformin‐induced inhibition of tumour growth and angiogenesis is greatly contributed by skewing of TAMs polarization in microenvironment, thus offering therapeutic opportunities for metformin in cancer treatment.
Collapse
Affiliation(s)
- Ji-Chang Wang
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.,Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xin Sun
- Department of Thoracic Surgery and Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Qiang Ma
- Department of Peripheral Vascular Diseases, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Gui-Feng Fu
- Medical Imaging Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Long-Long Cong
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hong Zhang
- Department of Neurology, First Hospital of Yulin City, Yulin City, Shaanxi Province, China
| | - De-Fu Fan
- Department of Neurosurgery, People's Hospital of Qu Wo Country, Linfen City, Shanxi Province, China
| | - Jun Feng
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shao-Ying Lu
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Jian-Lin Liu
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Guang-Yue Li
- Department of Science and Technology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Pei-Jun Liu
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
30
|
Chukkapalli V, Gordon LI, Venugopal P, Borgia JA, Karmali R. Metabolic changes associated with metformin potentiates Bcl-2 inhibitor, Venetoclax, and CDK9 inhibitor, BAY1143572 and reduces viability of lymphoma cells. Oncotarget 2018; 9:21166-21181. [PMID: 29765528 PMCID: PMC5940409 DOI: 10.18632/oncotarget.24989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/06/2018] [Indexed: 12/21/2022] Open
Abstract
Metformin exerts direct anti-tumor effects by activating AMP-activated protein kinase (AMPK), a major sensor of cellular metabolism in cancer cells. This, in turn, inhibits pro-survival mTOR signaling. Metformin has also been shown to disrupt complex 1 of the mitochondrial electron transport chain. Here, we explored the lymphoma specific anti-tumor effects of metformin using Daudi (Burkitt), SUDHL-4 (germinal center diffuse large B-cell lymphoma; GC DLBCL), Jeko-1 (Mantle-cell lymphoma; MCL) and KPUM-UH1 (double hit DLBCL) cell lines. We demonstrated that metformin as a single agent, especially at high concentrations produced significant reductions in viability and proliferation only in Daudi and SUDHL-4 cell lines with associated alterations in mitochondrial oxidative and glycolytic metabolism. As bcl-2 proteins, cyclin dependent kinases (CDK) and phosphoinositol-3- kinase (PI3K) also influence mitochondrial physiology and metabolism with clear relevance to the pathogenesis of lymphoma, we investigated the potentiating effects of metformin when combined with novel agents Venetoclax (bcl-2 inhibitor), BAY-1143572 (CDK9 inhibitor) and Idelalisib (p110δ- PI3K inhibitor). Co-treating KPUM-UH1 and SUDHL-4 cells with 10 mM of metformin resulted in 1.4 fold and 8.8 fold decreases, respectively, in IC-50 values of Venetoclax. By contrast, 3-fold and 10 fold reduction in IC-50 values of BAY-1143572 in Daudi and Jeko-1 cells respectively was seen in the presence of 10 mM of metformin. No change in IC-50 value for Idelalisib was observed across cell lines. These data suggest that although metformin is not a potent single agent, targeting cancer metabolism with similar but more effective drugs in novel combination with either bcl-2 or CDK9 inhibitors warrants further exploration.
Collapse
Affiliation(s)
- Vineela Chukkapalli
- Departments of Hematology, Oncology and Stem Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Leo I Gordon
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Parameswaran Venugopal
- Departments of Hematology, Oncology and Stem Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Jeffrey A Borgia
- Departments of Pathology and Cell and Molecular Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Reem Karmali
- Division of Hematology/Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| |
Collapse
|
31
|
The role of compartmentalized signaling pathways in the control of mitochondrial activities in cancer cells. Biochim Biophys Acta Rev Cancer 2018; 1869:293-302. [PMID: 29673970 DOI: 10.1016/j.bbcan.2018.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 02/06/2023]
Abstract
Mitochondria are the powerhouse organelles present in all eukaryotic cells. They play a fundamental role in cell respiration, survival and metabolism. Stimulation of G-protein coupled receptors (GPCRs) by dedicated ligands and consequent activation of the cAMP·PKA pathway finely couple energy production and metabolism to cell growth and survival. Compartmentalization of PKA signaling at mitochondria by A-Kinase Anchor Proteins (AKAPs) ensures efficient transduction of signals generated at the cell membrane to the organelles, controlling important aspects of mitochondrial biology. Emerging evidence implicates mitochondria as essential bioenergetic elements of cancer cells that promote and support tumor growth and metastasis. In this context, mitochondria provide the building blocks for cellular organelles, cytoskeleton and membranes, and supply all the metabolic needs for the expansion and dissemination of actively replicating cancer cells. Functional interference with mitochondrial activity deeply impacts on cancer cell survival and proliferation. Therefore, mitochondria represent valuable targets of novel therapeutic approaches for the treatment of cancer patients. Understanding the biology of mitochondria, uncovering the molecular mechanisms regulating mitochondrial activity andmapping the relevant metabolic and signaling networks operating in cancer cells will undoubtly contribute to create a molecular platform to be used for the treatment of proliferative disorders. Here, we will highlight the emerging roles of signaling pathways acting downstream to GPCRs and their intersection with the ubiquitin proteasome system in the control of mitochondrial activity in different aspects of cancer cell biology.
Collapse
|
32
|
Wang JC, Li XX, Sun X, Li GY, Sun JL, Ye YP, Cong LL, Li WM, Lu SY, Feng J, Liu PJ. Activation of AMPK by simvastatin inhibited breast tumor angiogenesis via impeding HIF-1α-induced pro-angiogenic factor. Cancer Sci 2018. [PMID: 29532562 PMCID: PMC5980150 DOI: 10.1111/cas.13570] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Substantial data from preclinical studies have revealed the biphasic effects of statins on cardiovascular angiogenesis. Although some have reported the anti‐angiogenic potential of statins in malignant tumors, the underlying mechanism remains poorly understood. The aim of this study is to elucidate the mechanism by which simvastatin, a member of the statin family, inhibits tumor angiogenesis. Simvastatin significantly suppressed tumor cell‐conditioned medium‐induced angiogenic promotion in vitro, and resulted in dose‐dependent anti‐angiogenesis in vivo. Further genetic silencing of hypoxia‐inducible factor‐1α (HIF‐1α) reduced vascular endothelial growth factor and fibroblast growth factor‐2 expressions in 4T1 cells and correspondingly ameliorated HUVEC proliferation facilitated by tumor cell‐conditioned medium. Additionally, simvastatin induced angiogenic inhibition through a mechanism of post‐transcriptional downregulation of HIF‐1α by increasing the phosphorylation level of AMP kinase. These results were further validated by the fact that 5‐aminoimidazole‐4‐carboxamide ribonucleotide reduced HIF‐1α protein levels and ameliorated the angiogenic ability of endothelial cells in vitro and in vivo. Critically, inhibition of AMPK phosphorylation by compound C almost completely abrogated simvastatin‐induced anti‐angiogenesis, which was accompanied by the reduction of protein levels of HIF‐1α and its downstream pro‐angiogenic factors. These findings reveal the mechanism by which simvastatin induces tumor anti‐angiogenesis, and therefore identifies the target that explains the beneficial effects of statins on malignant tumors.
Collapse
Affiliation(s)
- Ji-Chang Wang
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiong-Xiong Li
- Department of Breast Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Sun
- Department of Thoracic Surgery and Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guang-Yue Li
- Department of Science and Technology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jing-Lan Sun
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan-Peng Ye
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Long-Long Cong
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei-Ming Li
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shao-Ying Lu
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jun Feng
- Department of Vascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pei-Jun Liu
- Center for Translational Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Li DY, Chen WJ, Shang J, Chen G, Li SK. Regulatory interactions between long noncoding RNA LINC00968 and miR-9-3p in non-small cell lung cancer: A bioinformatic analysis based on miRNA microarray, GEO and TCGA. Oncol Lett 2018; 15:9487-9497. [PMID: 29805671 DOI: 10.3892/ol.2018.8476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/28/2018] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to mediate carcinogenesis in various types of cancer. However, the regulatory role of lncRNA LINC00968 in lung adenocarcinoma remains unclear. The microRNA (miRNA) expression in LINC00968-overexpressing human lung adenocarcinoma A549 cells was detected using miRNA microarray analysis. miR-9-3p was selected for further analysis, and its expression was verified in the Gene Expression Omnibus (GEO) database. In addition, the regulatory axis of LINC00968 was validated using The Cancer Genome Atlas (TCGA) database. Results of the GEO database indicated miR-9-3p expression in lung adenocarcinoma was significantly higher compared with normal tissues. Functional enrichment analyses of the target genes of miR-9-3p indicated protein binding and the AMP-activated protein kinase pathway were the most enriched Gene Ontology and KEGG terms, respectively. Combining target genes with the correlated genes of LINC00968 and miR-9-3p, 120 objective genes were obtained, which were used to construct a protein-protein interaction (PPI) network. Cyclin A2 (CCNA2) was identified to have a vital role in the PPI network. Significant correlations were detected between LINC00968, miR-9-3p and CCNA2 in lung adenocarcinoma. The LINC00968/miR-9-3p/CCNA2 regulatory axis provides a new foundation for further evaluating the regulatory mechanisms of LINC00968 in lung adenocarcinoma.
Collapse
Affiliation(s)
- Dong-Yao Li
- Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Wen-Jie Chen
- Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jun Shang
- Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Shi-Kang Li
- Department of Thoracic and Cardiovascular Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
34
|
Ma J, Kavelaars A, Dougherty PM, Heijnen CJ. Beyond symptomatic relief for chemotherapy-induced peripheral neuropathy: Targeting the source. Cancer 2018; 124:2289-2298. [PMID: 29461625 DOI: 10.1002/cncr.31248] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 12/23/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a serious adverse side effect of many chemotherapeutic agents, affecting >60% of patients with cancer. Moreover, CIPN persists long into survivorship in approximately 20% to 30% of these patients. To the authors' knowledge, no drugs have been approved to date by the US Food and Drug Administration to effectively manage chemotherapy-induced neuropathic pain. The majority of the drugs tested for the management of CIPN aim at symptom relief, including pain and paresthesia, yet are not very efficacious. The authors propose that there is a need to acquire a more thorough understanding of the etiology of CIPN so that effective, mechanism-based, disease-modifying interventions can be developed. It is important to note that such interventions should not interfere with the antitumor effects of chemotherapy. Mitochondria are rod-shaped cellular organelles that represent the powerhouses of the cell, in that they convert oxygen and nutrients into the cellular energy "currency" adenosine triphosphate. In addition, mitochondria regulate cell death. Neuronal mitochondrial dysfunction and the associated nitro-oxidative stress represent crucial final common pathways of CIPN. Herein, the authors discuss the potential to prevent or reverse CIPN by protecting mitochondria and/or inhibiting nitro-oxidative stress with novel potential drugs, including the mitochondrial protectant pifithrin-μ, histone deacetylase 6 inhibitors, metformin, antioxidants, peroxynitrite decomposition catalysts, and anti-inflammatory mediators including interleukin 10. This review hopefully will contribute toward bridging the gap between preclinical research and the development of realistic novel therapeutic strategies to prevent or reverse the devastating neurotoxic effects of chemotherapy on the (peripheral) nervous system. Cancer 2018;124:2289-98. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Jiacheng Ma
- Neuroimmunology Laboratory, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Annemieke Kavelaars
- Neuroimmunology Laboratory, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick M Dougherty
- Department of Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cobi J Heijnen
- Neuroimmunology Laboratory, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
35
|
Murata Y, Hashimoto T, Urushihara Y, Shiga S, Takeda K, Jingu K, Hosoi Y. Knockdown of AMPKα decreases ATM expression and increases radiosensitivity under hypoxia and nutrient starvation in an SV40-transformed human fibroblast cell line, LM217. Biochem Biophys Res Commun 2018; 495:2566-2572. [DOI: 10.1016/j.bbrc.2017.12.141] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
|
36
|
Oxidative stress regulates cellular bioenergetics in esophageal squamous cell carcinoma cell. Biosci Rep 2017; 37:BSR20171006. [PMID: 29026004 PMCID: PMC5725616 DOI: 10.1042/bsr20171006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 02/07/2023] Open
Abstract
The aim of the present study was to explore the effects of oxidative stress induced by CoCl2 and H2O2 on the regulation of bioenergetics of esophageal squamous cell carcinoma (ESCC) cell line TE-1 and analyze its underlying mechanism. Western blot results showed that CoCl2 and H2O2 treatment of TE-1 cells led to significant reduction in mitochondrial respiratory chain complex subunits expression and increasing intracellular reactive oxygen species (ROS) production. We further found that TE-1 cells treated with CoCl2, a hypoxia-mimicking reagent, dramatically reduced the oxygen consumption rate (OCR) and increased the extracellular acidification rate (ECAR). However, H2O2 treatment decreased both the mitochondrial respiration and aerobic glycolysis significantly. Moreover, we found that H2O2 induces apoptosis in TE-1 cells through the activation of PARP, Caspase 3, and Caspase 9. Therefore, our findings indicate that CoCl2 and H2O2 could cause mitochondrial dysfunction by up-regulation of ROS and regulating the cellular bioenergy metabolism, thus affecting the survival of tumor cells.
Collapse
|
37
|
He J, Yan H, Cai H, Li X, Guan Q, Zheng W, Chen R, Liu H, Song K, Guo Z, Wang X. Statistically controlled identification of differentially expressed genes in one-to-one cell line comparisons of the CMAP database for drug repositioning. J Transl Med 2017; 15:198. [PMID: 28962576 PMCID: PMC5622488 DOI: 10.1186/s12967-017-1302-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/19/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The Connectivity Map (CMAP) database, an important public data source for drug repositioning, archives gene expression profiles from cancer cell lines treated with and without bioactive small molecules. However, there are only one or two technical replicates for each cell line under one treatment condition. For such small-scale data, current fold-changes-based methods lack statistical control in identifying differentially expressed genes (DEGs) in treated cells. Especially, one-to-one comparison may result in too many drug-irrelevant DEGs due to random experimental factors. To tackle this problem, CMAP adopts a pattern-matching strategy to build "connection" between disease signatures and gene expression changes associated with drug treatments. However, many drug-irrelevant genes may blur the "connection" if all the genes are used instead of pre-selected DEGs induced by drug treatments. METHODS We applied OneComp, a customized version of RankComp, to identify DEGs in such small-scale cell line datasets. For a cell line, a list of gene pairs with stable relative expression orderings (REOs) were identified in a large collection of control cell samples measured in different experiments and they formed the background stable REOs. When applying OneComp to a small-scale cell line dataset, the background stable REOs were customized by filtering out the gene pairs with reversal REOs in the control samples of the analyzed dataset. RESULTS In simulated data, the consistency scores of overlapping genes between DEGs identified by OneComp and SAM were all higher than 99%, while the consistency score of the DEGs solely identified by OneComp was 96.85% according to the observed expression difference method. The usefulness of OneComp was exemplified in drug repositioning by identifying phenformin and metformin related genes using small-scale cell line datasets which helped to support them as a potential anti-tumor drug for non-small-cell lung carcinoma, while the pattern-matching strategy adopted by CMAP missed the two connections. The implementation of OneComp is available at https://github.com/pathint/reoa . CONCLUSIONS OneComp performed well in both the simulated and real data. It is useful in drug repositioning studies by helping to find hidden "connections" between drugs and diseases.
Collapse
Affiliation(s)
- Jun He
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
| | - Haidan Yan
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
| | - Hao Cai
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
| | - Xiangyu Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
| | - Qingzhou Guan
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
| | - Weicheng Zheng
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
| | - Rou Chen
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
| | - Huaping Liu
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China
| | - Kai Song
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Zheng Guo
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China. .,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350122, China.
| | - Xianlong Wang
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350122, China. .,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|