1
|
Mao W, Zhang H, Wang K, Geng J, Wu J. Research progress of MUC1 in genitourinary cancers. Cell Mol Biol Lett 2024; 29:135. [PMID: 39491020 PMCID: PMC11533421 DOI: 10.1186/s11658-024-00654-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
MUC1 is a highly glycosylated transmembrane protein with a high molecular weight. It plays a role in lubricating and protecting mucosal epithelium, participates in epithelial cell renewal and differentiation, and regulates cell adhesion, signal transduction, and immune response. MUC1 is expressed in both normal and malignant epithelial cells, and plays an important role in the diagnosis, prognosis prediction and clinical monitoring of a variety of tumors and is expected to be a new therapeutic target. This article reviews the structural features, expression regulation mechanism, and research progress of MUC1 in the development of genitourinary cancers and its clinical applications.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China.
| | - Houliang Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China
| | - Keyi Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| | - Jiang Geng
- Department of Urology, Bengbu First People's Hospital, Bengbu, People's Republic of China.
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai, People's Republic of China.
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, No. 87 Dingjiaqiao, Gulou District, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
2
|
Bourdon E, Swierczewski T, Goujon M, Boukrout N, Fellah S, Van der Hauwaert C, Larrue R, Lefebvre B, Van Seuningen I, Cauffiez C, Pottier N, Perrais M. MUC1 Drives the Progression and Chemoresistance of Clear Cell Renal Carcinomas. Cancers (Basel) 2024; 16:391. [PMID: 38254882 PMCID: PMC10814283 DOI: 10.3390/cancers16020391] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
While the transmembrane glycoprotein mucin 1 (MUC1) is clustered at the apical borders of normal epithelial cells, with transformation and loss of polarity, MUC1 is found at high levels in the cytosol and is uniformly distributed over the entire surface of carcinoma cells, where it can promote tumor progression and adversely affects the response to therapy. Clear cell renal cell carcinoma (ccRCC), the main histotype of kidney cancer, is typically highly resistant to conventional and targeted therapies for reasons that remain largely unknown. In this context, we investigated whether MUC1 also plays a pivotal role in the cellular and molecular events driving ccRCC progression and chemoresistance. We showed, using loss- and gain-of-function approaches in ccRCC-derived cell lines, that MUC1 not only influences tumor progression but also induces a multi-drug-resistant profile reminiscent of the activation of ABC drug efflux transporters. Overall, our results suggest that targeting MUC1 may represent a novel therapeutic approach to limit ccRCC progression and improve drug sensitivity.
Collapse
Affiliation(s)
- Emma Bourdon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Thomas Swierczewski
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Marine Goujon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Nihad Boukrout
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Cynthia Van der Hauwaert
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
- CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France
| | - Bruno Lefebvre
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR-S1172, Neuroscience & Cognition, Alzheimer & Tauopathies, F-59000 Lille, France;
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR-S1172, Neuroscience & Cognition, Alzheimer & Tauopathies, F-59000 Lille, France;
| | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR9020-U1277–CANTHER–Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (E.B.); (T.S.); (M.G.); (N.B.); (S.F.); (C.V.d.H.); (R.L.); (I.V.S.); (C.C.); (N.P.)
| |
Collapse
|
3
|
Goujon M, Woszczyk J, Gaudelot K, Swierczewski T, Fellah S, Gibier JB, Van Seuningen I, Larrue R, Cauffiez C, Gnemmi V, Aubert S, Pottier N, Perrais M. A Double-Negative Feedback Interaction between miR-21 and PPAR-α in Clear Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14030795. [PMID: 35159062 PMCID: PMC8834244 DOI: 10.3390/cancers14030795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the main histotype of kidney cancer, which is typically highly resistant to conventional therapies and known for abnormal lipid accumulation. In this context, we focused our attention on miR-21, an oncogenic miRNA overexpressed in ccRCC, and peroxysome proliferator-activated receptor-α (PPAR- α), one master regulator of lipid metabolism targeted by miR-21. First, in a cohort of 52 primary ccRCC samples, using RT-qPCR and immunohistochemistry, we showed that miR-21 overexpression was correlated with PPAR-α downregulation. Then, in ACHN and 786-O cells, using RT-qPCR, the luciferase reporter gene, chromatin immunoprecipitation, and Western blotting, we showed that PPAR-α overexpression (i) decreased miR-21 expression, AP-1 and NF-κB transcriptional activity, and the binding of AP-1 and NF-κB to the miR-21 promoter and (ii) increased PTEN and PDCD4 expressions. In contrast, using pre-miR-21 transfection, miR-21 overexpression decreased PPAR-α expression and transcriptional activity mediated by PPAR-α, whereas the anti-miR-21 (LNA-21) strategy increased PPAR-α expression, but also the expression of its targets involved in fatty acid oxidation. In this study, we showed a double-negative feedback interaction between miR-21 and PPAR-α. In ccRCC, miR-21 silencing could be therapeutically exploited to restore PPAR-α expression and consequently inhibit the oncogenic events mediated by the aberrant lipid metabolism of ccRCC.
Collapse
Affiliation(s)
- Marine Goujon
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Justine Woszczyk
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Kelly Gaudelot
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Thomas Swierczewski
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Sandy Fellah
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Jean-Baptiste Gibier
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- CHU Lille, Service d’Anatomo-Pathologie, F-59000 Lille, France
| | - Isabelle Van Seuningen
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Romain Larrue
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France
| | - Christelle Cauffiez
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
| | - Viviane Gnemmi
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- CHU Lille, Service d’Anatomo-Pathologie, F-59000 Lille, France
| | - Sébastien Aubert
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- CHU Lille, Service d’Anatomo-Pathologie, F-59000 Lille, France
| | - Nicolas Pottier
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- CHU Lille, Service de Toxicologie et Génopathies, F-59000 Lille, France
| | - Michaël Perrais
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France; (M.G.); (J.W.); (K.G.); (T.S.); (S.F.); (J.-B.G.); (I.V.S.); (R.L.); (C.C.); (V.G.); (S.A.); (N.P.)
- Correspondence: ; Tel.: +33-3-20-29-88-62
| |
Collapse
|
4
|
MUC1 Mitigates Renal Injury and Inflammation in Endotoxin Induced Acute Kidney Injury by Inhibiting the TLR4-MD2 Axis and Reducing Pro-Inflammatory Macrophages Infiltration. Shock 2021; 56:629-638. [PMID: 33534395 DOI: 10.1097/shk.0000000000001742] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Sepsis is the leading cause of acute kidney injury (AKI) in critical care patients. A cornerstone of sepsis-associated AKI is dysregulated inflammation driven by excessive activation of Toll-like receptor 4 (TLR4) pathway. MUC1, a membrane bound mucin expressed in both epithelial tubular cells and renal macrophages, has been shown to be involved in the regulation of TLRs. Therefore we hypothesized that MUC1 could mitigate the renal inflammatory response to TLR4 activation. To test this hypothesis, we used a murine model of endotoxin-induced AKI by intraperitoneal injection of lipopolysaccharide (LPS). We showed that Muc1-/- mice have a more severe renal dysfunction, an increased activation of the tissular NF-kB pathway and secreted more pro inflammatory cytokines compare to Muc1+/+ mice. By flow cytometry, we observed that the proportion of M1 (pro-inflammatory) macrophages in the kidneys of Muc1-/- mice was significantly increased. In human and murine primary macrophages, we showed that MUC1 is only induced in M1 type macrophages and that macrophages derived from Muc1-/- mice secreted more pro-inflammatory cytokines. Eventually, in HEK293 cells, we showed that (i) MUC1 cytosolic domain (CT) seems necessary for the negative regulation of TLR4 (ii) by proximity ligation assay, MUC1-CT is in close relationship with TLR4 and acts as a competitive inhibitor of the recruitment of MYD88. Overall our results support that in the context of endotoxin-induced AKI, MUC1 plays a significant role in controlling disease severity by regulating negatively the TLR4-MD2 axis.
Collapse
|
5
|
Reynolds IS, Fichtner M, McNamara DA, Kay EW, Prehn JHM, Burke JP. Mucin glycoproteins block apoptosis; promote invasion, proliferation, and migration; and cause chemoresistance through diverse pathways in epithelial cancers. Cancer Metastasis Rev 2020; 38:237-257. [PMID: 30680581 DOI: 10.1007/s10555-019-09781-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overexpression of mucin glycoproteins has been demonstrated in many epithelial-derived cancers. The significance of this overexpression remains uncertain. The aim of this paper was to define the association of mucin glycoproteins with apoptosis, cell growth, invasion, migration, adhesion, and clonogenicity in vitro as well as tumor growth, tumorigenicity, and metastasis in vivo in epithelial-derived cancers by performing a systematic review of all published data. A systematic review of PubMed, Embase, and the Cochrane Central Register of Controlled Trials was performed to identify all papers that evaluated the association between mucin glycoproteins with apoptosis, cell growth, invasion, migration, adhesion, and clonogenicity in vitro as well as tumor growth, tumorigenicity, and metastasis in vivo in epithelial-derived cancers. PRISMA guidelines were adhered to. Results of individual studies were extracted and pooled together based on the organ in which the cancer was derived from. The initial search revealed 2031 papers, of which 90 were deemed eligible for inclusion in the study. The studies included details on MUC1, MUC2, MUC4, MUC5AC, MUC5B, MUC13, and MUC16. The majority of studies evaluated MUC1. MUC1 overexpression was consistently associated with resistance to apoptosis and resistance to chemotherapy. There was also evidence that overexpression of MUC2, MUC4, MUC5AC, MUC5B, MUC13, and MUC16 conferred resistance to apoptosis in epithelial-derived cancers. The overexpression of mucin glycoproteins is associated with resistance to apoptosis in numerous epithelial cancers. They cause resistance through diverse signaling pathways. Targeting the expression of mucin glycoproteins represents a potential therapeutic target in the treatment of epithelial-derived cancers.
Collapse
Affiliation(s)
- Ian S Reynolds
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Michael Fichtner
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Deborah A McNamara
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Surgery, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Elaine W Kay
- Department of Pathology, Beaumont Hospital, Dublin 9, Ireland
- Department of Pathology, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - John P Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
6
|
Rgma-Induced Neo1 Proteolysis Promotes Neural Tube Morphogenesis. J Neurosci 2019; 39:7465-7484. [PMID: 31399534 DOI: 10.1523/jneurosci.3262-18.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 07/01/2019] [Accepted: 07/31/2019] [Indexed: 01/02/2023] Open
Abstract
Neuroepithelial cell (NEC) elongation is one of several key cell behaviors that mediate the tissue-level morphogenetic movements that shape the neural tube (NT), the precursor of the brain and spinal cord. However, the upstream signals that promote NEC elongation have been difficult to tease apart from those regulating apico-basal polarity and hingepoint formation, due to their confounding interdependence. The Repulsive Guidance Molecule a (Rgma)/Neogenin 1 (Neo1) signaling pathway plays a conserved role in NT formation (neurulation) and is reported to regulate both NEC elongation and apico-basal polarity, through signal transduction events that have not been identified. We examine here the role of Rgma/Neo1 signaling in zebrafish (sex unknown), an organism that does not use hingepoints to shape its hindbrain, thereby enabling a direct assessment of the role of this pathway in NEC elongation. We confirm that Rgma/Neo1 signaling is required for microtubule-mediated NEC elongation, and demonstrate via cell transplantation that Neo1 functions cell autonomously to promote elongation. However, in contrast to previous findings, our data do not support a role for this pathway in establishing apical junctional complexes. Last, we provide evidence that Rgma promotes Neo1 glycosylation and intramembrane proteolysis, resulting in the production of a transient, nuclear intracellular fragment (NeoICD). Partial rescue of Neo1a and Rgma knockdown embryos by overexpressing neoICD suggests that this proteolytic cleavage is essential for neurulation. Based on these observations, we propose that RGMA-induced NEO1 proteolysis orchestrates NT morphogenesis by promoting NEC elongation independently of the establishment of apical junctional complexes.SIGNIFICANCE STATEMENT The neural tube, the CNS precursor, is shaped during neurulation. Neural tube defects occur frequently, yet underlying genetic risk factors are poorly understood. Neuroepithelial cell (NEC) elongation is essential for proper completion of neurulation. Thus, connecting NEC elongation with the molecular pathways that control this process is expected to reveal novel neural tube defect risk factors and increase our understanding of NT development. Effectors of cell elongation include microtubules and microtubule-associated proteins; however, upstream regulators remain controversial due to the confounding interdependence of cell elongation and establishment of apico-basal polarity. Here, we reveal that Rgma-Neo1 signaling controls NEC elongation independently of the establishment of apical junctional complexes and identify Rgma-induced Neo1 proteolytic cleavage as a key upstream signaling event.
Collapse
|
7
|
Syrkina MS, Vassetzky YS, Rubtsov MA. MUC1 Story: Great Expectations, Disappointments and the Renaissance. Curr Med Chem 2019; 26:554-563. [PMID: 28820070 DOI: 10.2174/0929867324666170817151954] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022]
Abstract
In the course of studying human mucin MUC1, the attitude towards this molecule has been changing time and again. Initially, the list of presumable functions of MUC1 was restricted to protecting and lubricating epithelium. To date, it is assumed to play an important role in cell signaling as well as in all stages of oncogenesis, from malignant cell transformation to tumor dissemination. The story of MUC1 is full of hopes and disappointments. However, the scientific interest to MUC1 has never waned, and the more profoundly it has been investigated, the clearer its hidden potential turned to be disclosed. The therapeutic potential of mucin MUC1 has already been noted by various scientific groups at the early stages of research. Over forty years ago, the first insights into MUC1 functions became a strong ground for considering this molecule as potential target for anticancer therapy. Therefore, this direction of research has always been of particular interest and practical importance. More than 200 papers on MUC1 were published in 2016; the majority of them are dedicated to MUC1-related anticancer diagnostics and therapeutics. Here we review the history of MUC1 studies from the very first attempts to reveal its functions to the ongoing renaissance.
Collapse
Affiliation(s)
- Marina S Syrkina
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation.,LIA LFR2O (LIA French-Russian Cancer Research laboratory) Villejuif, France - Moscow, Russian Federation.,Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Yegor S Vassetzky
- LIA LFR2O (LIA French-Russian Cancer Research laboratory) Villejuif, France - Moscow, Russian Federation.,UMR8126, Université Paris Sud - Paris Saclay, CNRS, Institut Gustave Roussy, 94805 Villejuif, France.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation.,Koltzov Institute of Developmental Biology, Moscow, Russian Federation
| | - Mikhail A Rubtsov
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation.,LIA LFR2O (LIA French-Russian Cancer Research laboratory) Villejuif, France - Moscow, Russian Federation.,Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation.,Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| |
Collapse
|
8
|
Evaluation of xanthosine treatment on gene expression of mammary glands in early lactating goats. J DAIRY RES 2018; 85:288-294. [PMID: 30156522 DOI: 10.1017/s0022029918000493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study examined the hypothesis that xanthosine (XS) treatment would promote mammary-specific gene expression and stem cell transcripts and have a positive influence on milk yield of dairy goats. Seven primiparous Beetal goats were assigned to the study. Five days after kidding, one gland (either left or right) was infused with XS (TRT) twice daily for 3 d and the other gland with no XS infusion served as a control (CON). Mammary biopsies were collected at 10 d and RNA was isolated. Gene expression analysis of milk synthesis genes, mammary stem/progenitor cell markers, cell proliferation and differentiation markers were performed using real time quantitative PCR (RT-qPCR). Results showed that the transcripts of milk synthesis genes (BLG4, CSN2, LALBA, FABP3, CD36) and mammary stem/progenitor cell markers (ALDH1 and NR5A2) were increased in as a result of XS treatment. Average milk yield in TRT glands was increased marginally (approximately ~2% P = 0·05, paired t-test) per gland relative to CON gland until 7 wk. After 7 wk, milk yield of TRT and CON glands did not differ. Analysis of milk composition revealed that protein, lactose, fat and solids-not-fat percentages remained the same in TRT and CON glands. These results suggest that XS increases expression of milk synthesis genes, mammary stem/progenitor cells and has a small effect on milk yield.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Recent studies in the kidney have revealed that the well characterized tumor antigen mucin 1 (MUC1/Muc1) also has numerous functions in the normal and injured kidney. RECENT FINDINGS Mucin 1 is a transmembrane mucin with a robust glycan-dependent apical targeting signal and efficient recycling from endosomes. It was recently reported that the TRPV5 calcium channel is stabilized on the cell surface by galectin-dependent cross-linking to mucin 1, providing a novel mechanism for regulation of ion channels and normal electrolyte balance.Our recent studies in mice show that Muc 1 is induced after ischemia, stabilizing hypoxia-inducible factor 1 (HIF-1)α and β-catenin levels, and transactivating the HIF-1 and β-catenin protective pathways. However, prolonged induction of either pathway in the injured kidney can proceed from apparent full recovery to chronic kidney disease. A very recent report indicates that aberrant activation of mucin 1 signaling after ischemic injury in mice and humans is associated with development of chronic kidney disease and fibrosis. A frameshift mutation in MUC1 was recently identified as the genetic lesion causing medullary cystic kidney disease type 1, now appropriately renamed MUC1 Kidney Disease. SUMMARY Studies of mucin 1 in the kidney now reveal significant functions for the extracellular mucin-like domain and signaling through the cytoplasmic tail.
Collapse
|
10
|
Xu Z, Liu Y, Yang Y, Wang J, Zhang G, Liu Z, Fu H, Wang Z, Liu H, Xu J. High expression of Mucin13 associates with grimmer postoperative prognosis of patients with non-metastatic clear-cell renal cell carcinoma. Oncotarget 2018; 8:7548-7558. [PMID: 27911274 PMCID: PMC5352342 DOI: 10.18632/oncotarget.13692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 11/22/2016] [Indexed: 01/11/2023] Open
Abstract
Background Mucin13 (MUC13) is a transmembrane glycoprotein that is aberrantly expressed in ovarian and gastro-intestinal tumors, but its role in renal cell carcinoma remains elusive. The purpose of this study is to evaluate the prognostic value of MUC13 expression in patients with non-metastatic clear cell renal cell carcinoma (ccRCC) after surgical resection. Results MUC13 high expression was associated with high Fuhrman grade (p < 0.001), high SSIGN score (p = 0.011), early recurrence (p < 0.001) and poor survival (p < 0.001). Multivariate Cox regression analysis identified MUC13 expression as an independent prognostic factor for RFS and OS of ccRCC patients. A nomogram integrating MUC13 expression and other independent prognosticators was established to predict RFS and OS of ccRCC patients. Optimal agreement was shown between the predictions and observations in calibration curves. Matrials and methods This study enrolled 410 postoperative non-metastatic ccRCC patients at a single institution. Clinicopathologic variables, recurrence-free survival (RFS), and overall survival (OS) were recorded. MUC13 expression was detected by immunohistochemical staining in tumor specimens. Association of MUC13 expression with clinicopathological factors was explored. Kaplan-Meier analysis was performed to compare survival curves. Univariate and multivariate Cox regression models were used to analyze the impact of prognostic factors on RFS and OS. A prognostic nomogram was constructed based on the independent prognostic factors identified by multivariate analysis. Conclusions MUC13 high expression is a novel independent adverse prognostic factor of clinical outcome in non-metastatic ccRCC patients after surgery.
Collapse
Affiliation(s)
- Zhiying Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yidong Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuanfeng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jieti Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Guodong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zheng Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hangcheng Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zewei Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Haiou Liu
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200011, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Balmaña M, Duran A, Gomes C, Llop E, López-Martos R, Ortiz MR, Barrabés S, Reis CA, Peracaula R. Analysis of sialyl-Lewis x on MUC5AC and MUC1 mucins in pancreatic cancer tissues. Int J Biol Macromol 2018; 112:33-45. [PMID: 29408556 DOI: 10.1016/j.ijbiomac.2018.01.148] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic adenocarcinoma (PDAC) lacks efficient biomarkers. Mucins are glycoproteins that can carry aberrant glycosylation in cancer. Our objective was to identify cancer-related glycan epitopes on MUC1 and MUC5AC mucins in PDAC as potential biomarkers. We have analysed the tumour-associated carbohydrate antigens sialyl-Lewis x (SLex) and sialyl-Tn (STn) on MUC1 and MUC5AC in PDAC tissues. The selected cohort for this study consisted of twenty-one PDAC tissues positive for SLex antigen and three normal pancreas specimens as controls. STn expression was shown in 76% of the PDAC tissues. MUC1 and MUC5AC were detected in 90% of PDAC tissues. We performed in situ proximity ligation assay combining antibodies against mucins and glycan epitopes to identify specific mucin glycoforms. MUC1-SLex and MUC5AC-SLex were found in 68% and 84% respectively, of the mucin expressing PDAC tissues, while STn hardly colocalized with any of the evaluated mucins. Further analysis by Western blot of MUC5AC and SLex in eight PDAC tissue lysates showed that six out of eight cases were positive for both markers. Moreover, immunoprecipitation of MUC5AC from positive PDAC tissues and subsequent SLex immunodetection confirmed the presence of SLex on MUC5AC. Altogether, MUC5AC-SLex glycoform is present in PDAC and can be regarded as potential biomarker.
Collapse
Affiliation(s)
- Meritxell Balmaña
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain; Instituto de Investigação e Inovação em Saúde, I3S, Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal
| | - Adrià Duran
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Catarina Gomes
- Instituto de Investigação e Inovação em Saúde, I3S, Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal
| | - Esther Llop
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Raquel López-Martos
- Department of Anatomic Pathology, Dr. Trueta University Hospital, Girona, Spain
| | - M Rosa Ortiz
- Department of Anatomic Pathology, Dr. Trueta University Hospital, Girona, Spain
| | - Sílvia Barrabés
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, I3S, Institute of Molecular Pathology and Immunology of University of Porto, Ipatimup, Porto, Portugal; Medical Faculty, University of Porto, Al. Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar - ICBAS, University of Porto, Porto, Portugal.
| | - Rosa Peracaula
- Biochemistry and Molecular Biology Unit, Department of Biology, University of Girona, Girona, Spain.
| |
Collapse
|
12
|
Gaudelot K, Gibier JB, Pottier N, Hémon B, Van Seuningen I, Glowacki F, Leroy X, Cauffiez C, Gnemmi V, Aubert S, Perrais M. Targeting miR-21 decreases expression of multi-drug resistant genes and promotes chemosensitivity of renal carcinoma. Tumour Biol 2017; 39:1010428317707372. [PMID: 28714373 DOI: 10.1177/1010428317707372] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Renal cell carcinoma, the most common neoplasm of adult kidney, accounts for about 3% of adult malignancies and is usually highly resistant to conventional therapy. MicroRNAs are a class of small non-coding RNAs, which have been previously shown to promote malignant initiation and progression. In this study, we focused our attention on miR-21, a well described oncomiR commonly upregulated in cancer. Using a cohort of 99 primary renal cell carcinoma samples, we showed that miR-21 expression in cancer tissues was higher than in adjacent non-tumor tissues whereas no significant difference was observed with stages, grades, and metastatic outcome. In vitro, miR-21 was also overexpressed in renal carcinoma cell lines compared to HK-2 human proximal tubule epithelial cell line. Moreover, using Boyden chambers and western blot techniques, we also showed that miR-21 overexpression increased migratory, invasive, proliferative, and anti-apoptotic signaling pathways whereas opposite results were observed using an anti-miR-21-based silencing strategy. Finally, we assessed the role of miR-21 in mediating renal cell carcinoma chemoresistance and further showed that miR-21 silencing significantly (1) increased chemosensitivity of paclitaxel, 5-fluorouracil, oxaliplatin, and dovitinib; (2) decreased expression of multi-drug resistance genes; and (4) increased SLC22A1/OCT1, SLC22A2/OCT2, and SLC31A1/CTR1 platinum influx transporter expression. In conclusion, our results showed that miR-21 is a key actor of renal cancer progression and plays an important role in the resistance to chemotherapeutic drugs. In renal cell carcinoma, targeting miR-21 is a potential new therapeutic strategy to improve chemotherapy efficacy and consequently patient outcome.
Collapse
Affiliation(s)
- Kelly Gaudelot
- 1 Université de Lille, Inserm, CHU Lille, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Jean-Pierre Aubert Research Center (JPARC), Lille, France
| | - Jean-Baptiste Gibier
- 1 Université de Lille, Inserm, CHU Lille, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Jean-Pierre Aubert Research Center (JPARC), Lille, France.,2 CHU Lille, Pathology Institute, Centre de Biologie Pathologie, Rue Oscar Lambret, Lille, France
| | - Nicolas Pottier
- 3 EA4483, Université de Lille, Faculté de Médecine, Pôle Recherche, Place de Verdun, Lille, France.,4 CHU Lille, Department of Biochemistry and Molecular Biology, Centre de Biologie Pathologie, Rue Oscar Lambret, Lille, France
| | - Brigitte Hémon
- 1 Université de Lille, Inserm, CHU Lille, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Jean-Pierre Aubert Research Center (JPARC), Lille, France
| | - Isabelle Van Seuningen
- 1 Université de Lille, Inserm, CHU Lille, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Jean-Pierre Aubert Research Center (JPARC), Lille, France
| | - François Glowacki
- 3 EA4483, Université de Lille, Faculté de Médecine, Pôle Recherche, Place de Verdun, Lille, France.,5 CHU Lille, Department of Nephrology, Hôpital Huriez, Rue Michel Polonovski, Lille, France
| | - Xavier Leroy
- 1 Université de Lille, Inserm, CHU Lille, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Jean-Pierre Aubert Research Center (JPARC), Lille, France.,2 CHU Lille, Pathology Institute, Centre de Biologie Pathologie, Rue Oscar Lambret, Lille, France
| | - Christelle Cauffiez
- 3 EA4483, Université de Lille, Faculté de Médecine, Pôle Recherche, Place de Verdun, Lille, France
| | - Viviane Gnemmi
- 1 Université de Lille, Inserm, CHU Lille, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Jean-Pierre Aubert Research Center (JPARC), Lille, France.,2 CHU Lille, Pathology Institute, Centre de Biologie Pathologie, Rue Oscar Lambret, Lille, France
| | - Sébastien Aubert
- 1 Université de Lille, Inserm, CHU Lille, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Jean-Pierre Aubert Research Center (JPARC), Lille, France.,2 CHU Lille, Pathology Institute, Centre de Biologie Pathologie, Rue Oscar Lambret, Lille, France
| | - Michaël Perrais
- 1 Université de Lille, Inserm, CHU Lille, UMR-S 1172, Team "Mucins, Epithelial Differentiation and Carcinogenesis," Jean-Pierre Aubert Research Center (JPARC), Lille, France
| |
Collapse
|
13
|
Gibier JB, Hémon B, Fanchon M, Gaudelot K, Pottier N, Ringot B, Van Seuningen I, Glowacki F, Cauffiez C, Blum D, Copin MC, Perrais M, Gnemmi V. Dual role of MUC1 mucin in kidney ischemia-reperfusion injury: Nephroprotector in early phase, but pro-fibrotic in late phase. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1336-1349. [DOI: 10.1016/j.bbadis.2017.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/14/2017] [Accepted: 03/29/2017] [Indexed: 11/15/2022]
|
14
|
Sheng Y, Ng CP, Lourie R, Shah ET, He Y, Wong KY, Seim I, Oancea I, Morais C, Jeffery PL, Hooper J, Gobe GC, McGuckin MA. MUC13 overexpression in renal cell carcinoma plays a central role in tumor progression and drug resistance. Int J Cancer 2017; 140:2351-2363. [PMID: 28205224 DOI: 10.1002/ijc.30651] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/21/2016] [Accepted: 01/25/2017] [Indexed: 01/09/2023]
Abstract
Metastatic renal cell carcinoma is a largely incurable disease, and existing treatments targeting angiogenesis and tyrosine kinase receptors are only partially effective. Here we reveal that MUC13, a cell surface mucin glycoprotein, is aberrantly expressed by most renal cell carcinomas, with increasing expression positively correlating with tumor grade. Importantly, we demonstrated that high MUC13 expression was a statistically significant independent predictor of poor survival in two independent cohorts, particularly in stage 1 cancers. In cultured renal cell carcinoma cells MUC13 promoted proliferation and induced the cell cycle regulator, cyclin D1, and inhibited apoptosis by inducing the anti-apoptotic proteins, BCL-xL and survivin. Silencing of MUC13 expression inhibited migration and invasion, and sensitized renal cancer cells to killing by the multi-kinase inhibitors used clinically, sorafenib and sunitinib, and reversed acquired resistance to these drugs. Furthermore, we demonstrated that MUC13 promotion of renal cancer cell growth and survival is mediated by activation of nuclear factor κB, a transcription factor known to regulate the expression of genes that play key roles in the development and progression of cancer. These results show that MUC13 has potential as a prognostic marker for aggressive early stage renal cell cancer and is a plausible target to sensitize these tumors to therapy.
Collapse
Affiliation(s)
- Yonghua Sheng
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Choa Ping Ng
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Rohan Lourie
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Esha T Shah
- Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yaowu He
- Cancer Biology Group, Mater Research Institute-University of Queensland, Brisbane, QLD, Australia
| | - Kuan Yau Wong
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Inge Seim
- Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Iulia Oancea
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Christudas Morais
- Centre for Kidney Disease Research, The University of Queensland School of Medicine, Translational Research Institute, Brisbane, QLD, Australia
| | - Penny L Jeffery
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia.,Ghrelin Research Group, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - John Hooper
- Cancer Biology Group, Mater Research Institute-University of Queensland, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Centre for Kidney Disease Research, The University of Queensland School of Medicine, Translational Research Institute, Brisbane, QLD, Australia
| | - Michael A McGuckin
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Stalin J, Harhouri K, Hubert L, Garrigue P, Nollet M, Essaadi A, Muller A, Foucault-Bertaud A, Bachelier R, Sabatier F, Pisano P, Peiretti F, Leroyer AS, Guillet B, Bardin N, Dignat-George F, Blot-Chabaud M. Soluble CD146 boosts therapeutic effect of endothelial progenitors through proteolytic processing of short CD146 isoform. Cardiovasc Res 2016; 111:240-51. [PMID: 27170199 DOI: 10.1093/cvr/cvw096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/27/2016] [Indexed: 01/12/2023] Open
Abstract
AIMS Endothelial colony-forming cells (ECFC) constitute an endothelial progenitor fraction with a promising interest for the treatment of ischaemic cardiovascular diseases. As soluble CD146 (sCD146) is a new factor promoting angiogenesis, we examined whether sCD146 priming could improve the therapeutic potential of ECFC and defined the involved mechanism. METHODS AND RESULTS We investigated the effects of sCD146 priming on regenerative properties of ECFC in vivo. In a mouse model of hindlimb ischaemia, the homing of radiolabelled cells to ischaemic tissue was assessed by SPECT-CT imaging. Soluble CD146 priming did not modify the number of engrafted ECFC but improved their survival capacity, leading to an enhanced revascularization. The mechanism of action of sCD146 on ECFC was studied in vitro. We showed that sCD146 acts in ECFC through a signalosome, located in lipid rafts, containing angiomotin, the short isoform of CD146 (shCD146), VEGFR1, VEGFR2, and presenilin-1. Soluble CD146 induced a sequential proteolytic cleavage of shCD146, with an extracellular shedding followed by an intramembrane cleavage mediated by matrix metalloprotease (MMP)/ADAM and presenilin-1, respectively. The generated intracellular part of shCD146 was directed towards the nucleus where it associated with the transcription factor CSL and modulated the transcription of genes involved in cell survival (FADD, Bcl-xl) and angiogenesis (eNOS). This effect was dependent on both VEGFR1 and VEGFR2, which were rapidly phosphorylated by sCD146. CONCLUSIONS These findings establish that activation of the proteolytic processing of shCD146, in particular by sCD146, constitutes a promising pathway to improve endothelial progenitors' regenerative properties for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jimmy Stalin
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 27 Bd J. Moulin, 13005 Marseille, France
| | - Karim Harhouri
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 27 Bd J. Moulin, 13005 Marseille, France
| | - Lucas Hubert
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 27 Bd J. Moulin, 13005 Marseille, France
| | - Philippe Garrigue
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 27 Bd J. Moulin, 13005 Marseille, France CERIMED (European Center of Research in Medical Imaging), Aix-Marseille University, Marseille, France
| | - Marie Nollet
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 27 Bd J. Moulin, 13005 Marseille, France
| | - Amel Essaadi
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 27 Bd J. Moulin, 13005 Marseille, France
| | - Alexandre Muller
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 27 Bd J. Moulin, 13005 Marseille, France
| | | | - Richard Bachelier
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 27 Bd J. Moulin, 13005 Marseille, France
| | - Florence Sabatier
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 27 Bd J. Moulin, 13005 Marseille, France Laboratory of Culture and Cell Therapy, INSERM CIC-BT510, CHU Conception, Marseille, France
| | - Pascale Pisano
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 27 Bd J. Moulin, 13005 Marseille, France
| | - Franck Peiretti
- INSERM UMR-S 1062, Aix-Marseille University, Marseille, France
| | - Aurélie S Leroyer
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 27 Bd J. Moulin, 13005 Marseille, France
| | - Benjamin Guillet
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 27 Bd J. Moulin, 13005 Marseille, France CERIMED (European Center of Research in Medical Imaging), Aix-Marseille University, Marseille, France
| | - Nathalie Bardin
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 27 Bd J. Moulin, 13005 Marseille, France
| | - Françoise Dignat-George
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 27 Bd J. Moulin, 13005 Marseille, France
| | - Marcel Blot-Chabaud
- INSERM UMR-S 1076, Aix-Marseille University, UFR Pharmacy, 27 Bd J. Moulin, 13005 Marseille, France
| |
Collapse
|
16
|
Differential expression and clinical relevance of MUC1 in renal cell carcinoma metastasis. World J Urol 2016; 34:1635-1641. [PMID: 26995391 DOI: 10.1007/s00345-016-1804-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/05/2016] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To determine the differential expression patterns and prognostic relevance of Mucin-1 (MUC1) expression in clear cell renal cell carcinoma (RCC) metastasis. METHODS Tissue microarrays (TMA) from samples of 151 RCC metastases, 61 primary RCCs and corresponding benign renal tissues were immunohistochemically stained for MUC1 and semi-quantitatively evaluated by immunoreactivity scores (IRS). MUC1 differential expression in metastasis, primary RCC and normal tissue were comparatively analyzed. Patient characteristics and clinical follow-up for patients with metastatic RCC (mRCC) were recorded. Correlations of MUC1 expression with mRCC survival were determined. RESULTS Median cytoplasmic expression was highest in benign tissue (IRS = 1.04). Primary RCC (0.50) and metastasis (0.12) showed significantly lower cytoplasmic staining intensity. Membranous expression in benign tissue was, however, significantly lower (0.21) compared with primary RCC (0.59) and metastasis (0.57). Notable differences of MUC1 cytoplasmic and membranous expression were observed between different metastasis sites. Significantly higher (P = 0.014) membranous expression was observed in pulmonary versus non-pulmonary lesions, while no significant differences of cytoplasmic MUC1 expression were observed. The prognostic relevance of MUC1 expression in metastatic RCC was limited. CONCLUSIONS MUC1 is differentially expressed in benign renal tissue, primary RCC and RCC metastasis. Membranous MUC1 expression was significantly elevated in pulmonary metastases compared to non-pulmonary lesions, which may reflect individual biology and putative response to MUC1-based anti-cancer therapy.
Collapse
|
17
|
Zhang P, Xing Z, Li X, Song Y, Zhao J, Xiao Y, Xing Y. Tyrosine receptor kinase B silencing inhibits anoikis‑resistance and improves anticancer efficiency of sorafenib in human renal cancer cells. Int J Oncol 2016; 48:1417-25. [PMID: 26820170 DOI: 10.3892/ijo.2016.3356] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/08/2015] [Indexed: 11/05/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common solid neoplasm of adult kidney, and the major treatment for metastatic RCC (mRCC) is molecular targeted therapy. Sorafenib, as a multi-targeted tyrosine kinase inhibitor (TKI), has significantly improved clinical outcomes of mRCC patients. However, complete or long-term remissions are rarely achieved due to intolerance to dose-related adverse effects. It is therefore, necessary to explore novel target molecules for treatment or to enhance the therapeutic efficiency of present TKI for mRCC treatment. Anoikis is a specific type of apoptosis that plays a vital physiological role in regulating tissue homoeostasis. Anoikis-resistance is of critical importance for metastasis of various human cancers including mRCC. However, the precise mechanisms on anoikis-resistance in mRCC are still unclear. Tyrosine receptor kinase B (TrkB) belongs to the Trk family of neurotrophin receptors. Previous investigations have implied that activation or overexpression of TrkB promoted proliferation, survival, angiogenesis, anoikis-resistance and metastasis in human cancers. Yet, the correlation between TrkB and anoikis-resistance in mRCC has rarely been reported. The aim of the present study was to explore the impact of TrkB on anoikis-resistance and targeted therapy in mRCC. Our data revealed that anoikis-resistant ACHN cells presented with tolerance to detachment-induced apoptosis, excessive proliferation and aggressive invasion, accompanied by upregulation of TrkB expression in contrast to parental cells. Furthermore, TrkB silencing caused apoptosis, inhibited proliferation, retarded invasion as well as improved anticancer efficiency of sorafenib in anoikis-resistant ACHN cells through inactivation of PI3K/Akt and MEK/ERK pathways. Our data may offer a novel potential therapeutic strategy for mRCC.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zengshu Xing
- Department of Urology, Haikou People's Hospital/Haikou Hospital Affiliated to Xiangya School of Medicine, Central South University, Haikou, Hainan 570208, P.R. China
| | - Xuechao Li
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yarong Song
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jun Zhao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yajun Xiao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yifei Xing
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
18
|
Pai P, Rachagani S, Dhawan P, Batra SK. Mucins and Wnt/β-catenin signaling in gastrointestinal cancers: an unholy nexus. Carcinogenesis 2016; 37:223-32. [PMID: 26762229 DOI: 10.1093/carcin/bgw005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/11/2016] [Indexed: 12/15/2022] Open
Abstract
The Wnt/β-catenin signaling pathway is indispensable for embryonic development, maintenance of adult tissue homeostasis and repair of epithelial injury. Unsurprisingly, aberrations in this pathway occur frequently in many cancers and often result in increased nuclear β-catenin. While mutations in key pathway members, such as β-catenin and adenomatous polyposis coli, are early and frequent occurrences in most colorectal cancers (CRC), mutations in canonical pathway members are rare in pancreatic ductal adenocarcinoma (PDAC). Instead, in the majority of PDACs, indirect mechanisms such as promoter methylation, increased ligand secretion and decreased pathway inhibitor secretion work in concert to promote aberrant cytosolic/nuclear localization of β-catenin. Concomitant with alterations in β-catenin localization, changes in mucin expression and localization have been documented in multiple malignancies. Indeed, numerous studies over the years suggest an intricate and mutually regulatory relationship between mucins (MUCs) and β-catenin. In the current review, we summarize several studies that describe the relationship between mucins and β-catenin in gastrointestinal malignancies, with particular emphasis upon colorectal and pancreatic cancer.
Collapse
Affiliation(s)
- Priya Pai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA, Fred and Pamela Buffett Cancer Center
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA, Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases and
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA, Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases and Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
19
|
Shi M, Chen D, Yang D, Liu XY. CCL21-CCR7 promotes the lymph node metastasis of esophageal squamous cell carcinoma by up-regulating MUC1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:149. [PMID: 26667143 PMCID: PMC4678529 DOI: 10.1186/s13046-015-0268-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
Abstract
Background CCR7 and MUC1 are correlated with lymph node metastasis in ESCC, but the role of MUC1 in the CCR7-induced lymphatic metastasis and the underlying molecular mechanism is still unclear. Methods The expression of CCR7 and MUC1 was detected in the ESCC samples by IHC, and the clinical significance of CCR7 and MUC1 in ESCC was analyzed. The expression of CCR7 and MUC1 in ESCC cell lines was detected by qRT-PCR and western blot. The effect of CCL21 on the migration and invasion of ESCC cells was determined by transwell assay. The activity of MUC1 promoter was determined by luciferase reporter assay. The activation of Erk, Akt and Sp1 was detected by western blot and the binding of Sp1 to the MUC1 promoter was determined by ChIP. Results The co-expression of CCR7 and MUC1 was detected in 153 ESCC samples by IHC, and both were correlated with lymph node metastasis, regional lymphatic recurrence and poor prognosis. Correspondingly, increasing levels of MUC1 mRNA and protein were detected in the ESCC cell lines KYSE410 and Eca9706 after treatment with CCL21 in a time- and dose-dependent manner. Furthermore, silencing MUC1 could remarkably suppress the invasion and migration of ESCC cells induced by CCL21. Moreover, heterologous CCR7 promoted the invasion and migration of KYSE150 and up-regulated MUC1 expression. Increasing levels of activated ERK1/2 and Akt were detected in KYSE410 after treating the cells with CCL21, and inhibiting the activation of ERK1/2 but not Akt caused the increased transcription of MUC1. Finally, the phosphorylation of Sp1 induced by ERK1/2 and subsequent increases in the binding of Sp1 to the muc1 promoter at −99/−90 were confirmed to cause the up-regulation of MUC1 induced by CCL21-CCR7. Conclusions Our findings suggested that MUC1 plays an important role in CCL21-CCR7-induced lymphatic metastasis and may serve as a therapeutic target in ESCC.
Collapse
Affiliation(s)
- Mo Shi
- Department of Thoracic Surgery of Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| | - Dong Chen
- Department of Thoracic Surgery of Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| | - Dong Yang
- Department of Oncology of Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013, China.
| | - Xiang-Yan Liu
- Department of Thoracic Surgery of Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, China.
| |
Collapse
|
20
|
Wang J, Liu G, Li Q, Wang F, Xie F, Zhai R, Guo Y, Chen T, Zhang N, Ni W, Yuan H, Tai G. Mucin1 promotes the migration and invasion of hepatocellular carcinoma cells via JNK-mediated phosphorylation of Smad2 at the C-terminal and linker regions. Oncotarget 2015; 6:19264-78. [PMID: 26057631 PMCID: PMC4662489 DOI: 10.18632/oncotarget.4267] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 05/13/2015] [Indexed: 02/07/2023] Open
Abstract
Mucin1 (MUC1), as an oncogene, plays a key role in the progression and tumorigenesis of many human adenocarcinomas. In this study, wound-healing, transwell migration and matrigel invasion assays showed that MUC1 promotes human hepatocellular carcinoma (HCC) cell migration and invasion by MUC1 gene silencing and overexpressing. Treatment with exogenous transforming growth factor beta (TGF-β)1, TGF-β type I receptor (TβRI) inhibitor, TGF-β1 siRNAs, or activator protein 1 (AP-1) inhibitor to MUC1-overexpressing HCC cells revealed that MUC1-induced autocrine TGF-β via JNK/AP-1 pathway promotes the cell migration and invasion. In addition, the migration and invasion of HCC cells were more significantly inhibited by JNK inhibitor compared with that by TβRI inhibitor or TGF-β1 siRNAs. Further studies demonstrated that MUC1-mediated JNK activation not only enhances the phosphorylation of Smad2 C-terminal at Ser-465/467 site (Smad2C) through TGF-β/TβRI, but also directly enhances the phosphorylation of Smad2 linker region at Ser-245/250/255 site (Smad2L), and then both of them collaborate to upregulate matrix metalloproteinase (MMP)-9-mediated cell migration and invasion of HCC. These results indicate that MUC1 is an attractive target in liver cancer therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Guomu Liu
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Qiongshu Li
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Fang Wang
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Fei Xie
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Ruiping Zhai
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Yingying Guo
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Tanxiu Chen
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Nannan Zhang
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Weihua Ni
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Hongyan Yuan
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
21
|
Kavanaugh D, O'Callaghan J, Kilcoyne M, Kane M, Joshi L, Hickey RM. The intestinal glycome and its modulation by diet and nutrition. Nutr Rev 2015; 73:359-75. [DOI: 10.1093/nutrit/nuu019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
22
|
MUC1 extracellular domain confers resistance of epithelial cancer cells to anoikis. Cell Death Dis 2014; 5:e1438. [PMID: 25275599 PMCID: PMC4649521 DOI: 10.1038/cddis.2014.421] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/29/2014] [Accepted: 09/01/2014] [Indexed: 01/10/2023]
Abstract
Anoikis, a special apoptotic process occurring in response to loss of cell adhesion to the extracellular matrix, is a fundamental surveillance process for maintaining tissue homeostasis. Resistance to anoikis characterises cancer cells and is a pre-requisite for metastasis. This study shows that overexpression of the transmembrane mucin protein MUC1 prevents initiation of anoikis in epithelial cancer cells in response to loss of adhesion. We show that this effect is largely attributed to the elongated and heavily glycosylated extracellular domain of MUC1 that protrudes high above the cell membrane and hence prevents activation of the cell surface anoikis-initiating molecules such as integrins and death receptors by providing them a mechanically ‘homing' microenvironment. As overexpression of MUC1 is a common feature of epithelial cancers and as resistance to anoikis is a hallmark of both oncogenic epithelial–mesenchymal transition and metastasis, MUC1-mediated cell resistance to anoikis may represent one of the fundamental regulatory mechanisms in tumourigenesis and metastasis.
Collapse
|
23
|
Increased expression of MUC1 and sialyl Lewis antigens in different areas of clear renal cell carcinoma. Clin Exp Nephrol 2014; 19:732-7. [DOI: 10.1007/s10157-014-1013-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 07/08/2014] [Indexed: 01/26/2023]
|
24
|
Jonckheere N, Skrypek N, Van Seuningen I. Mucins and tumor resistance to chemotherapeutic drugs. Biochim Biophys Acta Rev Cancer 2014; 1846:142-51. [PMID: 24785432 DOI: 10.1016/j.bbcan.2014.04.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/30/2022]
Abstract
Epithelial cancer patients not considered eligible for surgical resection frequently benefit from chemotherapy. Chemotherapy is the treatment of cancer with one or combination of cytotoxic or cytostatic drugs. Recent advances in chemotherapy allowed a great number of cancer patients to receive treatment with significant results. Unfortunately, resistance to chemotherapeutic drug treatment is a major challenge for clinicians in the majority of epithelial cancers because it is responsible for the inefficiency of therapies. Mucins belong to a heterogeneous group of large O-glycoproteins that can be either secreted or membrane-bound. Implications of mucins have been described in relation to cancer cell behavior and cell signaling pathways associated with epithelial tumorigenesis. Because of the frequent alteration of the pattern of mucin expression in cancers as well as their structural and functional characteristics, mucins are thought to also be involved in response to therapies. In this report, we review the roles of mucins in chemoresistance and the associated underlying molecular mechanisms (physical barrier, resistance to apoptosis, drug metabolism, cell stemness, epithelial-mesenchymal transition) and discuss the therapeutic tools/strategies and/or prognosis biomarkers for personalized chemotherapy that could be proposed from these studies.
Collapse
Affiliation(s)
- Nicolas Jonckheere
- Inserm, UMR837, Jean Pierre Aubert Research Center, Team #5 "Mucins, Epithelial Differentiation and Carcinogenesis", rue Polonovski, 59045 Lille Cedex, France; Université Lille Nord de France, Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille Cedex, France.
| | - Nicolas Skrypek
- Inserm, UMR837, Jean Pierre Aubert Research Center, Team #5 "Mucins, Epithelial Differentiation and Carcinogenesis", rue Polonovski, 59045 Lille Cedex, France; Université Lille Nord de France, Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille Cedex, France
| | - Isabelle Van Seuningen
- Inserm, UMR837, Jean Pierre Aubert Research Center, Team #5 "Mucins, Epithelial Differentiation and Carcinogenesis", rue Polonovski, 59045 Lille Cedex, France; Université Lille Nord de France, Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille Cedex, France
| |
Collapse
|