1
|
Yu H, Peng Z, Li X, Zhang Y. Establishment of a tumor-associated fibroblast associated gene score based on scRNA-seq to predict prognosis in patients with triple-negative breast cancer. PLoS One 2024; 19:e0311801. [PMID: 39418248 PMCID: PMC11486389 DOI: 10.1371/journal.pone.0311801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The tumor microenvironment (TME) is emerging as a tool for the development of improved patient prognosis and the development of novel antitumor drugs. As the most important stromal cells in the tumor microenvironment, cancer-associated fibroblasts (CAFs) play an important role in the development of TNBC. The rise of single-cell sequencing technology has facilitated our study of the various cell types in TME. In this study, we interpreted the heterogeneity of TNBCs from the perspective of tumor-associated fibroblasts in the tumor microenvironment based on the TNBC single-cell sequencing dataset GSE118389, in the hope of providing help for individualised treatment. Combining the TCGA database and the GSE103091 dataset, four genes associated with CAFs in TNBC (CERCAM, KLF10, ECM1,HGF) were identified using the R package Seurat as well as correlation consensus clustering analysis. Meanwhile, qRT-PCR, WB and IHC experiments confirmed their expression in TNBC. Based on these genes, CAFs Score was established and validated to correlate with the prognosis of patients with TNBC, with patients in the high score group surviving significantly worse than those in the low score group (P<0.001). In addition, there were significant differences in immune cell infiltration and expression of immune checkpoints between the high and low scoring groups. Compared to Stage I & II, the CAFs Score was higher in Stage III & IV TNBC patients (P = 0.043) and higher in N1-3 TNBC patients than in N0 TNBC patients (P = 0.035). EMT scores were higher within the high CAFs Score group (P = 1.4e-11) and there was a positive correlation between Stemness Score and CAFs Score (R = 0.61, P = 3.6e-09). Drug sensitivity analysis combining the GSE128099 showed a higher sensitivity to Gemcitabine in the low CAFs Score group (P = 0.0048). We speculate that these four CAFs-related genes are likely to be involved in regulating gemcitabine resistance in TNBC patients.
Collapse
Affiliation(s)
- Hao Yu
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ziqi Peng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xing Li
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiqi Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
2
|
Kandav G, Chandel A. Revolutionizing cancer treatment: an in-depth exploration of CAR-T cell therapies. Med Oncol 2024; 41:275. [PMID: 39400611 DOI: 10.1007/s12032-024-02491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Cancer is a leading cause of fatality worldwide. Due to the heterogeneity of cancer cells the effectiveness of various conventional cancer treatment techniques is constrained. Thus, researchers are diligently investigating therapeutic approaches like immunotherapy for effective tumor managements. Immunotherapy harnesses the inherent potential of patient's immune system to achieve desired outcomes. Within the realm of immunotherapy, CAR-T (Chimeric Antigen Receptor T) cells, emerges as a revolutionary innovation for cancer therapy. The process of CAR-T cell therapy entails extracting the patient's T cells, altering them with customized receptors designed to specifically recognize and eradicate the tumor cells, and then reinfusing the altered cells into the patient's body. Although there has been significant progress with CAR-T cell therapy in certain cases of specific B-cell leukemia and lymphoma, its effectiveness is hindered in hematological and solid tumors due to the challenges such as severe toxicities, restricted tumor infiltration, cytokine release syndrome and antigen escape. Overcoming these obstacles requires innovative approaches to design more effective CAR-T cells, which require a competent and diverse team to develop and implement. This comprehensive review addresses numerous therapeutic issues and provides a strategic solution while providing a deep understanding of the structural intricacies and production processes of CAR-T cells. In addition, this review explores the practical aspects of CAR-T cell therapy in clinical settings.
Collapse
Affiliation(s)
- Gurpreet Kandav
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India.
| | - Akash Chandel
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India
| |
Collapse
|
3
|
BHUSARE NILAM, KUMAR MAUSHMI. A review on potential heterocycles for the treatment of glioblastoma targeting receptor tyrosine kinases. Oncol Res 2024; 32:849-875. [PMID: 38686058 PMCID: PMC11055995 DOI: 10.32604/or.2024.047042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/10/2024] [Indexed: 05/02/2024] Open
Abstract
Glioblastoma, the most aggressive form of brain tumor, poses significant challenges in terms of treatment success and patient survival. Current treatment modalities for glioblastoma include radiation therapy, surgical intervention, and chemotherapy. Unfortunately, the median survival rate remains dishearteningly low at 12-15 months. One of the major obstacles in treating glioblastoma is the recurrence of tumors, making chemotherapy the primary approach for secondary glioma patients. However, the efficacy of drugs is hampered by the presence of the blood-brain barrier and multidrug resistance mechanisms. Consequently, considerable research efforts have been directed toward understanding the underlying signaling pathways involved in glioma and developing targeted drugs. To tackle glioma, numerous studies have examined kinase-downstream signaling pathways such as RAS-RAF-MEK-ERK-MPAK. By targeting specific signaling pathways, heterocyclic compounds have demonstrated efficacy in glioma therapeutics. Additionally, key kinases including phosphatidylinositol 3-kinase (PI3K), serine/threonine kinase, cytoplasmic tyrosine kinase (CTK), receptor tyrosine kinase (RTK) and lipid kinase (LK) have been considered for investigation. These pathways play crucial roles in drug effectiveness in glioma treatment. Heterocyclic compounds, encompassing pyrimidine, thiazole, quinazoline, imidazole, indole, acridone, triazine, and other derivatives, have shown promising results in targeting these pathways. As part of this review, we propose exploring novel structures with low toxicity and high potency for glioma treatment. The development of these compounds should strive to overcome multidrug resistance mechanisms and efficiently penetrate the blood-brain barrier. By optimizing the chemical properties and designing compounds with enhanced drug-like characteristics, we can maximize their therapeutic value and minimize adverse effects. Considering the complex nature of glioblastoma, these novel structures should be rigorously tested and evaluated for their efficacy and safety profiles.
Collapse
Affiliation(s)
- NILAM BHUSARE
- Somaiya Institute for Research & Consultancy, Somaiya Vidyavihar University, Vidyavihar (East), Mumbai, 400077, India
| | - MAUSHMI KUMAR
- Somaiya Institute for Research & Consultancy, Somaiya Vidyavihar University, Vidyavihar (East), Mumbai, 400077, India
| |
Collapse
|
4
|
Chamorro DF, Somes LK, Hoyos V. Engineered Adoptive T-Cell Therapies for Breast Cancer: Current Progress, Challenges, and Potential. Cancers (Basel) 2023; 16:124. [PMID: 38201551 PMCID: PMC10778447 DOI: 10.3390/cancers16010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Breast cancer remains a significant health challenge, and novel treatment approaches are critically needed. This review presents an in-depth analysis of engineered adoptive T-cell therapies (E-ACTs), an innovative frontier in cancer immunotherapy, focusing on their application in breast cancer. We explore the evolving landscape of chimeric antigen receptor (CAR) and T-cell receptor (TCR) T-cell therapies, highlighting their potential and challenges in targeting breast cancer. The review addresses key obstacles such as target antigen selection, the complex breast cancer tumor microenvironment, and the persistence of engineered T-cells. We discuss the advances in overcoming these barriers, including strategies to enhance T-cell efficacy. Finally, our comprehensive analysis of the current clinical trials in this area provides insights into the future possibilities and directions of E-ACTs in breast cancer treatment.
Collapse
Affiliation(s)
- Diego F. Chamorro
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
| | - Lauren K. Somes
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
| | - Valentina Hoyos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX 77030, USA; (D.F.C.); (L.K.S.)
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
5
|
Mitra D, Saha D, Das G, Mukherjee R, Banerjee S, Alam N, Mustafi SM, Nath P, Majumder A, Majumder B, Murmu N. Lupeol synergizes with 5-fluorouracil to combat c-MET/EphA2 mediated chemoresistance in triple negative breast cancer. iScience 2023; 26:108395. [PMID: 38047085 PMCID: PMC10692664 DOI: 10.1016/j.isci.2023.108395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most elusive subtype of breast cancer that encounters treatment dilemmas owing to the paucity of druggable targets. We found hyperactivation of c-MET and ephrin type-A receptor 2 (EphA2) in patients treated with 5FU driven chemotherapy which correlated with lower disease-free survival. However, silencing of both these genes resulted in a marked decrease in the invasive, migratory, and tumorigenic potential of TNBC cells, indicating that a dual target strategy is actionable. Lupeol is a phytochemical, with potent anticancer efficacy and minimal side effects in preclinical studies. A synergistic strategy with 5FU and Lupeol elicited promising anticancer responses in vitro, in vivo, and in patient-derived ex vivo tumor culture models. This synergistic regimen is effective, even in the presence of HGF, which mechanistically orchestrates the activation of c-MET and EphA2. These data lay the foundation for the clinical validation of this combination therapy for TNBC patients.
Collapse
Affiliation(s)
- Debarpan Mitra
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Depanwita Saha
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Gaurav Das
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Rimi Mukherjee
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Samir Banerjee
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Saunak Mitra Mustafi
- Department of Pathology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Partha Nath
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| | - Anuj Majumder
- Department of Medicine, Harvard Medical School, 65 Lansdowne Street, Suite #317, Cambridge, MA 02139, USA
- Brookline High School, 115 Greenough Street, Brookline, MA 02445, USA
| | - Biswanath Majumder
- Departments of Molecular Profiling, Cancer Biology and Molecular Pathology, Mitra Biotech, Bangalore, India
| | - Nabendu Murmu
- Department of Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India
| |
Collapse
|
6
|
Kausar MA, Anwar S, El-Horany HES, Khan FH, Tyagi N, Najm MZ, Sadaf, Eisa AA, Dhara C, Gantayat S. Journey of CAR T‑cells: Emphasising the concepts and advancements in breast cancer (Review). Int J Oncol 2023; 63:130. [PMID: 37830150 PMCID: PMC10622179 DOI: 10.3892/ijo.2023.5578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Cancer is the primary and one of the most prominent causes of the rising global mortality rate, accounting for nearly 10 million deaths annually. Specific methods have been devised to cure cancerous tumours. Effective therapeutic approaches must be developed, both at the cellular and genetic level. Immunotherapy offers promising results by providing sustained remission to patients with refractory malignancies. Genetically modified T‑lymphocytic cells have emerged as a novel therapeutic approach for the treatment of solid tumours, haematological malignancies, and relapsed/refractory B‑lymphocyte malignancies as a result of recent clinical trial findings; the treatment is referred to as chimeric antigen receptor T‑cell therapy (CAR T‑cell therapy). Leukapheresis is used to remove T‑lymphocytes from the leukocytes, and CARs are created through genetic engineering. Without the aid of a major histocompatibility complex, these genetically modified receptors lyse malignant tissues by interacting directly with the carcinogen. Additionally, the outcomes of preclinical and clinical studies reveal that CAR T‑cell therapy has proven to be a potential therapeutic contender against metastatic breast cancer (BCa), triple‑negative, and HER 2+ve BCa. Nevertheless, unique toxicities, including (cytokine release syndrome, on/off‑target tumour recognition, neurotoxicities, anaphylaxis, antigen escape in BCa, and the immunosuppressive tumour microenvironment in solid tumours, negatively impact the mechanism of action of these receptors. In this review, the potential of CAR T‑cell immunotherapy and its method of destroying tumour cells is explored using data from preclinical and clinical trials, as well as providing an update on the approaches used to reduce toxicities, which may improve or broaden the effectiveness of the therapies used in BCa.
Collapse
Affiliation(s)
- Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
| | - Sadaf Anwar
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
| | - Hemat El-Sayed El-Horany
- Department of Biochemistry, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
- Medical Biochemistry Department, Faculty of Medicine, Tanta University, Egypt
| | - Farida Habib Khan
- Medical and Diagnostic Research Centre, University of Ha'il, Hail 55473, Saudi Arabia
- Department of Community and Family Medicine, College of Medicine, University of Ha'il, Ha'il 81411, Saudi Arabia
| | - Neetu Tyagi
- Bone Biology Laboratory, Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | | | - Sadaf
- Department of Biotechnology, Jamia Millia Islamia, Okhla, New Delhi 110025, India
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 30002, Saudi Arabia
| | - Chandrajeet Dhara
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram 122003, Haryana
| | - Saumyatika Gantayat
- School of Biosciences, Apeejay Stya University, Sohna, Gurugram 122003, Haryana
| |
Collapse
|
7
|
Shah PD, Huang AC, Xu X, Orlowski R, Amaravadi RK, Schuchter LM, Zhang P, Tchou J, Matlawski T, Cervini A, Shea J, Gilmore J, Lledo L, Dengel K, Marshall A, Wherry EJ, Linette GP, Brennan A, Gonzalez V, Kulikovskaya I, Lacey SF, Plesa G, June CH, Vonderheide RH, Mitchell TC. Phase I Trial of Autologous RNA-electroporated cMET-directed CAR T Cells Administered Intravenously in Patients with Melanoma and Breast Carcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:821-829. [PMID: 37377890 PMCID: PMC10167933 DOI: 10.1158/2767-9764.crc-22-0486] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 06/29/2023]
Abstract
Purpose Treatments are limited for metastatic melanoma and metastatic triple-negative breast cancer (mTNBC). This pilot phase I trial (NCT03060356) examined the safety and feasibility of intravenous RNA-electroporated chimeric antigen receptor (CAR) T cells targeting the cell-surface antigen cMET. Experimental Design Metastatic melanoma or mTNBC subjects had at least 30% tumor expression of cMET, measurable disease and progression on prior therapy. Patients received up to six infusions (1 × 10e8 T cells/dose) of CAR T cells without lymphodepleting chemotherapy. Forty-eight percent of prescreened subjects met the cMET expression threshold. Seven (3 metastatic melanoma, 4 mTNBC) were treated. Results Mean age was 50 years (35-64); median Eastern Cooperative Oncology Group 0 (0-1); median prior lines of chemotherapy/immunotherapy were 4/0 for TNBC and 1/3 for melanoma subjects. Six patients experienced grade 1 or 2 toxicity. Toxicities in at least 1 patient included anemia, fatigue, and malaise. One subject had grade 1 cytokine release syndrome. No grade 3 or higher toxicity, neurotoxicity, or treatment discontinuation occurred. Best response was stable disease in 4 and disease progression in 3 subjects. mRNA signals corresponding to CAR T cells were detected by RT-PCR in all patients' blood including in 3 subjects on day +1 (no infusion administered on this day). Five subjects underwent postinfusion biopsy with no CAR T-cell signals seen in tumor. Three subjects had paired tumor tissue; IHC showed increases in CD8 and CD3 and decreases in pS6 and Ki67. Conclusions Intravenous administration of RNA-electroporated cMET-directed CAR T cells is safe and feasible. Significance Data evaluating CAR T therapy in patients with solid tumors are limited. This pilot clinical trial demonstrates that intravenous cMET-directed CAR T-cell therapy is safe and feasible in patients with metastatic melanoma and metastatic breast cancer, supporting the continued evaluation of cellular therapy for patients with these malignancies.
Collapse
Affiliation(s)
- Payal D. Shah
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander C. Huang
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiaowei Xu
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert Orlowski
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ravi K. Amaravadi
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lynn M. Schuchter
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul Zhang
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julia Tchou
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tina Matlawski
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amanda Cervini
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joanne Shea
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joan Gilmore
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Lester Lledo
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Karen Dengel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy Marshall
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - E. John Wherry
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Systems Pharmacology and Translational Therapeutics, Institute of Immunology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gerald P. Linette
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrea Brennan
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vanessa Gonzalez
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Irina Kulikovskaya
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Simon F. Lacey
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gabriela Plesa
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Carl H. June
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H. Vonderheide
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tara C. Mitchell
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F, Dashti Shokoohi S, Evazi Bakhshi S, Safarzadeh Kozani P, Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13. [DOI: https:/doi.org/10.3389/fimmu.2022.1018786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is known as the most intricate and hard-to-treat subtype of breast cancer. TNBC cells do not express the well-known estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expressed by other breast cancer subtypes. This phenomenon leaves no room for novel treatment approaches including endocrine and HER2-specific antibody therapies. To date, surgery, radiotherapy, and systemic chemotherapy remain the principal therapy options for TNBC treatment. However, in numerous cases, these approaches either result in minimal clinical benefit or are nonfunctional, resulting in disease recurrence and poor prognosis. Nowadays, chimeric antigen receptor T cell (CAR-T) therapy is becoming more established as an option for the treatment of various types of hematologic malignancies. CAR-Ts are genetically engineered T lymphocytes that employ the body’s immune system mechanisms to selectively recognize cancer cells expressing tumor-associated antigens (TAAs) of interest and efficiently eliminate them. However, despite the clinical triumph of CAR-T therapy in hematologic neoplasms, CAR-T therapy of solid tumors, including TNBC, has been much more challenging. In this review, we will discuss the success of CAR-T therapy in hematological neoplasms and its caveats in solid tumors, and then we summarize the potential CAR-T targetable TAAs in TNBC studied in different investigational stages.
Collapse
|
9
|
Nasiri F, Kazemi M, Mirarefin SMJ, Mahboubi Kancha M, Ahmadi Najafabadi M, Salem F, Dashti Shokoohi S, Evazi Bakhshi S, Safarzadeh Kozani P, Safarzadeh Kozani P. CAR-T cell therapy in triple-negative breast cancer: Hunting the invisible devil. Front Immunol 2022; 13:1018786. [PMID: 36483567 PMCID: PMC9722775 DOI: 10.3389/fimmu.2022.1018786] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/24/2022] [Indexed: 11/23/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is known as the most intricate and hard-to-treat subtype of breast cancer. TNBC cells do not express the well-known estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (HER2) expressed by other breast cancer subtypes. This phenomenon leaves no room for novel treatment approaches including endocrine and HER2-specific antibody therapies. To date, surgery, radiotherapy, and systemic chemotherapy remain the principal therapy options for TNBC treatment. However, in numerous cases, these approaches either result in minimal clinical benefit or are nonfunctional, resulting in disease recurrence and poor prognosis. Nowadays, chimeric antigen receptor T cell (CAR-T) therapy is becoming more established as an option for the treatment of various types of hematologic malignancies. CAR-Ts are genetically engineered T lymphocytes that employ the body's immune system mechanisms to selectively recognize cancer cells expressing tumor-associated antigens (TAAs) of interest and efficiently eliminate them. However, despite the clinical triumph of CAR-T therapy in hematologic neoplasms, CAR-T therapy of solid tumors, including TNBC, has been much more challenging. In this review, we will discuss the success of CAR-T therapy in hematological neoplasms and its caveats in solid tumors, and then we summarize the potential CAR-T targetable TAAs in TNBC studied in different investigational stages.
Collapse
Affiliation(s)
- Fatemeh Nasiri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC, Canada
| | - Mehrasa Kazemi
- Department of Laboratory Medicine, Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Maral Mahboubi Kancha
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Milad Ahmadi Najafabadi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Faeze Salem
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Setareh Dashti Shokoohi
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sahar Evazi Bakhshi
- Department of Anatomical Sciences, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
10
|
Alnefaie A, Albogami S, Asiri Y, Ahmad T, Alotaibi SS, Al-Sanea MM, Althobaiti H. Chimeric Antigen Receptor T-Cells: An Overview of Concepts, Applications, Limitations, and Proposed Solutions. Front Bioeng Biotechnol 2022; 10:797440. [PMID: 35814023 PMCID: PMC9256991 DOI: 10.3389/fbioe.2022.797440] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Adaptive immunity, orchestrated by B-cells and T-cells, plays a crucial role in protecting the body from pathogenic invaders and can be used as tools to enhance the body's defense mechanisms against cancer by genetically engineering these immune cells. Several strategies have been identified for cancer treatment and evaluated for their efficacy against other diseases such as autoimmune and infectious diseases. One of the most advanced technologies is chimeric antigen receptor (CAR) T-cell therapy, a pioneering therapy in the oncology field. Successful clinical trials have resulted in the approval of six CAR-T cell products by the Food and Drug Administration for the treatment of hematological malignancies. However, there have been various obstacles that limit the use of CAR T-cell therapy as the first line of defense mechanism against cancer. Various innovative CAR-T cell therapeutic designs have been evaluated in preclinical and clinical trial settings and have demonstrated much potential for development. Such trials testing the suitability of CARs against solid tumors and HIV are showing promising results. In addition, new solutions have been proposed to overcome the limitations of this therapy. This review provides an overview of the current knowledge regarding this novel technology, including CAR T-cell structure, different applications, limitations, and proposed solutions.
Collapse
Affiliation(s)
- Alaa Alnefaie
- Department of Medical Services, King Faisal Medical Complex, Taif, Saudi Arabia
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Yousif Asiri
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hisham Althobaiti
- Chief of Medical Department, King Faisal Medical Complex (KFMC), Taif, Saudi Arabia
| |
Collapse
|
11
|
Jones GS, Hoadley KA, Benefield H, Olsson LT, Hamilton AM, Bhattacharya A, Kirk EL, Tipaldos HJ, Fleming JM, Williams KP, Love MI, Nichols HB, Olshan AF, Troester MA. Racial differences in breast cancer outcomes by hepatocyte growth factor pathway expression. Breast Cancer Res Treat 2022; 192:447-455. [PMID: 35034243 PMCID: PMC9380654 DOI: 10.1007/s10549-021-06497-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/16/2021] [Indexed: 11/02/2022]
Abstract
PURPOSE Black women have a 40% increased risk of breast cancer-related mortality. These outcome disparities may reflect differences in tumor pathways and a lack of targetable therapies for specific subtypes that are more common in Black women. Hepatocyte growth factor (HGF) is a targetable pathway that promotes breast cancer tumorigenesis, is associated with basal-like breast cancer, and is differentially expressed by race. This study assessed whether a 38-gene HGF expression signature is associated with recurrence and survival in Black and non-Black women. METHODS Study participants included 1957 invasive breast cancer cases from the Carolina Breast Cancer Study. The HGF signature was evaluated in association with recurrence (n = 1251, 171 recurrences), overall, and breast cancer-specific mortality (n = 706, 190/328 breast cancer/overall deaths) using Cox proportional hazard models. RESULTS Women with HGF-positive tumors had higher recurrence rates [HR 1.88, 95% CI (1.19, 2.98)], breast cancer-specific mortality [HR 1.90, 95% CI (1.26, 2.85)], and overall mortality [HR 1.69; 95% CI (1.17, 2.43)]. Among Black women, HGF positivity was significantly associated with higher 5-year rate of recurrence [HR 1.73; 95% CI (1.01, 2.99)], but this association was not significant in non-Black women [HR 1.68; 95% CI (0.72, 3.90)]. Among Black women, HGF-positive tumors had elevated breast cancer-specific mortality [HR 1.80, 95% CI (1.05, 3.09)], which was not significant in non-Black women [HR 1.52; 95% CI (0.78, 2.99)]. CONCLUSION This multi-gene HGF signature is a poor-prognosis feature for breast cancer and may identify patients who could benefit from HGF-targeted treatments, an unmet need for Black and triple-negative patients.
Collapse
Affiliation(s)
- Gieira S Jones
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA
| | - Katherine A Hoadley
- Department of Genetics, University of North Carolina-Chapel Hill-Chapel Hill, Chapel Hill, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Halei Benefield
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA
| | - Linnea T Olsson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA
| | - Alina M Hamilton
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, USA
| | - Arjun Bhattacharya
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, USA
- Institute for Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Erin L Kirk
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA
| | - Heather J Tipaldos
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Jodie M Fleming
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, USA
| | - Kevin P Williams
- Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, USA
- Department of Pharmaceutical Sciences, North Carolina Central University, Durham, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina-Chapel Hill-Chapel Hill, Chapel Hill, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, USA
| | - Hazel B Nichols
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, 27599-7400, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA.
| |
Collapse
|
12
|
Floresta G, Abbate V. Recent progress in the imaging of c-Met aberrant cancers with positron emission tomography. Med Res Rev 2022; 42:1588-1606. [PMID: 35292998 PMCID: PMC9314990 DOI: 10.1002/med.21885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 11/06/2022]
Abstract
Tyrosine-protein kinase Met-also known as c-Met or HGFR-is a membrane receptor protein with associated tyrosine kinase activity physiologically stimulated by its natural ligand, the hepatocyte growth factor (HGF), and is involved in different ways in cancer progression and tumourigenesis. Targeting c-Met with pharmaceuticals has been preclinically proved to have significant benefits for cancer treatment. Recently, evaluating the protein status during and before c-Met targeted therapy has been shown of relevant importance by different studies, demonstrating that there is a correlation between the status (e.g., aberrant activation and overexpression) of the HGFR with therapy response and clinical prognosis. Currently, clinical imaging based on positron emission tomography (PET) appears as one of the most promising tools for the in vivo real-time scanning of irregular alterations of the tyrosine-protein kinase Met and for the diagnosis of c-Met related cancers. In this study, we review the recent progress in the imaging of c-Met aberrant cancers with PET. Particular attention is directed on the development of PET probes with a range of different sizes (HGF, antibodies, anticalines, peptides, and small molecules), and radiolabeled with different radionuclides. The goal of this review is to report all the preclinical imaging studies based on PET imaging reported until now for in vivo diagnosis of c-Met in oncology to support the design of novel and more effective PET probes for in vivo evaluation of c-Met.
Collapse
Affiliation(s)
- Giuseppe Floresta
- Department of Analytical, Environmental and Forensic Sciences, Institute of Pharmaceutical Sciences, King's College London, London, UK
| | - Vincenzo Abbate
- Department of Analytical, Environmental and Forensic Sciences, Institute of Pharmaceutical Sciences, King's College London, London, UK
| |
Collapse
|
13
|
Yang X, Liao HY, Zhang HH. Roles of MET in human cancer. Clin Chim Acta 2021; 525:69-83. [PMID: 34951962 DOI: 10.1016/j.cca.2021.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023]
Abstract
The MET proto-oncogene was first identified in osteosarcoma cells exposed to carcinogens. Although expressed in many normal cells, MET is overexpressed in many human cancers. MET is involved in the initiation and development of various human cancers and mediates proliferation, migration and invasion. Accordingly, MET has been successfully used as a biomarker for diagnosis and prognosis, survival, post-operative recurrence, risk assessment and pathologic grading, as well as a therapeutic target. In addition, recent work indicates that inhibition of MET expression and function has potential clinical benefit. This review summarizes the role, mechanism, and clinical significance of MET in the formation and development of human cancer.
Collapse
Affiliation(s)
- Xin Yang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Hai-Yang Liao
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China; Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou 730000, PR China.
| |
Collapse
|
14
|
Sudhesh Dev S, Zainal Abidin SA, Farghadani R, Othman I, Naidu R. Receptor Tyrosine Kinases and Their Signaling Pathways as Therapeutic Targets of Curcumin in Cancer. Front Pharmacol 2021; 12:772510. [PMID: 34867402 PMCID: PMC8634471 DOI: 10.3389/fphar.2021.772510] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/01/2021] [Indexed: 12/20/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are transmembrane cell-surface proteins that act as signal transducers. They regulate essential cellular processes like proliferation, apoptosis, differentiation and metabolism. RTK alteration occurs in a broad spectrum of cancers, emphasising its crucial role in cancer progression and as a suitable therapeutic target. The use of small molecule RTK inhibitors however, has been crippled by the emergence of resistance, highlighting the need for a pleiotropic anti-cancer agent that can replace or be used in combination with existing pharmacological agents to enhance treatment efficacy. Curcumin is an attractive therapeutic agent mainly due to its potent anti-cancer effects, extensive range of targets and minimal toxicity. Out of the numerous documented targets of curcumin, RTKs appear to be one of the main nodes of curcumin-mediated inhibition. Many studies have found that curcumin influences RTK activation and their downstream signaling pathways resulting in increased apoptosis, decreased proliferation and decreased migration in cancer both in vitro and in vivo. This review focused on how curcumin exhibits anti-cancer effects through inhibition of RTKs and downstream signaling pathways like the MAPK, PI3K/Akt, JAK/STAT, and NF-κB pathways. Combination studies of curcumin and RTK inhibitors were also analysed with emphasis on their common molecular targets.
Collapse
Affiliation(s)
- Sareshma Sudhesh Dev
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Syafiq Asnawi Zainal Abidin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Malaysia
| |
Collapse
|
15
|
Kang CH, Kim Y, Lee DY, Choi SU, Lee HK, Park CH. c-Met-Specific Chimeric Antigen Receptor T Cells Demonstrate Anti-Tumor Effect in c-Met Positive Gastric Cancer. Cancers (Basel) 2021; 13:cancers13225738. [PMID: 34830894 PMCID: PMC8616279 DOI: 10.3390/cancers13225738] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary c-Met is known to be overexpressed in gastric cancers. Here, we developed anti-c-Met CAR T cell and measured its anti-tumor efficacy in vitro and in vivo. Our anti c-Met CAR T cells have shown selective killing of c-Met overexpressed gastric cancer cells. Based on our results, we suggest that anti-c-Met CAR T cell therapy could be effective for gastric cancer patients. Abstract Chimeric antigen receptor (CAR) technology has been highlighted in recent years as a new therapeutic approach for cancer treatment. Although the impressive efficacy of CAR-based T cell adoptive immunotherapy has been observed in hematologic cancers, limited effect has been reported on solid tumors. Approximately 20% of gastric cancer (GC) patients exhibit a high expression of c-Met. We have generated an anti c-Met CAR construct that is composed of a single-chain variable fragment (scFv) of c-Met antibody and signaling domains consisting of CD28 and CD3ζ. To test the CAR construct, we used two cell lines: the Jurkat and KHYG-1 cell lines. These are convenient cell lines, compared to primary T cells, to culture and to test CAR constructs. We transduced CAR constructs into Jurkat cells by electroporation. c-Met CAR Jurkat cells secreted interleukin-2 (IL-2) only when incubated with c-Met positive GC cells. To confirm the lytic function of CAR, the CAR construct was transduced into KHYG-1, a NK/T cell line, using lentiviral particles. c-Met CAR KHYG-1 showed cytotoxic effect on c-Met positive GC cells, while c-Met negative GC cell lines were not eradicated by c-Met CAR KHYG-1. Based on these data, we created c-Met CAR T cells from primary T cells, which showed high IL-2 and IFN-γ secretion when incubated with the c-Met positive cancer cell line. In an in vivo xenograft assay with NSG bearing MKN-45, a c-Met positive GC cell line, c-Met CAR T cells effectively inhibited the tumor growth of MKN-45. Our results show that the c-Met CAR T cell therapy can be effective on GC.
Collapse
Affiliation(s)
- Chung Hyo Kang
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (C.H.K.); (Y.K.); (D.Y.L.); (S.U.C.); (H.K.L.)
| | - Yeongrin Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (C.H.K.); (Y.K.); (D.Y.L.); (S.U.C.); (H.K.L.)
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Da Yeon Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (C.H.K.); (Y.K.); (D.Y.L.); (S.U.C.); (H.K.L.)
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Sang Un Choi
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (C.H.K.); (Y.K.); (D.Y.L.); (S.U.C.); (H.K.L.)
| | - Heung Kyoung Lee
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (C.H.K.); (Y.K.); (D.Y.L.); (S.U.C.); (H.K.L.)
| | - Chi Hoon Park
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea; (C.H.K.); (Y.K.); (D.Y.L.); (S.U.C.); (H.K.L.)
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-42-860-7416; Fax: +82-42-861-4246
| |
Collapse
|
16
|
Jones GS, Hoadley KA, Olsson LT, Hamilton AM, Bhattacharya A, Kirk EL, Tipaldos HJ, Fleming JM, Love MI, Nichols HB, Olshan AF, Troester MA. Hepatocyte growth factor pathway expression in breast cancer by race and subtype. Breast Cancer Res 2021; 23:80. [PMID: 34344422 PMCID: PMC8336233 DOI: 10.1186/s13058-021-01460-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/20/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND African American women have the highest risk of breast cancer mortality compared to other racial groups. Differences in tumor characteristics have been implicated as a possible cause; however, the tumor microenvironment may also contribute to this disparity in mortality. Hepatocyte growth factor (HGF) is a stroma-derived marker of the tumor microenvironment that may affect tumor progression differentially by race. OBJECTIVE To examine whether an HGF gene expression signature is differentially expressed by race and tumor characteristics. METHODS Invasive breast tumors from 1957 patients were assessed for a 38-gene RNA-based HGF gene expression signature. Participants were black (n = 1033) and non-black (n = 924) women from the population-based Carolina Breast Cancer Study (1993-2013). Generalized linear models were used to estimate the relative frequency differences (RFD) in HGF status by race, clinical, and demographic factors. RESULTS Thirty-two percent of tumors were positive for the HGF signature. Black women were more likely [42% vs. 21%; RFD = + 19.93% (95% CI 16.00, 23.87)] to have HGF-positive tumors compared to non-black women. Triple-negative patients had a higher frequency of HGF positivity [82% vs. 13% in non-triple-negative; RFD = + 65.85% (95% CI 61.71, 69.98)], and HGF positivity was a defining feature of basal-like subtype [92% vs. 8% in non-basal; RFD = + 81.84% (95% CI 78.84, 84.83)]. HGF positivity was associated with younger age, stage, higher grade, and high genomic risk of recurrence (ROR-PT) score. CONCLUSION HGF expression is a defining feature of basal-like tumors, and its association with black race and young women suggests it may be a candidate pathway for understanding breast cancer disparities.
Collapse
Affiliation(s)
- Gieira S Jones
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, USA
| | - Katherine A Hoadley
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Linnea T Olsson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, USA
| | - Alina M Hamilton
- Department of Pathology and Laboratory Medicine, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Arjun Bhattacharya
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Erin L Kirk
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, USA
| | - Heather J Tipaldos
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Jodie M Fleming
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, NC, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
- Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Hazel B Nichols
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Melissa A Troester
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina-Chapel Hill, 253 Rosenau Hall, CB #7435, 135 Dauer Drive, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Gangliosides as Signaling Regulators in Cancer. Int J Mol Sci 2021; 22:ijms22105076. [PMID: 34064863 PMCID: PMC8150402 DOI: 10.3390/ijms22105076] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023] Open
Abstract
At the plasma membrane, gangliosides, a group of glycosphingolipids, are expressed along with glycosphingolipids, phospholipids, and cholesterol in so-called lipid rafts that interact with signaling receptors and related molecules. Most cancers present abnormalities in the intracellular signal transduction system involved in tumor growth, invasion, and metastasis. To date, the roles of gangliosides as regulators of signal transduction have been reported in several cancer types. Gangliosides can be expressed by the exogenous ganglioside addition, with their endogenous expression regulated at the enzymatic level by targeting specific glycosyltransferases. Accordingly, the relationship between changes in the composition of cell surface gangliosides and signal transduction has been investigated by controlling ganglioside expression. In cancer cells, several types of signaling molecules are positively or negatively regulated by ganglioside expression levels, promoting malignant properties. Moreover, antibodies against gangliosides have been shown to possess cytotoxic effects on ganglioside-expressing cancer cells. In the present review, we highlight the involvement of gangliosides in the regulation of cancer cell signaling, and we explore possible therapies targeting ganglioside-expressing cancer.
Collapse
|
18
|
Moosavi F, Giovannetti E, Peters GJ, Firuzi O. Combination of HGF/MET-targeting agents and other therapeutic strategies in cancer. Crit Rev Oncol Hematol 2021; 160:103234. [PMID: 33497758 DOI: 10.1016/j.critrevonc.2021.103234] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
MET receptor has emerged as a druggable target across several human cancers. Agents targeting MET and its ligand hepatocyte growth factor (HGF) including small molecules such as crizotinib, tivantinib and cabozantinib or antibodies including rilotumumab and onartuzumab have proven their values in different tumors. Recently, capmatinib was approved for treatment of metastatic lung cancer with MET exon 14 skipping. In this review, we critically examine the current evidence on how HGF/MET combination therapies may take advantage of synergistic effects, overcome primary or acquired drug resistance, target tumor microenvironment, modulate drug metabolism or tackle pharmacokinetic issues. Preclinical and clinical studies on the combination of HGF/MET-targeted agents with conventional chemotherapeutics or molecularly targeted treatments (including EGFR, VEGFR, HER2, RAF/MEK, and PI3K/Akt targeting agents) and also the value of biomarkers are examined. Our deeper understanding of molecular mechanisms underlying successful pharmacological combinations is crucial to find the best personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Combined crizotinib and endocrine drugs inhibit proliferation, migration, and colony formation of breast cancer cells via downregulation of MET and estrogen receptor. Med Oncol 2021; 38:8. [DOI: 10.1007/s12032-021-01458-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023]
|
20
|
Toulouie S, Johanning G, Shi Y. Chimeric antigen receptor T-cell immunotherapy in breast cancer: development and challenges. J Cancer 2021; 12:1212-1219. [PMID: 33442419 PMCID: PMC7797648 DOI: 10.7150/jca.54095] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/27/2020] [Indexed: 01/02/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an innovative form of immunotherapy wherein autologous T-cells are genetically modified to express chimeric receptors encoding an antigen-specific single-chain variable fragment and costimulatory molecules. Moreover, CAR T-cell therapy can only work successfully in patients who have an intact immune system. Therefore, patients receiving cytotoxic chemotherapy will be immunosuppressed making CAR-T therapy less effective. In adoptive CD8+ T-cell therapy (ACT), numerous tumor-specific, engineered T-cells are sourced from patients, expanded in vitro, and infused back expressing tumor-specific antigen receptors. The most successful ACT, anti-CD19 chimeric antigen receptor T-cell therapy directed against B-cell lymphoma, has proved to be efficacious. However, current efforts to utilize this approach for solid tumors, like breast cancer, have shown only modest improvement. Nevertheless, the potential efficacy of CAR-T therapy is promising in an era of immunological advances. By appropriately manipulating CAR T-cells to combat the immunosuppressive forces of the tumor microenvironment, significant eradication of the solid tumor may occur. This review discusses CAR T-cell therapy and its specificity and safety in adoptive cell transfers in breast cancer. We will highlight novel discoveries in CAR T-cell immunotherapy and the formidable barriers including suppression of T-cell function and localization at tumor sites.
Collapse
Affiliation(s)
- Sara Toulouie
- California Northstate University, College of Medicine, Elk Grove CA, USA
| | | | - Yihui Shi
- California Northstate University, College of Medicine, Elk Grove CA, USA
| |
Collapse
|
21
|
Mediratta K, El-Sahli S, D’Costa V, Wang L. Current Progresses and Challenges of Immunotherapy in Triple-Negative Breast Cancer. Cancers (Basel) 2020; 12:E3529. [PMID: 33256070 PMCID: PMC7761500 DOI: 10.3390/cancers12123529] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
With improved understanding of the immunogenicity of triple-negative breast cancer (TNBC), immunotherapy has emerged as a promising candidate to treat this lethal disease owing to the lack of specific targets and effective treatments. While immune checkpoint inhibition (ICI) has been effectively used in immunotherapy for several types of solid tumor, monotherapies targeting programmed death 1 (PD-1), its ligand PD-L1, or cytotoxic T lymphocyte-associated protein 4 (CTLA-4) have shown little efficacy for TNBC patients. Over the past few years, various therapeutic candidates have been reviewed, attempting to improve ICI efficacy on TNBC through combinatorial treatment. In this review, we describe the clinical limitations of ICI and illustrate candidates from an immunological, pharmacological, and metabolic perspective that may potentiate therapy to improve the outcomes of TNBC patients.
Collapse
Affiliation(s)
- Karan Mediratta
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Sara El-Sahli
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Vanessa D’Costa
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; (K.M.); (S.E.-S.)
- Centre for Infection, Immunity and Inflammation, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
22
|
Chen S, Wang Y, Chen L, Xia Y, Cui J, Wang W, Jiang X, Wang J, Zhu Y, Sun S, Zou Y, Gong Y, Shi B. CUL4B promotes aggressive phenotypes of renal cell carcinoma via upregulating c-Met expression. Int J Biochem Cell Biol 2020; 130:105887. [PMID: 33227394 DOI: 10.1016/j.biocel.2020.105887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/22/2022]
Abstract
Cullin 4B (CUL4B), encoding a scaffold protein in Cullin RING ubiquitin-ligase complexes (CRL4B), is overexpressed and serves as an oncogene in various solid tumors. However, the roles and the underlying mechanisms of CUL4B in renal cell carcinoma (RCC) are still unknown. In this study, we demonstrated that CUL4B was significantly upregulated in RCC cells and clinical specimens, and its overexpression was correlated with poor survival of RCC patients. Knockdown of CUL4B resulted in the inhibition of proliferation, migration and invasion of RCC cells. Furthermore, we found that the expression of CUL4B is positively correlated with c-Met expression in RCC cells and tissues. Konckdown of c-Met or treatment with c-Met inhibitor, SU11274, could block the increase in cell proliferation, migration and invasion induced by CUL4B-overexpression. We also showed that CUL4B overexpression significantly accelerated xenograft tumor growth, and administration of SU11274 could also abrogate the accelerated tumor growth induced by CUL4B overexpression in vivo. These findings shed light on the contribution of CUL4B to tumorigenesis in RCC via activating c-Met signaling and its therapeutic implications in RCC patients.
Collapse
Affiliation(s)
- Shouzhen Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, 250012, China
| | - Yong Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, 250012, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jianfeng Cui
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Wenfu Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jian Wang
- Department of Urology, The People's Hospital of Laoling City, Dezhou, Shandong, 253600, China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Shuna Sun
- Department of Dermatology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Shandong Provincial Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250011, China
| | - Yongxin Zou
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China
| | - Yaoqin Gong
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, Shandong University, School of Basic Medical Sciences, Jinan, Shandong, 250012, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
23
|
Dees S, Ganesan R, Singh S, Grewal IS. Emerging CAR-T Cell Therapy for the Treatment of Triple-Negative Breast Cancer. Mol Cancer Ther 2020; 19:2409-2421. [DOI: 10.1158/1535-7163.mct-20-0385] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/06/2020] [Accepted: 10/08/2020] [Indexed: 11/16/2022]
|
24
|
Crizotinib induced antitumor activity and synergized with chemotherapy and hormonal drugs in breast cancer cells via downregulating MET and estrogen receptor levels. Invest New Drugs 2020; 39:77-88. [PMID: 32833135 DOI: 10.1007/s10637-020-00989-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
MET is a receptor tyrosine kinase known to drive neoplastic transformation and aggressive tumor phenotypes. Crizotinib is an oral multi-targeted tyrosine kinase inhibitor of MET, ALK, RON, and ROS1 kinases. In this study, the anticancer effects of crizotinib on breast cancer cells were investigated in vitro along with the molecular mechanisms associated with these effects. Besides, the antiproliferative effects of crizotinib in combination with chemotherapy, hormonal drugs, and targeted agents were examined. Results showed that crizotinib produced dose-dependent antiproliferative effects in BT-474 and SK-BR-3 breast cancer cells with IC50 values of 1.7 μM and 5.2 μM, respectively. Crizotinib inhibited colony formation of BT-474 cells at low micromolar concentrations (1-5 μM). Immunofluorescence and Western blotting indicated that crizotinib reduced total levels of MET and estrogen receptor (ERα) in BT-474 cells. Also, crizotinib reduced the levels of phosphorylated (active) MET and HER2 in BT-474 cells. The combined treatment of crizotinib with doxorubicin and paclitaxel resulted in synergistic growth inhibition of BT-474 cells with combination index values of 0.46 and 0.35, respectively. Synergy was also observed with the combination of crizotinib with the hormonal drugs 4-hydroxytamoxifen and fulvestrant in BT-474 cells. Alternatively, the combination of crizotinib with lapatinib produced antagonistic antiproliferative effects in both BT-474 and SK-BR-3 cells. Collectively, these findings demonstrate the anticancer effects of crizotinib in breast cancer cells and reveal ERα as a potential therapeutic target of the drug apart from its classical kinase inhibitory activity. Crizotinib could be an appealing option in combination with chemotherapy or hormonal drugs for the management of breast cancer.
Collapse
|
25
|
Francies FZ, Hull R, Khanyile R, Dlamini Z. Breast cancer in low-middle income countries: abnormality in splicing and lack of targeted treatment options. Am J Cancer Res 2020; 10:1568-1591. [PMID: 32509398 PMCID: PMC7269781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023] Open
Abstract
Breast cancer is a common malignancy among women worldwide. Regardless of the economic status of a country, breast cancer poses a burden in prevention, diagnosis and treatment. Developed countries such as the U.S. have high incidence and mortality rates of breast cancer. Although low incidence rates are observed in developing countries, the mortality rate is on the rise implying that low- to middle-income countries lack the resources for preventative screening for early detection and adequate treatment resources. The differences in incidence between countries can be attributed to changes in exposure to environmental risk factors, behaviour and lifestyle factors of the different population groups. Genomic modifications are an important factor that significantly alters the risk profile of breast tumourigenesis. The incidence of early-onset breast cancer is increasing and evidence shows that early onset of breast cancer is far more aggressive than late onset of the disease; possibly due to the difference in genetic alterations or tumour biology. Alternative splicing is a pivotal factor in the progressions of breast cancer. It plays a significant role in tumour prognosis, survival and drug resistance; hence, it offers a valuable option as a therapeutic target. In this review, the differences in breast cancer incidence and mortality rates in developed countries will be compared to low- to middle-income countries. The review will also discuss environmental and lifestyle risk factors, and the underlying molecular mechanisms, genetic variations or mutations and alternative splicing that may contribute to the development and novel drug targets for breast cancer.
Collapse
Affiliation(s)
- Flavia Zita Francies
- SA-MRC/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Faculty of Health Sciences Hatfield, 0028, South Africa
| | - Rodney Hull
- SA-MRC/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Faculty of Health Sciences Hatfield, 0028, South Africa
| | - Richard Khanyile
- SA-MRC/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Faculty of Health Sciences Hatfield, 0028, South Africa
| | - Zodwa Dlamini
- SA-MRC/UP Precision Prevention & Novel Drug Targets for HIV-Associated Cancers (PPNDTHAC) Extramural Unit, Pan African Cancer Research Institute (PACRI), University of Pretoria, Faculty of Health Sciences Hatfield, 0028, South Africa
| |
Collapse
|
26
|
Qiu SQ, van Rooijen J, Nienhuis HH, van der Vegt B, Timmer-Bosscha H, van Leeuwen-Stok E, Walenkamp AME, van Deurzen CHM, de Bock GH, de Vries EGE, Schröder CP. High hepatocyte growth factor expression in primary tumor predicts better overall survival in male breast cancer. Breast Cancer Res 2020; 22:30. [PMID: 32188473 PMCID: PMC7081628 DOI: 10.1186/s13058-020-01266-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Breast cancer is rare in men, but management is focused on tumor characteristics commonly found in female breast cancer. The tumor microenvironment of male breast cancer is less well understood, and insight may improve male breast cancer management. The hepatocyte growth factor (HGF)/c-MET axis and the stromal cell-derived factor-1 (CXCL12)/C-X-C chemokine receptor type 4 (CXCR4) axis are prognostic in women with breast cancer. We aimed to investigate these factors in male breast cancer and correlate them with patient survival. METHODS From 841 Dutch males with breast cancer who were enrolled in the EORTC 10085/TBCRC/BIG/NABCG International Male Breast Cancer Program (NCT01101425) and diagnosed between 1990 and 2010, archival primary tumor samples were collected. Tissue microarrays were constructed with 3 cores per sample and used for immunohistochemical analysis of HGF, c-MET, CXCL12, and CXCR4. Overall survival (OS) of the patients without metastases (M0) was analyzed using the Kaplan-Meier method. The value of the markers regarding OS was determined using univariable and multivariable Cox regression analyses, providing hazard ratios (HRs) and 95% confidence intervals (95% CIs). RESULTS Of 720 out of 841 patients, sufficient tissue was available for analysis; 487 out of 720 patients had M0 disease. Patients with high HGF expression and high CXCL12 expression had a superior OS (low vs high expression of both markers, 7.5 vs 13.0 years, hazard ratio [HR] 0.64, 95% CI 0.49-0.84, P = 0.001 [HGF]; 9.1 vs 15.3 years, HR 0.63, 95% CI 0.45-0.87, P = 0.005 [CXCL12]). Multivariate analysis identified HGF as an independent predictor for OS (HR 0.64, 95% CI 0.47-0.88, P = 0.001). CONCLUSIONS HGF and CXCL12 tumor expression appear to identify male breast cancer patients with a relatively good prognosis. Possibly, this could support male breast cancer-specific management strategies in the future.
Collapse
Affiliation(s)
- Si-Qi Qiu
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
- Diagnosis and Treatment Center of Breast Diseases, Affiliated Shantou Hospital, Sun Yat-sen University, Shantou, China
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Johan van Rooijen
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
- Department of Internal Medicine, Martini Hospital Groningen, Groningen, The Netherlands
| | - Hilde H Nienhuis
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Bert van der Vegt
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hetty Timmer-Bosscha
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | | | - Annemiek M E Walenkamp
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | | | - Geertruida H de Bock
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands
| | - Carolien P Schröder
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|
27
|
Van den Bossche V, Jadot G, Grisay G, Pierrard J, Honoré N, Petit B, Augusto D, Sauvage S, Laes JF, Seront E. c-MET as a Potential Resistance Mechanism to Everolimus in Breast Cancer: From a Case Report to Patient Cohort Analysis. Target Oncol 2020; 15:139-146. [PMID: 32020516 DOI: 10.1007/s11523-020-00704-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND We describe in a patient with breast cancer the change in c-MET expression during everolimus treatment, opening a better understanding of the resistance to everolimus and a role for cabozantinib. OBJECTIVE The objective of this study was to evaluate c-MET as a potential predictive biomarker for everolimus efficacy in breast cancer. METHODS We first selected a patient with breast cancer with a long-lasting response to everolimus and retrospectively profiled biopsies that were taken before everolimus initiation (Biopsy 1) and at progression on everolimus (Biopsy 2) using amplicon sequencing and immunohistochemistry. We then retrospectively evaluated c-MET expression in a cohort of patients with breast cancer treated with everolimus. RESULTS While not expressed in Biopsy 1, c-MET was highly expressed in Biopsy 2, suggesting a role for c-MET in breast cancer progression. Cabozantinib resulted in a rapid radiological response in this patient. Twenty-nine patients were included (12 c-MET-positive and 17 c-MET-negative patients) in the second part of the study. Baseline c-MET expression was associated with higher tumor grade, higher frequency of visceral metastases, and lower endocrine sensitivity. The c-MET-positive patients presented with a shorter progression-free survival (6.1 vs 10.5 months, respectively; p = 0.002) and a lower response rate (0% vs 12%) to everolimus, compared with c-MET-negative patients. CONCLUSIONS c-MET could play a role in the resistance to everolimus and its inhibition should be evaluated in breast cancer.
Collapse
Affiliation(s)
| | - Gaspard Jadot
- Medical Oncology Unit, Hopital de Jolimont, Rue Ferrer 159, 7100, Haine Saint Paul, Belgium
| | - Guillaume Grisay
- Medical Oncology Unit, Hopital de Jolimont, Rue Ferrer 159, 7100, Haine Saint Paul, Belgium
| | - Julien Pierrard
- Medical Oncology Unit, Hopital de Jolimont, Rue Ferrer 159, 7100, Haine Saint Paul, Belgium
| | - Natasha Honoré
- Medical Oncology Unit, Hopital de Jolimont, Rue Ferrer 159, 7100, Haine Saint Paul, Belgium
| | - Bénédicte Petit
- Medical Oncology Unit, Hopital de Jolimont, Rue Ferrer 159, 7100, Haine Saint Paul, Belgium
| | - David Augusto
- Anatomopathology Unit, Hopital de Jolimont, Rue Ferrer 159, 7100, Haine Saint Paul, Belgium
| | | | | | - Emmanuel Seront
- Medical Oncology Unit, Hopital de Jolimont, Rue Ferrer 159, 7100, Haine Saint Paul, Belgium.
| |
Collapse
|
28
|
Yu Y, Abudula M, Li C, Chen Z, Zhang Y, Chen Y. Icotinib-resistant HCC827 cells produce exosomes with mRNA MET oncogenes and mediate the migration and invasion of NSCLC. Respir Res 2019; 20:217. [PMID: 31606039 PMCID: PMC6790059 DOI: 10.1186/s12931-019-1202-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/27/2019] [Indexed: 12/26/2022] Open
Abstract
Background Icotinib has been widely used in patients with non-small cell lung cancer (NSCLC), and have significantly enhanced the overall survival rate of NSCLC patients. However, acquired drug resistance limits its clinical efficacy. Tumor cell-derived exosomes have been reported to participate in various biological processes, including tumor invasion, metastasis and drug resistance. Materials and methods In the present study, drug resistance was measured by MTT assay. Exosomes were extracted from the cell supernatant using ultracentrifugation and identified by exosomal marker. HCC827 cells were treated with exosomes derived from icotinib-resistant (IR) HCC827 to observe the invasion and migration of parent cells. The expression of exo-mRNA was analyzed by reverse transcription-quantitative polymerase chain reaction (RT-PCR). In addition, 10 exo-mRNAs detecting from the plasma and bronchoalveolar lavage fluid (BALF) of NSCLC patients with icotinib treatment were used to establish a new drug resistant-warning formula. Results The oncogene MET into exosomes was identified from icotinib-resistant lung cancer cells, and this was also presented in exosomes in NSCLC patients diagnosed with cancer metastasis after icotinib treatment. The knockdown of MET in exosomes significantly decreased the ability of invasion and migration in HCC827 cells. Conclusion It was suggested that MET might be specifically package and transferred by exosomes to modify the invasion and migration ability of the surrounding icotinib-sensitive cells.
Collapse
Affiliation(s)
- Yiming Yu
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | | | | | - Zhongbo Chen
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yun Zhang
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yichen Chen
- Ningbo Institution of Medical Science, Ningbo, China.
| |
Collapse
|
29
|
Moosavi F, Giovannetti E, Saso L, Firuzi O. HGF/MET pathway aberrations as diagnostic, prognostic, and predictive biomarkers in human cancers. Crit Rev Clin Lab Sci 2019; 56:533-566. [PMID: 31512514 DOI: 10.1080/10408363.2019.1653821] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is a major cause of death worldwide. MET tyrosine kinase receptor [MET, c-MET, hepatocyte growth factor (HGF) receptor] pathway activation is associated with the appearance of several hallmarks of cancer. The HGF/MET pathway has emerged as an important actionable target across many solid tumors; therefore, biomarker discovery becomes essential in order to guide clinical intervention and patient stratification with the aim of moving towards personalized medicine. The focus of this review is on how the aberrant activation of the HGF/MET pathway in tumor tissue or the circulation can provide diagnostic and prognostic biomarkers and predictive biomarkers of drug response. Many meta-analyses have shown that aberrant activation of the MET pathway in tumor tissue, including MET gene overexpression, gene amplification, exon 14 skipping and other activating mutations, is almost invariably associated with shorter survival and poor prognosis. Most meta-analyses have been performed in non-small cell lung cancer (NSCLC), breast, head and neck cancers as well as colorectal, gastric, pancreatic and other gastrointestinal cancers. Furthermore, several studies have shown the predictive value of MET biomarkers in the identification of patients who gain the most benefit from HGF/MET targeted therapies administered as single or combination therapies. The highest predictive values have been observed for response to foretinib and savolitinib in renal cancer, as well as tivantinib in NSCLC and colorectal cancer. However, some studies, especially those based on MET expression, have failed to show much value in these stratifications. This may be rooted in lack of standardization of methodologies, in particular in scoring systems applied in immunohistochemistry determinations or absence of oncogenic addiction of cancer cells to the MET pathway, despite detection of overexpression. Measurements of amplification and mutation aberrations are less likely to suffer from these pitfalls. Increased levels of MET soluble ectodomain (sMET) in circulation have also been associated with poor prognosis; however, the evidence is not as strong as it is with tissue-based biomarkers. As a diagnostic biomarker, sMET has shown its value in distinguishing cancer patients from healthy individuals in prostate and bladder cancers and in melanoma. On the other hand, increased circulating HGF has also been presented as a valuable prognostic and diagnostic biomarker in many cancers; however, there is controversy on the predictive value of HGF as a biomarker. Other biomarkers such as circulating tumor DNA (ctDNA) and tumor HGF levels have also been briefly covered. In conclusion, HGF/MET aberrations can provide valuable diagnostic, prognostic and predictive biomarkers and represent vital assets for personalized cancer therapy.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc) , Amsterdam , The Netherlands.,Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza Onlus , Pisa , Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology, "Vittorio Erspamer," Sapienza University , Rome , Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| |
Collapse
|
30
|
Xu X, Zhang G, He L, Zhu Y. Clinicopathological impacts of c-Met overexpression in bladder cancer: evidence from 1,336 cases. Onco Targets Ther 2019; 12:2695-2702. [PMID: 31114223 PMCID: PMC6497828 DOI: 10.2147/ott.s197540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/19/2019] [Indexed: 12/13/2022] Open
Abstract
Background: The clinicopathological impacts of c-Met overexpression in bladder cancer have been investigated in several studies with conflicting results. We performed this systematic review and meta-analysis to assess the pathologic and prognostic roles of c-Met status in bladder cancer patients. Methods: Eligible studies were searched and identified from the PubMed and China National Knowledge Infrastructure (CNKI) databases (up until October 4, 2018). The DerSimonian-Laird random-effects model was used to calculate the pooled risk estimates. Results: Eight studies including 1,336 bladder cancer cases were eventually included in this meta-analysis. We detected a significantly increased risk of poor overall survival (OS) associated with the high expression of c-Met (HR=2.42, 95% CI 1.36-4.32). There was no association between c-Met status and nuclear grade (OR=0.82, 95% CI 0.29-2.31) or tumor stage (OR=1.42, 95% CI 0.41-4.89). Conclusion: This study shows that the overexpression of c-Met in primary cancer tissues is associated with a worse OS in human bladder cancer. However, larger studies using standardized methods and criteria are warranted to verify these findings.
Collapse
Affiliation(s)
- Xin Xu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, People's Republic of China
| | - Guanjun Zhang
- Department of Urology, Hospital of Traditional Chinese Medicine of Shangyu, Shangyu 312300, Zhejiang, People's Republic of China
| | - Liujia He
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, People's Republic of China
| | - Yi Zhu
- Department of Urology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, People's Republic of China
| |
Collapse
|
31
|
Puccini A, Marín-Ramos NI, Bergamo F, Schirripa M, Lonardi S, Lenz HJ, Loupakis F, Battaglin F. Safety and Tolerability of c-MET Inhibitors in Cancer. Drug Saf 2019; 42:211-233. [PMID: 30649748 PMCID: PMC7491978 DOI: 10.1007/s40264-018-0780-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of aberrant hepatocyte growth factor receptor (c-MET, also known as tyrosine-protein kinase MET)/hepatocyte growth factor (HGF) signaling in cancer progression and invasion has been extensively studied. c-MET inhibitors have shown promising pre-clinical and early phase clinical trial anti-tumor activity in several tumor types, although results of most phase III trials with these agents have been negative. To date, two small molecule c-MET inhibitors, cabozantinib and crizotinib, have been approved by regulatory authorities for the treatment of selected cancer types, but several novel c-MET inhibitors (either monoclonal antibodies or small molecule c-MET tyrosine kinase inhibitors) and treatment combinations are currently under study in different settings. Here we provide an overview of the mechanism of action and rationale of c-MET inhibition in cancer, the efficacy of approved agents, and novel promising c-MET-inhibitors and novel targeted combination strategies under development in different cancer types, with a focus on the safety profile and tolerability of these compounds.
Collapse
Affiliation(s)
- Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA, 90033, USA
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nagore I Marín-Ramos
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francesca Bergamo
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marta Schirripa
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Sara Lonardi
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA, 90033, USA
| | - Fotios Loupakis
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA, 90033, USA.
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
32
|
Liu S, Li S, Wang B, Liu W, Gagea M, Chen H, Sohn J, Parinyanitikul N, Primeau T, Do KA, Vande Woude GF, Mendelsohn J, Ueno NT, Mills GB, Tripathy D, Gonzalez-Angulo AM. Cooperative Effect of Oncogenic MET and PIK3CA in an HGF-Dominant Environment in Breast Cancer. Mol Cancer Ther 2018; 18:399-412. [PMID: 30518672 DOI: 10.1158/1535-7163.mct-18-0710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/30/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023]
Abstract
There is compelling evidence that oncogenic MET and PIK3CA signaling pathways contribute to breast cancer. However, the activity of pharmacologic targeting of either pathway is modest. Mechanisms of resistance to these monotherapies have not been clarified. Currently, commonly used mouse models are inadequate for studying the HGF-MET axis because mouse HGF does not bind human MET. We established human HGF-MET paired mouse models. In this study, we evaluated the cooperative effects of MET and PIK3CA in an environment with involvement of human HGF in vivo Oncogenic MET/PIK3CA synergistically induced aggressive behavior and resistance to each targeted therapy in an HGF-paracrine environment. Combined targeting of MET and PI3K abrogates resistance. Associated cell signaling changes were explored by functional proteomics. Consistently, combined targeting of MET and PI3K inhibited activation of associated oncogenic pathways. We also evaluated the response of tumor cells to HGF stimulation using breast cancer patient-derived xenografts (PDX). HGF stimulation induced significant phosphorylation of MET for all PDX lines detected to varying degrees. However, the levels of phosphorylated MET are not correlated with its expression, suggesting that MET expression level cannot be used as a sole criterion to recruit patients to clinical trials for MET-targeted therapy. Altogether, our data suggest that combined targeting of MET and PI3K could be a potential clinical strategy for breast cancer patients, where phosphorylated MET and PIK3CA mutation status would be biomarkers for selecting patients who are most likely to derive benefit from these cotargeted therapy.
Collapse
Affiliation(s)
- Shuying Liu
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shunqiang Li
- Section of Breast Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Bailiang Wang
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenbin Liu
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huiqin Chen
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joohyuk Sohn
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Napa Parinyanitikul
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tina Primeau
- Section of Breast Oncology, Department of Internal Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - John Mendelsohn
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naoto T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gordon B Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Ana M Gonzalez-Angulo
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
33
|
Parr C, Ali AY. Boswellia frereana suppresses HGF-mediated breast cancer cell invasion and migration through inhibition of c-Met signalling. J Transl Med 2018; 16:281. [PMID: 30314527 PMCID: PMC6186110 DOI: 10.1186/s12967-018-1660-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Hepatocyte growth factor (HGF) plays a pivotal role in breast cancer cell motility, invasion and angiogenesis. These pro-metastatic events are triggered through HGF coupling and activation of the c-Met receptor. Reports have demonstrated that HGF/c-Met signalling plays an important part in breast cancer progression and that their expression is linked to poor patient outcome. In the present study, we investigated the anti-metastatic potential of an extract from traditional Somalian frankincense, Boswellia frereana, on human breast cancer cells. In addition, we also examined the effect of this Boswellia frereana extract (BFE) upon HGF-mediated stimulation of the c-Met receptor. METHODS Two triple negative human breast cancer cell lines, BT549 and MDA-MB-231, were utilised in the study to examine the effect of BFE on tumour cell proliferation, migration, matrix-adhesion, angiogenesis and invasion. Cell migration was investigated using a Cell IQ time-lapsed motion analysis system; while tumour cell-matrix adhesion, angiogenesis and invasion were assessed through Matrigel-based in vitro assays. Breast cancer cell growth and spheroid formation was examined through proliferation assay and 3D non-scaffold cell culture techniques. Western Blotting was employed to determine the phosphorylation status of the c-Met receptor tyrosine kinase following BFE treatment and subsequent HGF stimulation. RESULTS Following HGF treatment, the breast cancer cells displayed a significant increase in migration, matrix adhesion, vessel/tubule formation, invasion and c-Met activation. HGF did not appear to have any bearing on the proliferation rate or spheroid formation of these breast cancer cells. The addition of the BFE extract quenched the HGF-enhanced migratory, angiogenic and invasive potential of these cells. Further study revealed that BFE inhibited c-Met receptor tyrosine kinase phosphorylation within these breast cancer cells. CONCLUSIONS Our findings reveal that BFE was able to significantly suppress the influence of HGF in breast cancer cell motility and invasion in vitro, through the ability of BFE to reduce HGF/c-Met signalling events. Therefore, these results indicate that BFE could play a novel role in the treatment of breast cancer.
Collapse
Affiliation(s)
- Christian Parr
- Connective Tissue Laboratories, Sir Martin Evans Building, School of Biosciences, Cardiff, UK
| | - Ahmed Y. Ali
- Connective Tissue Laboratories, Sir Martin Evans Building, School of Biosciences, Cardiff, UK
| |
Collapse
|
34
|
Bhandari A, Shen Y, Sindan N, Xia E, Gautam B, Lv S, Zhang X. MAL2 promotes proliferation, migration, and invasion through regulating epithelial-mesenchymal transition in breast cancer cell lines. Biochem Biophys Res Commun 2018; 504:434-439. [PMID: 30195491 DOI: 10.1016/j.bbrc.2018.08.187] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Breast cancer is one of the most common malignant tumors in women. However, the underlying molecular mechanisms of breast cancer are still far to clear. With the development of sequencing technology, we discovered that MAL2 is overexpressed in tumor tissues. But the major function of MAL2 in breast cancer has not to be well confirmed. MATERIALS AND METHODS We downloaded and analyzed the MAL2 expression in The Cancer Genome Atlas (TCGA) database. Real-time quantitative polymerase chain reaction (RT-qPCR) was conducted to detect the expression of MAL2 in 35 breast cancer patients. Then, we performed proliferation, colony formation, migration, invasion and western blot assays to investigate the role of MAL2 in breast cancer cell lines (MDA-MB-231 and BT-549). RESULTS In our research, we found that MAL2 is remarkably overexpressed in breast cancer tissues compared to adjacent non-cancer tissues by RT-qPCR (T: N = 5.28 ± 4.34:1.82 ± 1.11, P < 0.001) and high expression of MAL2 has worse overall survival in TCGA cohort (P = 0.0032). Knocked down MAL2 could decrease the ability of proliferation, migration, and invasion of breast cancer cell lines. Our Western Blot assay results investigated that MAL2 could regulate EMT. CONCLUSION In this study, we demonstrated the function of MAL2 in breast cancer cell lines and it might act as an oncogene in breast cancer.
Collapse
Affiliation(s)
- Adheesh Bhandari
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Yanyan Shen
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Namita Sindan
- Department of Reproductive Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Erjie Xia
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Bishnu Gautam
- School of International Studies, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Shixu Lv
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| | - Xiaohua Zhang
- Department of Thyroid & Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.
| |
Collapse
|
35
|
Wang M, Liang L, Lei X, Multani A, Meric-Bernstam F, Tripathy D, Wu Y, Chen H, Zhang H. Evaluation of cMET aberration by immunohistochemistry and fluorescence in situ hybridization (FISH) in triple negative breast cancers. Ann Diagn Pathol 2018; 35:69-76. [DOI: 10.1016/j.anndiagpath.2018.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022]
|
36
|
Breunig C, Erdem N, Bott A, Greiwe JF, Reinz E, Bernhardt S, Giacomelli C, Wachter A, Kanthelhardt EJ, Beißbarth T, Vetter M, Wiemann S. TGFβ1 regulates HGF-induced cell migration and hepatocyte growth factor receptor MET expression via C-ets-1 and miR-128-3p in basal-like breast cancer. Mol Oncol 2018; 12:1447-1463. [PMID: 30004628 PMCID: PMC6120235 DOI: 10.1002/1878-0261.12355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 06/24/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. The tumor microenvironment contributes to tumor progression by inducing cell dissemination from the primary tumor and metastasis. TGFβ signaling is involved in breast cancer progression and is specifically elevated during metastatic transformation in aggressive breast cancer. In this study, we performed genomewide correlation analysis of TGFBR2 expression in a panel of 51 breast cancer cell lines and identified that MET is coregulated with TGFBR2. This correlation was confirmed at the protein level in breast cancer cell lines and human tumor tissues. Flow cytometric analysis of luminal and basal‐like breast cancer cell lines and examination of 801 tumor specimens from a prospective cohort of breast cancer patients using reverse phase protein arrays revealed that expression of TGFBR2 and MET is increased in basal‐like breast cancer cell lines, as well as in triple‐negative breast cancer tumor tissues, compared to other subtypes. Using real‐time cell analysis technology, we demonstrated that TGFβ1 triggered hepatocyte growth factor (HGF)‐induced and MET‐dependent migration in vitro. Bioinformatic analysis predicted that TGFβ1 induces expression of C‐ets‐1 as a candidate transcription factor regulating MET expression. Indeed, TGFβ1‐induced expression of ETS1 and breast cancer cell migration was blocked by knockdown of ETS1. Further, we identified that MET is a direct target of miR‐128‐3p and that this miRNA is negatively regulated by TGFβ1. Overexpression of miR‐128‐3p reduced MET expression and abrogated HGF‐induced cell migration of invasive breast cancer cells. In conclusion, we have identified that TGFβ1 regulates HGF‐induced and MET‐mediated cell migration, through positive regulation of C‐ets‐1 and negative regulation of miR‐128‐3p expression in basal‐like breast cancer cell lines and in triple‐negative breast cancer tissue.
Collapse
Affiliation(s)
- Christian Breunig
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nese Erdem
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Bott
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julia F Greiwe
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eileen Reinz
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Bernhardt
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiara Giacomelli
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Astrid Wachter
- Department of Medical Statistics, University Medical Center, Göttingen, Germany
| | - Eva J Kanthelhardt
- Department of Gynecology, Martin-Luther-University Halle Wittenberg, Germany
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center, Göttingen, Germany
| | - Martina Vetter
- Department of Gynecology, Martin-Luther-University Halle Wittenberg, Germany
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
37
|
Bhandari A, Xia E, Zhou Y, Guan Y, Xiang J, Kong L, Wang Y, Yang F, Wang O, Zhang X. ITGA7 functions as a tumor suppressor and regulates migration and invasion in breast cancer. Cancer Manag Res 2018; 10:969-976. [PMID: 29760566 PMCID: PMC5937492 DOI: 10.2147/cmar.s160379] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Breast cancer is the most common malignancy in women and the underlying mechanism of breast cancer cell metastasis is still far from uncover. Integrin subunit alpha 7 (ITGA7) is a functioning protein. It has been detected in many malignancies. But the function of ITGA7 in breast cancer is not clear. Our aim is to explore ITGA7 expression and its role in breast cancer. Methods Real-time PCR was performed to determine ITGA7 expression in BC tissues and normal adjacent tissues. The specific functions of ITGA7 in breast cancer cell lines (MDA-MB-231 and BT-549) transfected with small interfering RNA were determined through migration, invasion assays. Western blot assays were performed to determine the expression of c-met and vimentin. Results ITGA7 was down-regulated in breast cancer tissues compared to the adjacent normal tissues (T:N =7.68±27.38: 41.01± 31.47, P<0.001) and this observation was consistent with the TCGA cohort (T:N =4.51±0.45:5.40±0.61, P<0.0001). In vitro experiments showed that knocking down ITGA7 significantly inhibited the migration and invasion of the breast cancer cell lines (MDA-MB-231 and BT-549). Meanwhile, knockdown of ITGA7 promoted c-met and vimentin expression, which may induce invasion and migration. Conclusion ITGA7 plays an important tumorigenic function and acts as a suppress gene in breast cancer. Our findings indicate that ITGA7 was the gene associated with breast cancer.
Collapse
Affiliation(s)
- Adheesh Bhandari
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Erjie Xia
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yuying Zhou
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yaoyao Guan
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jingjing Xiang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Lingguo Kong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinghao Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Fan Yang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaohua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| |
Collapse
|
38
|
MYC overexpression with its prognostic and clinicopathological significance in breast cancer. Oncotarget 2017; 8:93998-94008. [PMID: 29212204 PMCID: PMC5706850 DOI: 10.18632/oncotarget.21501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/31/2017] [Indexed: 12/20/2022] Open
Abstract
Background Proto-oncogene MYC has been indicated to promote progression of many cancers. However, prognostic and clinicopathological significance of MYC in breast cancer need further evaluation. Methods We searched EMBASE and PubMed databases to find useful studies. We analyzed relationships between high MYC expression and prognostic data/ clinicopathological features through hazard ratio (HR) and odds ratio (OR). Each statistical test was two-sided. Results There were 29 studies (36 cohorts) with 12621 patients enrolled in our study The MYC overexpression was associated with worse DFS/RFS (disease/relapse free survival) in 11 studies (16 cohorts) with 5390 patients, and OS (overall survival) of 7 studies (8 cohorts) with 2672 patients. Subgroup analysis according to ethnicity/technique/data source displayed that MYC overexpression was associated with poor DFS/RFS in FISH, other technique, all data source and Asian/Non-Asian subgroup, and worse OS in all subgroups. In addition, MYC overexpression was related to large tumor size, high histologic grade, lymph node metastasis, negative hormone receptors and positive Ki67 expression. Conclusions Our results showed that MYC overexpression was associated with worse prognosis and high risk of breast cancer, especially in patients with negative hormone receptors, which highlighted the potential of MYC as a significant prognostic biomarker of breast cancer.
Collapse
|