1
|
Choi HS, Kwon OI, Kim SS, Cho JY, Bae EH, Ma SK, Kim SW, Kim CS. Fabry disease in female monozygotic twins with complex intronic haplotype variants: a case report. BMC Med Genomics 2024; 17:245. [PMID: 39375654 PMCID: PMC11460125 DOI: 10.1186/s12920-024-02021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Fabry disease is an X-linked lysosomal storage disease caused by the impairment of α-galactosidase A. The complex intronic haplotype (CIH) variants, located in promoter and intronic regulatory lesions, has been found in patients with classical forms of Fabry disease. We present a case of Fabry disease in female monozygotic twins exhibiting the CIH mutation and classical manifestations. CASE PRESENTATION A 61-year-old woman with a history of stroke, carotid artery occlusion, hypertrophic cardiomyopathy, and chronic kidney disease was referred to the nephrology clinic for management of her chronic kidney disease. Her monozygotic twin sister also presented with hypertrophic cardiomyopathy, atrial flutter, carotid stenosis, and proteinuria. Clinical symptoms and a comprehensive family history strongly suggested the presence of Fabry disease. Genetic analysis revealed the presence of 5 variants within a complex intronic haplotype (CIH): c.-10 C > T, c.369 + 990 C > A, c.370 - 81_370-77delCAGCC, c.640-16 A > G, and c.1000-22 C > T. We conducted a review of the patient's previous kidney biopsy findings, which demonstrated the presence of lamellated inclusion bodies in electron microscopy. Remarkably, both the monozygotic twin sister and her son exhibited the same genetic mutation. Enzyme replacement therapy was initiated for the patient. Her kidney function decreased throughout a thorough 2-year follow-up period, while there was a slight decrease in the left ventricular mass index. CONCLUSIONS This is the first reported case of female monozygotic twins with the CIH variants representing cardiac, cerebrovascular, and renal manifestations suggestive of Fabry disease.
Collapse
Affiliation(s)
- Hong Sang Choi
- Department of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Oh Il Kwon
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Sung Sun Kim
- Department of Pathology, Chonnam National University Medical School and Hospital, Gwangju, South Korea
| | - Jae Yeong Cho
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Korea
- Department of Cardiovascular Medicine, Chonnam National University Medical School and Hospital, Gwangju, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, 160, Baekseo‑ro, Dong‑gu, Gwangju, 61469, Republic of Korea.
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Korea.
| |
Collapse
|
2
|
Juchem M, Lehmann N, Behrens YL, Bär C, Thum T, Hoepfner J. CRISPR/Cas9-based GLA knockout to generate the female Fabry disease human induced pluripotent stem cell line MHHi001-A-15. Stem Cell Res 2024; 79:103478. [PMID: 38905814 DOI: 10.1016/j.scr.2024.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024] Open
Abstract
The X-linked lysosomal storage disorder Fabry disease originates from GLA gene mutations causing α-galactosidase A enzyme deficiency. Here we generated the GLA knockout hiPSC line MHHi001-A-15 (GLA-KOhiPSC) as an in vitro Fabry disease model by targeting exon 2 of the GLA gene by CRISPR/Cas9 in the established control hiPSC line MHHi001-A. GLA-KOhiPSCs retained the expression of pluripotency markers, trilineage differentiation potential, as well as normal karyotype and stem cell morphology but lacked α-galactosidase A enzyme activity. The GLA-KOhiPSCs represent a potent resource to not only study the Fabry disease manifestation but also screen for novel treatment options.
Collapse
Affiliation(s)
- Malte Juchem
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Nele Lehmann
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | | | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany; Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany; Center of Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Jeannine Hoepfner
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Weissman D, Dudek J, Sequeira V, Maack C. Fabry Disease: Cardiac Implications and Molecular Mechanisms. Curr Heart Fail Rep 2024; 21:81-100. [PMID: 38289538 PMCID: PMC10923975 DOI: 10.1007/s11897-024-00645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW This review explores the interplay among metabolic dysfunction, oxidative stress, inflammation, and fibrosis in Fabry disease, focusing on their potential implications for cardiac involvement. We aim to discuss the biochemical processes that operate in parallel to sphingolipid accumulation and contribute to disease pathogenesis, emphasizing the importance of a comprehensive understanding of these processes. RECENT FINDINGS Beyond sphingolipid accumulation, emerging studies have revealed that mitochondrial dysfunction, oxidative stress, and chronic inflammation could be significant contributors to Fabry disease and cardiac involvement. These factors promote cardiac remodeling and fibrosis and may predispose Fabry patients to conduction disturbances, ventricular arrhythmias, and heart failure. While current treatments, such as enzyme replacement therapy and pharmacological chaperones, address disease progression and symptoms, their effectiveness is limited. Our review uncovers the potential relationships among metabolic disturbances, oxidative stress, inflammation, and fibrosis in Fabry disease-related cardiac complications. Current findings suggest that beyond sphingolipid accumulation, other mechanisms may significantly contribute to disease pathogenesis. This prompts the exploration of innovative therapeutic strategies and underscores the importance of a holistic approach to understanding and managing Fabry disease.
Collapse
Affiliation(s)
- David Weissman
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Jan Dudek
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Vasco Sequeira
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center, University Hospital Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany.
| |
Collapse
|
4
|
Kaneski CR, Hanover JA, Schueler Hoffman UH. Generation of GLA-knockout human embryonic stem cell lines to model peripheral neuropathy in Fabry disease. Mol Genet Metab Rep 2022; 33:100914. [PMID: 36092250 PMCID: PMC9449667 DOI: 10.1016/j.ymgmr.2022.100914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/28/2022] Open
Abstract
Fabry disease is an X-linked glycolipid storage disorder caused by mutations in the GLA gene which result in a deficiency in the lysosomal enzyme alpha galactosidase A (AGA). As a result, the glycolipid substrate Gb3 accumulates in critical tissues and organs producing a progressive debilitating disease. In Fabry disease up to 80% of patients experience life-long neuropathic pain that is difficult to treat and greatly affects their quality of life. The molecular mechanisms by which deficiency of AGA leads to neuropathic pain are not well understood, due in part to a lack of in vitro models that can be used to study the underlying pathology at the cellular level. Using CRISPR-Cas9 gene editing, we generated two clones with mutations in the GLA gene from a human embryonic stem cell line. Our clonal cell lines maintained normal stem cell morphology and markers for pluripotency, and showed the phenotypic characteristics of Fabry disease including absent AGA activity and intracellular accumulation of Gb3. Mutations in the predicted locations in exon 1 of the GLA gene were confirmed. Using established techniques for dual-SMAD inhibition/WNT activation, we were able to show that our AGA-deficient clones, as well as wild-type controls, could be differentiated to peripheral-type sensory neurons that express pain receptors. This genetically and physiologically relevant human model system offers a new and promising tool for investigating the cellular mechanisms of peripheral neuropathy in Fabry disease and may assist in the development of new therapeutic strategies to help lessen the burden of this disease.
Collapse
Key Words
- 4-MU, 4-methylumbelliferone
- AGA, alpha-galactosidase A
- Alpha-galactosidase
- BDNF, brain-derived neurotrophic factor
- BRN3A, brain-specific homeobox/POU domain protein 3A
- CRISPR-Cas9
- DAPI, 4′,6-diamidino-2-phenylindole
- DRG, dorsal root ganglion
- EDTA, ethylene diamine tetracetic acid
- ERT, enzyme replacement therapy
- Fabry disease
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- GDNF, glia-derived neurotrophic factor
- GLA, alpha-galactosidase A gene
- Gb3, globotriaosylceramide
- HEX, beta-hexosaminidase
- Human embryonic stem cells
- NGF, nerve growth factor
- Neuropathy
- PAM, protospacer adjacent motif
- PBS, phosphate buffered saline
- RNP, ribonucleoprotein
- Sensory neurons
- SgRNA, single guide RNA
- TNA-alpha, Tumor Necrosis Factor- alpha
- TRPV1, transient receptor potential vanilloid family-1
- eGFP, green fluorescent protein
- hESC, human embryonic stem cell
- iPSC, induced pluripotent stem cell
Collapse
Affiliation(s)
- Christine R. Kaneski
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A. Hanover
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrike H. Schueler Hoffman
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Yamada N, Sakuma H, Yanai M, Suzuki A, Maruyama K, Matsuki M, Nakagawa N. Unexpectedly high renal pathological scores of two female siblings with Fabry disease presenting with urinary mulberry cells without microalbuminuria. Mol Genet Metab Rep 2022; 31:100874. [PMID: 35782605 PMCID: PMC9248205 DOI: 10.1016/j.ymgmr.2022.100874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 12/04/2022] Open
Abstract
We describe the cases of 47- and 45-year-old sisters who were diagnosed with Fabry disease by genomic analysis. Although the only abnormal finding was the presence of mulberry cells in their urinary sediment, the renal pathological scores, which were evaluated by light and electron microscopy, were unexpectedly very high due to severe accumulation of globotriaosylceramide in the glomerular podocytes and tubular epithelial cells. Nephrologists and laboratory technicians should recognize the importance of screening for mulberry cells during urinalysis as this is a simple, inexpensive, and non-invasive method for early diagnosis, leading to early treatment of Fabry disease.
Collapse
|
6
|
Elsaid HO, Furriol J, Blomqvist M, Diswall M, Leh S, Gharbi N, Anonsen JH, Babickova J, Tøndel C, Svarstad E, Marti HP, Krause M. Reduced α-galactosidase A activity in zebrafish ( Danio rerio) mirrors distinct features of Fabry nephropathy phenotype. Mol Genet Metab Rep 2022; 31:100851. [PMID: 35242583 PMCID: PMC8857658 DOI: 10.1016/j.ymgmr.2022.100851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 10/28/2022] Open
Abstract
Fabry disease (FD) is a rare genetic lysosomal storage disorder, resulting from partial or complete lack of alpha-galactosidase A (α-GAL) enzyme, leading to systemic accumulation of substrate glycosphingolipids with a broad range of tissue damage. Current in vivo models are laborious, expensive, and fail to adequately mirror the complex FD physiopathology. To address these issues, we developed an innovative FD model in zebrafish. Zebrafish GLA gene encoding α-GAL enzyme presents a high (>70%) homology with its human counterpart, and the corresponding protein has a similar tissue distribution, as evaluated by immunohistochemistry. Moreover, a similar enzymatic activity in different life stages could be demonstrated. By using CRISPR/Cas9 technology, we generated a mutant zebrafish with decreased GLA gene expression, and decreased expression of the specific gene product in the kidney. Mutant animals showed higher plasma creatinine levels and proteinuria. Transmission electron microscopy (TEM) studies documented an increased podocyte foot process width (FPW) in mutant, as compared to wild type zebrafish. This zebrafish model reliably mirrors distinct features of human FD and could be advantageously used for the identification of novel biomarkers and for an effective screening of innovative therapeutic approaches.
Collapse
Affiliation(s)
| | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Maria Blomqvist
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mette Diswall
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sabine Leh
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Naouel Gharbi
- Department of Climate & Environment, Industrial Biotechnology, NORCE, Bergen, Mekjarvik, Norway
| | - Jan Haug Anonsen
- Department of Climate & Environment, Industrial Biotechnology, NORCE, Bergen, Mekjarvik, Norway
| | - Janka Babickova
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Camilla Tøndel
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Einar Svarstad
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Maximilian Krause
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Sars Centre for Molecular Marine Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
7
|
X-Chromosome Inactivation and Related Diseases. Genet Res (Camb) 2022; 2022:1391807. [PMID: 35387179 PMCID: PMC8977309 DOI: 10.1155/2022/1391807] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
X-chromosome inactivation (XCI) is the form of dosage compensation in mammalian female cells to balance X-linked gene expression levels of the two sexes. Many diseases are related to XCI due to inactivation escape and skewing, and the symptoms and severity of these diseases also largely depend on the status of XCI. They can be divided into 3 types: X-linked diseases, diseases that are affected by XCI escape, and X-chromosome aneuploidy. Here, we review representative diseases in terms of their definition, symptoms, and XCI’s role in the pathogenesis of these diseases.
Collapse
|
8
|
Dinu IR, Firu ŞG. Fabry disease - current data and therapeutic approaches. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 62:5-11. [PMID: 34609404 PMCID: PMC8597377 DOI: 10.47162/rjme.62.1.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Fabry disease represents an X-linked inherited disorder resulting in the accumulation of globotriaosylceramide (Gb3). This review explains the clinical manifestations and the possible therapies for this condition. Fabry disease is considered the second most frequent lysosomal storage disease. More than 1000 mutations of the galactosidase alpha (GLA) gene associated with this disorder have been identified. Pain, either episodic crises or chronic pain, is one of the earliest symptoms in Fabry disease. Gastrointestinal, ocular, ear or skeletal manifestations may complete the clinical picture. Cardiac and renal involvements are the most severe complications leading to organ failure and death. The cerebrovascular lesions may result in severe symptoms including stroke at younger ages. The diagnosis of Fabry disease may be put by enzymatic assays of the α-galactosidase A (AGAL-A) activity in plasma or leukocytes but genetic analysis remains the “gold standard” in identifying the precise mutation and even guiding the treatment. Enzyme replacement therapy (ERT) was the first step in treating subjects with Fabry disease. It proved important decrease of the number of sever clinical events and reduction of symptoms. Chemical chaperone therapy has many advantages including oral administration and was already approved in Europe and US, but it is suitable only for subjects with amenable mutations. Gene therapies (either ex vivo or in vivo) promise to represent a new era for many disorders including Fabry disease, the preliminary data being encouraging. Although many steps were taken in understanding the pathogeny of Fabry disease, future research is needed especially in the field of therapeutic approaches.
Collapse
Affiliation(s)
- Ilie Robert Dinu
- Department of Nephrology, University of Medicine and Pharmacy of Craiova, Romania;
| | | |
Collapse
|
9
|
Viggiano E, Politano L. X Chromosome Inactivation in Carriers of Fabry Disease: Review and Meta-Analysis. Int J Mol Sci 2021; 22:ijms22147663. [PMID: 34299283 PMCID: PMC8304911 DOI: 10.3390/ijms22147663] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022] Open
Abstract
Anderson-Fabry disease is an X-linked inborn error of glycosphingolipid catabolism caused by a deficiency of α-galactosidase A. The incidence ranges between 1: 40,000 and 1:117,000 of live male births. In Italy, an estimate of incidence is available only for the north-western Italy, where it is of approximately 1:4000. Clinical symptoms include angiokeratomas, corneal dystrophy, and neurological, cardiac and kidney involvement. The prevalence of symptomatic female carriers is about 70%, and in some cases, they can exhibit a severe phenotype. Previous studies suggest a correlation between skewed X chromosome inactivation and symptoms in carriers of X-linked disease, including Fabry disease. In this review, we briefly summarize the disease, focusing on the clinical symptoms of carriers and analysis of the studies so far published in regards to X chromosome inactivation pattern, and manifesting Fabry carriers. Out of 151 records identified, only five reported the correlation between the analysis of XCI in leukocytes and the related phenotype in Fabry carriers, in particular evaluating the Mainz Severity Score Index or cardiac involvement. The meta-analysis did not show any correlation between MSSI or cardiac involvement and skewed XCI, likely because the analysis of XCI in leukocytes is not useful for predicting the phenotype in Fabry carriers.
Collapse
Affiliation(s)
- Emanuela Viggiano
- Department of Prevention, UOC Hygiene Service and Public Health, ASL Roma 2, 00142 Rome, Italy
- Correspondence: (E.V.); (L.P.)
| | - Luisa Politano
- Cardiomyology and Medical Genetics, Department of Experimental Medicine, Luigi Vanvitelli University, 80138 Naples, Italy
- Correspondence: (E.V.); (L.P.)
| |
Collapse
|
10
|
Lisi EC, Ali N. Opinions of adults affected with later-onset lysosomal storage diseases regarding newborn screening: A qualitative study. J Genet Couns 2021; 30:1544-1558. [PMID: 33938615 DOI: 10.1002/jgc4.1421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/23/2022]
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of conditions causing substrate accumulation leading to progressive organ damage. Newborn screening (NBS) for several LSDs has become available in recent years due to advances in technology and treatment availability. While early initiation of treatment is lifesaving for those with infantile presentations, controversy continues regarding diagnosis of milder, later-onset diseases in infancy, including creation of pre-symptomatic populations of 'patients-in-waiting', the potential for medicalization, stigmatization, and/or discrimination. In-depth interviews were conducted with 36 adults [11 with Fabry disease (FD), 8 with Gaucher disease (GD), and 17 with late-onset Pompe disease (LOPD)], to determine their perspectives on NBS for their respective conditions. Thirty-four of 36 participants were in favor of NBS; both participants not in favor had GD1. Emergent themes influencing participants favorably toward NBS included earlier age of onset, a long diagnostic odyssey, less efficacious treatment, and the desire to have made different life decisions (e.g., relationships, career, or lifestyle) with the knowledge of their diagnosis. Concerns about insurance discrimination and psychological or physical burdens were associated with less favorable opinions of NBS. The ability for parents to make future reproductive decisions based their child's NBS result was considered favorably by some participants and unfavorably by others. Participants' specific condition (GD1, FD, or LOPD) contributed to these experiences differently. Participants with LOPD and FD favored NBS to initiate earlier treatment and prevent irreversible organ damage, whereas fewer patients with GD1 mentioned this benefit. Participants with LOPD had the longest diagnostic odyssey, while those with FD were more likely to report feeling misunderstood and experiencing accusations of malingering, both contributing to favorable views of NBS. Results expand prior quantitative findings by illuminating how participants' lived experiences can shape opinions about NBS. By understanding how currently affected individuals perceive the lifelong impact of a NBS result, genetic counselors can provide better anticipatory guidance to the parents of individuals diagnosed with a later-onset LSD by NBS.
Collapse
Affiliation(s)
- Emily C Lisi
- Department of Human Genetics, Emory University, Atlanta, GA, USA.,Graduate School for Arts and Sciences- Biomedical Sciences Division, Wake Forest University, Winston-Salem, NC, USA
| | - Nadia Ali
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| |
Collapse
|
11
|
Simonetta I, Tuttolomondo A, Daidone M, Miceli S, Pinto A. Treatment of Anderson-Fabry Disease. Curr Pharm Des 2021; 26:5089-5099. [PMID: 32183665 DOI: 10.2174/1381612826666200317142412] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 12/25/2022]
Abstract
Fabry disease is an X-linked disorder of glycosphingolipid metabolism that results in progressive accumulation of neutral glycosphingolipids, predominantly globotriaosylsphingosine (Gb3) in lysosomes, as well as other cellular compartments of several tissues, causing multi-organ manifestations (acroparesthesias, hypohidrosis, angiokeratomas, signs and symptoms of cardiac, renal, cerebrovascular involvement). Pathogenic mutations lead to a deficiency of the lysosomal enzyme alpha-galactosidase A (GLA). In the presence of high clinical suspicion, a careful physical examination and specific laboratory tests are required. Finally, the diagnosis of Fabry's disease is confirmed by the demonstration of the absence of or reduced alpha-galactosidase A enzyme activity in hemizygous men and gene typing in heterozygous females. Measurement of the biomarkers Gb3 and Lyso Gb3 in biological specimens may facilitate diagnosis. The current treatment of Anderson-Fabry disease is represented by enzyme replacement therapy (ERT) and oral pharmacological chaperone. Future treatments are based on new strategic approaches such as stem cell-based therapy, pharmacological approaches chaperones, mRNA therapy, and viral gene therapy. This review outlines the current therapeutic approaches and emerging treatment strategies for Anderson-Fabry disease.
Collapse
Affiliation(s)
- Irene Simonetta
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE), University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy
| | - Antonino Tuttolomondo
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE), University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy
| | - Mario Daidone
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE), University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy
| | - Salvatore Miceli
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE), University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy
| | - Antonio Pinto
- U.O.C di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno Infantile, Medicina Interna e Specialistica di Eccellenza "G. D'Alessandro" (PROMISE), University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy
| |
Collapse
|
12
|
Rosa Neto NS, Bento JCDB, Pereira RMR. Patient-Reported Outcomes in Subjects With A143T and R118C GLA Gene Variants. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2021. [DOI: 10.1590/2326-4594-jiems-2021-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
13
|
Misfolding of Lysosomal α-Galactosidase a in a Fly Model and Its Alleviation by the Pharmacological Chaperone Migalastat. Int J Mol Sci 2020; 21:ijms21197397. [PMID: 33036426 PMCID: PMC7583893 DOI: 10.3390/ijms21197397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Fabry disease, an X-linked recessive lysosomal disease, results from mutations in the GLA gene encoding lysosomal α-galactosidase A (α-Gal A). Due to these mutations, there is accumulation of globotriaosylceramide (GL-3) in plasma and in a wide range of cells throughout the body. Like other lysosomal enzymes, α-Gal A is synthesized on endoplasmic reticulum (ER) bound polyribosomes, and upon entry into the ER it undergoes glycosylation and folding. It was previously suggested that α-Gal A variants are recognized as misfolded in the ER and undergo ER-associated degradation (ERAD). In the present study, we used Drosophila melanogaster to model misfolding of α-Gal A mutants. We did so by creating transgenic flies expressing mutant α-Gal A variants and assessing development of ER stress, activation of the ER stress response and their relief with a known α-Gal A chaperone, migalastat. Our results showed that the A156V and the A285D α-Gal A mutants underwent ER retention, which led to activation of unfolded protein response (UPR) and ERAD. UPR could be alleviated by migalastat. When expressed in the fly’s dopaminergic cells, misfolding of α-Gal A and UPR activation led to death of these cells and to a shorter life span, which could be improved, in a mutation-dependent manner, by migalastat.
Collapse
|
14
|
Previously Unidentified Gene Variation Associated with Fabry Disease: The Impact on One Family. Case Rep Nephrol 2020; 2020:8899703. [PMID: 33014486 PMCID: PMC7520668 DOI: 10.1155/2020/8899703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 11/18/2022] Open
Abstract
Fabry disease is an X-linked lysosomal storage genetic disorder associated with over 1000 mutations in the alpha-galactosidase-A gene region. We report here a 69-year-old male who underwent a kidney biopsy to evaluate progressive renal failure. He was found to have zebra bodies in visceral epithelial cells on biopsy, with electron microscopy showing inclusions within the cytoplasm of multiple podocytes consistent with Fabry disease. An alpha-galactosidase level was found to be 21 nm/hr/mg (normal range 50–150 nm/hr/mg). Genetic studies revealed a missense variant in the GLA gene with alanine replaced by cysteine at position 682 (c.682 A > C, p.N228H) that had not been previously associated with Fabry disease. The same variant was detected in two additional family members. The pathologic findings, clinical features, and low alpha-galactosidase level suggest that the c.682 A > C variant is associated with Fabry disease.
Collapse
|
15
|
Affiliation(s)
- Antonino Tuttolomondo
- U.O.C.di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza "G.D'Alessandro" (PROMISE), Piazza delle Cliniche n.2, 90127, Palermo, Italy
| | - Irene Simonetta
- U.O.C.di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza "G.D'Alessandro" (PROMISE), Piazza delle Cliniche n.2, 90127, Palermo, Italy
| | - Antonio Pinto
- U.O.C.di Medicina Interna con Stroke Care, Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza "G.D'Alessandro" (PROMISE), Piazza delle Cliniche n.2, 90127, Palermo, Italy
| |
Collapse
|
16
|
Abstract
Fabry disease is a rare lysosomal disorder characterized by deficient or absent α-galactosidase A activity resulting from mutations in the GLA gene. Migalastat (Galafold™), a pharmacological chaperone, stabilizes and facilitates trafficking of amenable mutant forms of α-galactosidase A enzyme from the endoplasmic reticulum to lysosomes and increases its lysosomal activity. Oral migalastat is the first pharmacological chaperone approved for treating patients [aged ≥ 18 years (USA and Canada) or ≥ 16 years in other countries] with Fabry disease who have a migalastat-amenable GLA mutation. In the FACETS trial in enzyme replacement therapy (ERT)-naive patients with GLA mutations amenable or non-amenable to migalastat, there was no significant difference between the migalastat and placebo groups for the proportion of patients achieving a ≥ 50% reduction in the number of globotriaosylceramide (GL-3) inclusions/kidney interstitial capillary (KIC) at 6 months [primary endpoint; intent-to-treat (ITT) population]. In the modified ITT population (i.e. patients with migalastat-amenable GLA mutations), relative to placebo, migalastat treatment significantly reduced the mean number of GL-3 inclusions/KIC and plasma lyso-globotriaosylsphingosine levels at 6 months. Among evaluable patients, migalastat maintained renal function and reduced cardiac mass after ≤ 24 months’ therapy. In the ATTRACT trial in ERT-experienced patients, renal function was maintained during 18 months of migalastat or ERT; however, migalastat significantly reduced cardiac mass compared with ERT. Migalastat was generally well tolerated in both of these trials. Given its convenient oral regimen and the limited therapeutic options available, migalastat is an important treatment option for Fabry disease in patients with migalastat-amenable GLA mutations.
Collapse
|
17
|
Hilz MJ, Arbustini E, Dagna L, Gasbarrini A, Goizet C, Lacombe D, Liguori R, Manna R, Politei J, Spada M, Burlina A. Non-specific gastrointestinal features: Could it be Fabry disease? Dig Liver Dis 2018; 50:429-437. [PMID: 29602572 DOI: 10.1016/j.dld.2018.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/19/2018] [Accepted: 02/19/2018] [Indexed: 12/11/2022]
Abstract
Non-specific gastrointestinal symptoms, including pain, diarrhoea, nausea, and vomiting, can be the first symptoms of Fabry disease. They may suggest more common disorders, e.g. irritable bowel syndrome or inflammatory bowel disease. The confounding clinical presentation and rarity of Fabry disease often cause long diagnostic delays and multiple misdiagnoses. Therefore, specialists involved in the clinical evaluation of non-specific upper and lower gastrointestinal symptoms should recognize Fabry disease as a possible cause of the symptoms, and should consider Fabry disease as a possible differential diagnosis. When symptoms or family history suggest Fabry disease, in men, low alpha-galactosidase A enzyme levels, and in women, specific Fabry mutations confirm the diagnosis. In addition to symptomatic treatments, disease-specific enzyme replacement therapy with recombinant human alpha-galactosidase A enzyme or chaperone therapy (migalastat) in patients with amenable mutations can improve the disease, including gastrointestinal symptoms, and should be initiated as early as possible after Fabry disease has been confirmed; starting enzyme replacement therapy at as young an age as possible after diagnosis improves long-term clinical outcomes. Improved diagnostic tools, such as a modified gastrointestinal symptom rating scale, may facilitate diagnosing Fabry disease in patients with gastrointestinal symptoms of unknown cause and thus assure timely initiation of disease-specific treatment.
Collapse
Affiliation(s)
- Max J Hilz
- Department of Neurology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Eloisa Arbustini
- Center for Inherited Cardiovascular Diseases, IRCCS Foundation Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Dagna
- Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Hospital, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Gasbarrini
- Department of Medical Sciences, Division of Gastroenterology, Catholic University, Rome, Italy
| | - Cyril Goizet
- CHU Bordeaux, Department of Medical Genetics, Bordeaux, France; INSERM Unit 1211, Laboratoire MRGM, University of Bordeaux, Bordeaux, France
| | - Didier Lacombe
- CHU Bordeaux, Department of Medical Genetics, Bordeaux, France; INSERM Unit 1211, Laboratoire MRGM, University of Bordeaux, Bordeaux, France
| | - Rocco Liguori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Raffaele Manna
- Periodic Fever and Rare Diseases Research Centre, Gemelli Foundation, Catholic University of the Sacred Heart, Rome, Italy
| | - Juan Politei
- Department of Neurology, Fundación para el Estudio de las Enfermedades Neurometabólicas (FESEN), Buenos Aires, Argentina
| | - Marco Spada
- Department of Pediatrics, University of Torino, Torino, Italy
| | | |
Collapse
|