1
|
Sheu JJ, Yeh JN, Sung PH, Chiang JY, Chen YL, Wang YT, Yip HK, Guo J. ITRI Biofilm Prevented Thoracic Adhesion in Pigs That Received Myocardial Ischemic Induction Treated by Myocardial Implantation of EPCs and ECSW Treatment. Cell Transplant 2024; 33:9636897241253144. [PMID: 38798036 PMCID: PMC11129566 DOI: 10.1177/09636897241253144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
This study tested the hypothesis that ITRI Biofilm prevents adhesion of the chest cavity. Combined extracorporeal shock wave (ECSW) + bone marrow-derived autologous endothelial progenitor cell (EPC) therapy was superior to monotherapy for improving heart function (left ventricular ejection fraction [LVEF]) in minipigs with ischemic cardiomyopathy (IC) induced by an ameroid constrictor applied to the mid-left anterior descending artery. The minipigs (n = 30) were equally designed into group 1 (sham-operated control), group 2 (IC), group 3 (IC + EPCs/by directly implanted into the left ventricular [LV] myocardium; 3 [+]/3[-] ITRI Biofilm), group 4 (IC + ECSW; 3 [+]/[3] - ITRI Biofilm), and group 5 (IC + EPCs-ECSW; 3 [+]/[3] - ITRI Biofilm). EPC/ECSW therapy was administered by day 90, and the animals were euthanized, followed by heart harvesting by day 180. In vitro studies demonstrated that cell viability/angiogenesis/cell migratory abilities/mitochondrial concentrations were upregulated in EPCs treated with ECSW compared with those in EPCs only (all Ps < 0.001). The LVEF was highest in group 1/lowest in group 2/significantly higher in group 5 than in groups 3/4 (all Ps < 0.0001) by day 180, but there was no difference in groups 3/4. The adhesion score was remarkably lower in patients who received ITRI Biofilm treatment than in those who did not (all Ps <0.01). The protein expressions of oxidative stress (NOX-1/NOX-2/oxidized protein)/apoptotic (mitochondrial-Bax/caspase3/PARP)/fibrotic (TGF-β/Smad3)/DNA/mitochondria-damaged (γ-H2AX/cytosolic-cytochrome-C/p-DRP1), and heart failure/pressure-overload (BNP [brain natriuretic peptide]/β-MHC [beta myosin heavy chain]) biomarkers displayed a contradictory manner of LVEF among the groups (all Ps < 0.0001). The protein expression of endothelial biomarkers (CD31/vWF)/small-vessel density revealed a similar LVEF within the groups (all Ps < 0.0001). ITRI Biofilm treatment prevented chest cavity adhesion and was superior in restoring IC-related LV dysfunction when combined with EPC/ECSW therapy compared with EPC/ECSW therapy alone.
Collapse
Affiliation(s)
- Jiunn-Jye Sheu
- Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Jui-Ning Yeh
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Pei-Hsun Sung
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - John Y. Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung
| | - Yi-Ling Chen
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Yi-Ting Wang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Hon-Kan Yip
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
- Department of Nursing, Asia University, Taichung
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Extracorporeal Shock Wave Therapy Salvages Critical Limb Ischemia in B6 Mice through Upregulating Cell Proliferation Signaling and Angiogenesis. Biomedicines 2022; 10:biomedicines10010117. [PMID: 35052796 PMCID: PMC8773589 DOI: 10.3390/biomedicines10010117] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
(1) This study tests hypothesis whether extracorporeal shock wave (ECSW) therapy effectively salvages mouse critical limb ischemia (CLI). In vitro result demonstrated that the angiogenesis parameters (i.e., tubular length/cluster/network formation) and protein expressions of EGFR/VEGFR2/RAS/c-Raf/MEK/ERK/VEGF/p-PI3K/p-Akt/p-m-TOR were significantly and progressively increased with stepwise augmentation of ECSW energy (0.1/0.14/0.20 mJ/mm2/140 impulses). On the other hand, they were suppressed by administration of Avastin (20 μM). Adult male B6 mice (n = 24) were equally categorized into group 1 (sham-operated control), group 2 (CLI), group 3 [CLI + ECSW (0.12 mJ/mm2/120 impulses/at days 1/3/7 after CLI induction)] and group 4 [CLI + ECSW (0.12 mJ/mm2/120 impulses) + Avastin (1 mg/intramuscular-injection)] at days 1/3/7 after CLI induction] and quadriceps were harvested by day 14. The laser Doppler result showed that the ratio of left (ischemia) to right (normal) limb blood flow was highest in group 1, lowest in group 2, and significantly higher in group 3 than in group 4 by days 7/14 after the CLI procedure (p < 0.0001). The protein expressions of cell proliferation/migration/angiogenesis receptors (EGFR/VEGFR2), angiogenesis biomarkers (VEGF/CXCR4/SDF-1) and cell proliferation/growth/survival (Ras/c-Raf/MEK/ERK)/(PI3K/Akt/m-TOR) and cell motility/proliferation (p-FAK/p-Scr) signaling biomarkers were significantly higher in group 3 than in groups 1/2/4, and significantly lower in group 1 than in groups 2/4, but they did not show a difference between groups 2 and 4 (all p < 0.001). The small vessel density and cellular levels of endothelial cell surface marker (CD31+) exhibited an identical pattern of blood flow, whereas the angiogenesis (CXCR4+/VEGF+) displayed an identical pattern of VEGFR2 among the groups (all p < 0.0001). The in vitro and in vivo studies found ECSW salvaged the CLI mainly through upregulating Ras-Raf-MEK/ERK/cell motility, cell proliferation/growth pathways and angiogenesis.
Collapse
|
3
|
Chang CL, Chen KH, Sung PH, Chiang JY, Huang CR, Chen HH, Yip HK. Combined high energy of extracorporeal shock wave and 5-FU effectively suppressed the proliferation and growth of tongue squamous cell carcinoma. Biomed Pharmacother 2021; 142:112036. [PMID: 34411913 DOI: 10.1016/j.biopha.2021.112036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/30/2021] [Accepted: 08/07/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND We tested the hypothesis that extracorporeal shock wave (ECSW)-assisted 5-FU therapy effectively suppressed human tongue squamous carcinoma cell line SAS (i.e., SAS cells) proliferation and tumor growth. METHODS AND RESULTS In vitro study showed that as compared with lower ECSW energy (≤0.12 mJ/mm2), higher ECSW energy (≥0.25-035 mJ/mm2) significantly suppressed the SAS cell proliferation and upregulated tumor cell apoptosis/DNA-damage/oxidative-stress, whereas combined higher ECSW energy (0.35 mJ/mm2) and 5-FU (20uM) further significantly altered the expressions of these parameters (all p < 0.001). Adult male nude mice (NM) (n = 36) were equally categorized into group 1 (2.0 × 105 SAS cells were implanted into NM back), group 2 [SAS in NM back + stepwise-increased ECSW energy (from 0.05/0.1/0.3/to 0.5 mJ/mm2)/500 impulses which applied to the tumor at days 9/12/15/21], group 3 (SAS in NM back + 5-FU/i.p./7 mg/kg/every 3-day) and group 4 (SAS in NM back + ECSW + 5-FU) and tumors were removed from each animal by day-28. The result showed that tumor volume and tumor weight were significantly progressively reduced from group 1 to group 4 (all p < 0.0001). The protein expressions of apoptotic (mitochondrial-Bax/cleaved-caspase3/cleaved-PARP/cyclophyllin-D), autophagic (ratio of LC3B-II/LC3B-I) and oxidative-stress (NOX-1/NOX-2) biomarkers displayed an opposite pattern of tumor mass among the groups, whereas the cell-stress signaling (p-PI3K/p-Akt/p-m-TOR, and ASK1/MKK4/MKK7/p38/p-JNK/p-c-JUN), MAP kinase family members (RAS/cRAF/KRAS/BRAF/p-ERK1/2), tumor protein (p53) and cellular levels of angiogenesis/DNA-damage (α-SMA+/VEGF+/γ-H2AX+) exhibited an identical pattern of tumor mass among the groups (all p < 0.0001). CONCLUSION Combined high-energy ECSW and 5-FU offers an additional benefit for suppressing the cancer cell proliferation and tumor growth.
Collapse
Affiliation(s)
- Chia-Lo Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Kuan-Hung Chen
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Chi-Ruei Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Hong-Hwa Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; Department of Nursing, Asia University, Taichung 41354, Taiwan; Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen 361028, Fujian, China.
| |
Collapse
|
4
|
Skov-Jeppesen SM, Yderstraede KB, Jensen BL, Bistrup C, Hanna M, Lund L. Low-Intensity Shockwave Therapy (LI-ESWT) in Diabetic Kidney Disease: Results from an Open-Label Interventional Clinical Trial. Int J Nephrol Renovasc Dis 2021; 14:255-266. [PMID: 34285548 PMCID: PMC8286109 DOI: 10.2147/ijnrd.s315143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/04/2021] [Indexed: 01/07/2023] Open
Abstract
Purpose Treatment with low-intensity shockwave therapy (LI-ESWT) is associated with angiogenesis and is suggested as a treatment for different types of vascular diseases. It was hypothesized that LI-ESWT improves the renal filtration barrier and halts the progression of GFR decline in diabetic kidney disease (DKD) potentially through VEGF and NO formation. We present the first data on LI-ESWT in human DKD. Methods The study was designed as an interventional, prospective, one-arm, Phase 1 study. We investigated change in GFR and albuminuria in 28 patients with DKD treated with six sessions of LI-ESWT over three weeks. The patients were followed for six months. Urine excretion of kidney injury markers, vascular endothelial growth factor (VEGF) and nitric oxide metabolites (NOx) was studied after LI-ESWT. Results There were no significant changes in GFR and albuminuria up to six months after LI-ESWT compared to baseline. Urine VEGF was transiently reduced one month after LI-ESWT, but there were no other significant changes in urine VEGF or NOx after LI-ESWT. Secondary analysis showed that NOx increased after LI-ESWT in patients who had low levels of NOx at baseline. Kidney injury marker trefoil factor 3 (TFF3) increased acutely after the first session of LI-ESWT indicating transient endothelial repair. Other markers of kidney injury were stable in relation to LI-ESWT. Conclusion LI-ESWT treatment did not significantly improve kidney function and albumin excretion. It is concluded that LI-ESWT is not harmful. A randomized blinded study should be performed to clarify whether adjunctive treatment with LI-ESWT is superior to standard treatment of DKD.
Collapse
Affiliation(s)
- Sune Moeller Skov-Jeppesen
- Department of Urology, Odense University Hospital, Odense, Denmark.,OPEN, Odense Patient data Explorative Network, Odense University Hospital, Odense, Denmark.,Clinical Institute, University of Southern Denmark, Odense, Denmark
| | - Knud Bonnet Yderstraede
- Clinical Institute, University of Southern Denmark, Odense, Denmark.,Department of Endocrinology, Odense University Hospital, Odense, Denmark
| | - Boye L Jensen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Claus Bistrup
- Clinical Institute, University of Southern Denmark, Odense, Denmark.,Department of Nephrology, Odense University Hospital, Odense, Denmark
| | - Milad Hanna
- Department of Urology, Charing Cross Hospital, Imperial College Healthcare NHS Trust, London, UK
| | - Lars Lund
- Department of Urology, Odense University Hospital, Odense, Denmark.,Clinical Institute, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
Sung PH, Chen KH, Li YC, Chiang JY, Lee MS, Yip HK. Sitagliptin and shock wave-supported peripheral blood derived endothelial progenitor cell therapy effectively preserves residual renal function in chronic kidney disease in rat-role of dipeptidyl peptidase 4 inhibition. Biomed Pharmacother 2019; 111:1088-1102. [PMID: 30841422 DOI: 10.1016/j.biopha.2019.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/02/2019] [Accepted: 01/06/2019] [Indexed: 01/08/2023] Open
Abstract
This study tested whether sitagliptin and shock wave (SW)-assisted circulatory-derived autologous endothelial progenitor cell (EPC) therapy would effectively preserve residual renal function in chronic kidney disease (CKD) induced by 5/6 left-nephrectomy/remove right kidney plus daily feeding high-protein diet (HPD) in rat. Adult-male SD rats (n = 40) were categorized into group 1 (sham-operated control with HPD), group 2 (HPD-CKD), group 3 [HPD-CKD + EPC (1.2 × 106 cell)/intra-vessel administration by day 14 after CKD-induction], group 4 [HPD-CKD + SW (0.12 mJ/mm2/180 shorts) at days 14/21/28 after CKD-induction by ultrasound-guided application] and group 5 [HPD-CKD + SW + EPC + sitagliptin (Sita; 600 mg/kg/day since day 14 after CKD induction)]. All animals were euthanized by day 60. By day 60, renal blood flow (RBF) was highest in group 1 and progressively increased from groups 2 to 5, whereas the levels of creatinine/BUN/proteinuria exhibited an opposite pattern of RBF among the five groups (all p < 0.001). The circulating levels of GLP-1/SDF-1α and protein levels of angiogenesis (VEGF/SDF-1α/CXCR4) and GLP-1R in kidney were progressively increased from groups 1 to 5, whereas circulating DPP4 activity exhibited an opposite pattern of SDF-1α among the groups (all p < 0.0001). The protein expressions of oxidative-stress (NOX-1/NOX-2/oxidized protein), apoptosis (Bax/caspase-3/PARP), fibrosis (Smad3/TGF-ß) and inflammation (TNF-α/NF-κB/MMP-2) and kidney injury score displayed an opposite pattern, whereas the protein expressions of TMP2, endothelial-cell markers (CD31/eNOS) and podocyte integrity biomarkers (podocin/ZO-1/synaptopodin) exhibited an identical pattern of RBF among the groups (all p < 0.001). In conclusion Sita associated SW-assisted EPC effectively protected residual renal function in CKD.
Collapse
Affiliation(s)
- Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC
| | - Kuan-Hung Chen
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC; Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - Yi-Chen Li
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, ROC;; Quanzhou University of Information Engineering, Quanzhou, China
| | - Mel S Lee
- Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC.
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, 83301, Taiwan, ROC; Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC; Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, 83301, Taiwan, ROC; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC; Department of Nursing, Asia University, Taichung, 41354, Taiwan, ROC.
| |
Collapse
|
6
|
Early administration of empagliflozin preserved heart function in cardiorenal syndrome in rat. Biomed Pharmacother 2018; 109:658-670. [PMID: 30404073 DOI: 10.1016/j.biopha.2018.10.095] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 10/08/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023] Open
Abstract
This study tested the hypothesis that early administration of empagliflozin (Empa), an inhibitor of glucose recycling in renal tubules, could preserve heart function in cardiorenal syndrome (CRS) in rat. Chronic kidney disease (CKD) was caused by 5/6 subtotal nephrectomy and dilated cardiomyopathy (DCM) by doxorubicin (DOX) treatment. In vitro results showed that protein expressions of cleaved-caspase3 and autophagy activity at 24 h/48 h in NRK-52P cells were significantly upregulated by para-Creso treatment; these were significantly downregulated by Empa treatment. Flow cytometric analysis showed that annexin-V (i.e., early/late apoptosis) in NRK-52P cells expressed an identical pattern to cleaved-caspase3 between the two groups (all p < 0.001). Adult-male-SD rats (n = 18) were equally categorized into group 1 (sham-control), group 2 (CRS) and group 3 [CRS + Empa; 20 mg/kg/day]. By day-42 after CRS induction, left-ventricular ejection fraction (LVEF) level exhibited an opposite pattern, whereas LV end-diastolic dimension and creatinine level displayed the same pattern, to cleaved-caspase3 among the three groups (all p < 0.0001). In LV tissues, protein expressions of inflammatory (tumor-necrosis factor-α/nuclear-factor-κB/interleukin-1ß/matrix-metalloprotianse-9), oxidative stress (NOX-1/NOX-2/oxidized protein), apoptotic (mitochondrial-Bax/cleaved-caspase-3/cleaved-PARP), fibrotic (transforming-growth factor-ß/Smad3), DNA/mitochondrial-damage (γ-H2AX/cytosolic-cytochrome-C) and heart failure (brain natriuretic peptide (BNP) levels displayed an opposite pattern to LVEF among the three groups (all p < 0.0001). Additionally, cellular expressions of DNA-damage/heart-failure (γ-H2AX+//XRCC1+CD90+//BNP+) biomarkers and histopathological findings of fibrotic/condensed collagen-deposition areas and apoptotic nuclei showed an identical pattern, whereas connexin43 and small-vessel number exhibited an opposite pattern, to inflammation among the three groups (all p < 0.0001). In conclusion, Empa therapy protected heart and kidney against CRS injury.
Collapse
|
7
|
Shock Wave Therapy Enhances Mitochondrial Delivery into Target Cells and Protects against Acute Respiratory Distress Syndrome. Mediators Inflamm 2018; 2018:5425346. [PMID: 30420790 PMCID: PMC6215567 DOI: 10.1155/2018/5425346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/05/2018] [Indexed: 01/11/2023] Open
Abstract
This study tested the hypothesis that shock wave therapy (SW) enhances mitochondrial uptake into the lung epithelial and parenchymal cells to attenuate lung injury from acute respiratory distress syndrome (ARDS). ARDS was induced in rats through continuous inhalation of 100% oxygen for 48 h, while SW entailed application 0.15 mJ/mm2 for 200 impulses at 6 Hz per left/right lung field. In vitro and ex vivo studies showed that SW enhances mitochondrial uptake into lung epithelial and parenchyma cells (all p < 0.001). Flow cytometry demonstrated that albumin levels and numbers of inflammatory cells (Ly6G+/CD14+/CD68+/CD11b/c+) in bronchoalveolar lavage fluid were the highest in untreated ARDS, were progressively reduced across SW, Mito, and SW + Mito (all p < 0.0001), and were the lowest in sham controls. The same profile was also seen for fibrosis/collagen deposition, levels of biomarkers of oxidative stress (NOX-1/NOX-2/oxidized protein), inflammation (MMP-9/TNF-α/NF-κB/IL-1β/ICAM-1), apoptosis (cleaved caspase 3/PARP), fibrosis (Smad3/TGF-β), mitochondrial damage (cytosolic cytochrome c) (all p < 0.0001), and DNA damage (γ-H2AX+), and numbers of parenchymal inflammatory cells (CD11+/CD14+/CD40L+/F4/80+) (p < 0.0001). These results suggest that SW-assisted Mito therapy effectively protects the lung parenchyma from ARDS-induced injury.
Collapse
|
8
|
Extracorporeal Shock Wave-Supported Adipose-Derived Fresh Stromal Vascular Fraction Preserved Left Ventricular (LV) Function and Inhibited LV Remodeling in Acute Myocardial Infarction in Rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7518920. [PMID: 30416645 PMCID: PMC6207868 DOI: 10.1155/2018/7518920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
This study tested the hypothesis that extracorporeal shock wave- (ECSW-) assisted adipose-derived stromal vascular fraction (SVF) therapy could preserve left ventricular ejection fraction (LVEF) and inhibit LV remodeling in a rat after acute myocardial infarction (AMI). Adult male SD rats were categorized into group 1 (sham control), group 2 (AMI induced by left coronary artery ligation), group 3 [AMI + ECSW (280 impulses at 0.1 mJ/mm2, applied to the chest wall at 3 h, days 3 and 7 after AMI), group 4 [AMI + SVF (1.2 × 106) implanted into the infarct area at 3 h after AMI], and group 5 (AMI + ECSW-SVF). In vitro, SVF protected H9C2 cells against menadione-induced mitochondrial damage and increased fluorescent intensity of mitochondria in nuclei (p < 0.01). By day 42 after AMI, LVEF was highest in group 1, lowest in group 2, significantly higher in group 5 than in groups 3 and 4, and similar between the latter two groups (all p < 0.0001). LV remodeling and infarcted, fibrotic, and collagen deposition areas as well as apoptotic nuclei exhibited an opposite pattern to LVEF among the groups (all p < 0.0001). Protein expressions of CD31/vWF/eNOS/PGC-1α/α-MHC/mitochondrial cytochrome C exhibited an identical pattern, whilst protein expressions of MMP-9/TNF-α/IL-1β/NF-κB/caspase-3/PARP/Samd3/TGF-β/NOX-1/NOX-2/oxidized protein/β-MHC/BNP exhibited an opposite pattern to LVEF among five groups (all p < 0.0001). Cellular expressions of CXCR4/SDF-1α/Sca-1/c-Kit significantly and progressively increased from groups 1 to 5 (all p < 0.0001). Cellular expression of γ-H2AX/CD68 displayed an opposite pattern to LVEF among the five groups (all p < 0.0001). In conclusion, ECSW-SVF therapy effectively preserved LVEF and inhibited LV remodeling in rat AMI.
Collapse
|
9
|
Combined Therapy with Extracorporeal Shock Wave and Adipose-Derived Mesenchymal Stem Cells Remarkably Improved Acute Ischemia-Reperfusion Injury of Quadriceps Muscle. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6012636. [PMID: 29805730 PMCID: PMC5901825 DOI: 10.1155/2018/6012636] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/20/2018] [Accepted: 02/01/2018] [Indexed: 12/18/2022]
Abstract
Extracorporeal shock wave (ECSW) and adipose-derived mesenchymal stem cells (ADMSCs) have been recognized to have capacities of anti-inflammation and angiogenesis. We tested the hypothesis that ECSW and ADMSC therapy could attenuate ischemia-reperfusion- (IR-) induced thigh injury (femoral artery tightened for 6 h then the tightness was relieved) in rats. Adult male SD rats (n = 30) were divided into group 1 (sham-control), group 2 (IR), group 3 (IR + ECSW/120 impulses at 0.12 mJ/mm2 given at 3 h/24 h/72 h after IR), group 4 (allogenic ADMSC/1.2 × 106 cell intramuscular and 1.2 × 106 cell intravenous injections 3 h after IR procedure), and group 5 (ECSW + ADMSC). At day 7 after the IR procedure, the left quadriceps muscle was harvested for studies. At 18 h after the IR procedure, serum myoglobin/creatine phosphokinase (CPK) levels were highest in group 2, lowest in group 1, and with intermediate values significantly progressively reduced in groups 3 to 5 (all p < 0.0001). By day 5 after IR, the mechanical paw-withdrawal threshold displayed an opposite pattern of CPK (all p < 0.0001). The protein expressions of inflammatory, oxidative-stress, apoptotic, fibrotic, DNA-damaged, and mitochondrial-damaged biomarkers and cellular expressions of inflammatory and DNA-damaged biomarkers exhibited an identical pattern of CPK among the five groups (all p < 0.0001). The microscopic findings of endothelial-cell biomarkers and number of arterioles expressed an opposite pattern of CPK, and the angiogenesis marker was significantly progressively increased from groups 1 to 5, whereas the histopathology showed that muscle-damaged/fibrosis/collagen-deposition areas exhibited an identical pattern of CPK among the five groups (all p < 0.0001). In conclusion, ECSW-ADMSC therapy is superior to either one applied individually for protecting against IR-induced thigh injury.
Collapse
|
10
|
Wang W, Jing W, Liu Q. Astragalus Oral Solution Ameliorates Allergic Asthma in Children by Regulating Relative Contents of CD4 +CD25 highCD127 low Treg Cells. Front Pediatr 2018; 6:255. [PMID: 30294594 PMCID: PMC6158305 DOI: 10.3389/fped.2018.00255] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/28/2018] [Indexed: 01/22/2023] Open
Abstract
Objective: To explore the effects of Astragalus oral solution (AOS) on allergic asthma in children by investigating relative contents of CD4+CD25highCD127low Treg cells. Methods: The contents of Astragaloside A in AOS were detected by using HPLC. Eighty children with allergic asthma were recruited from February 2016 to June 2017, and randomly assigned into the control group (received placebo, 0.1% quinine chloride in deionized water, daily) and the AOS group (received 10 mL AOS daily). After 6-month treatment, therapeutic results were compared between the two groups. Serum levels of IL-10 and TGF-beta, Th1 cytokines (IL-2 and IFN-γ), and Th2 cytokines (IL-4 and IL-6) were measured by using ELISA kits. Relative contents of CD4+CD25highCD127low Treg cells were determined by using flow cytometry. Results: Astragaloside A was the main ingredient of AOS with 0.216 ± 0.027 mg/mL from six-batch samples. After 6-month therapy, the AOS group showed improved forced expiratory volume in 1 s (FEV1) and the Pediatric Asthma Quality of Life Questionnaire (PAQLQ) scores compared with the control group (P < 0.05). Serum level of IL-10 was higher and the levels of TGF-beta, Th1 cytokines (IL-2 and IFN-γ), and Th2 cytokines (IL-4 and IL-6) were lower in the AOS group than in the control group (P < 0.05). AOS treatment increased the percentage of gated CD4+ T cells, CD4+CD25+ T cells, CD4+CD25high Treg cells, CD4+CD25+FoxP3+ Treg cells and CD4+CD25highCD127low Treg cells when compared with the control group (P < 0.05). Conclusions: Astragaloside A was the main component of AOS, and AOS ameliorated allergic asthma in children by regulating relative contents of CD4+CD25highCD127low Treg cells.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatric, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Wei Jing
- Department of Pediatric, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Qingbin Liu
- Department of Pediatric, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|