1
|
Abed HF, Abuwatfa WH, Husseini GA. Redox-Responsive Drug Delivery Systems: A Chemical Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3183. [PMID: 36144971 PMCID: PMC9503659 DOI: 10.3390/nano12183183] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
With the widespread global impact of cancer on humans and the extensive side effects associated with current cancer treatments, a novel, effective, and safe treatment is needed. Redox-responsive drug delivery systems (DDSs) have emerged as a potential cancer treatment with minimal side effects and enhanced site-specific targeted delivery. This paper explores the physiological and biochemical nature of tumors that allow for redox-responsive drug delivery systems and reviews recent advances in the chemical composition and design of such systems. The five main redox-responsive chemical entities that are the focus of this paper are disulfide bonds, diselenide bonds, succinimide-thioether linkages, tetrasulfide bonds, and platin conjugates. Moreover, as disulfide bonds are the most commonly used entities, the review explored disulfide-containing liposomes, polymeric micelles, and nanogels. While various systems have been devised, further research is needed to advance redox-responsive drug delivery systems for cancer treatment clinical applications.
Collapse
Affiliation(s)
- Heba F. Abed
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
2
|
Foglietta F, Canaparo R, Cossari S, Panzanelli P, Dosio F, Serpe L. Ultrasound Triggers Hypericin Activation Leading to Multifaceted Anticancer Activity. Pharmaceutics 2022; 14:1102. [PMID: 35631688 PMCID: PMC9146189 DOI: 10.3390/pharmaceutics14051102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/04/2022] Open
Abstract
The use of ultrasound (US) in combination with a responsive chemical agent (sonosensitizer) can selectively trigger the agent's anticancer activity in a process called sonodynamic therapy (SDT). SDT shares some properties with photodynamic therapy (PDT), which has been clinically approved, but sets itself apart because of its use of US rather than light to achieve better tissue penetration. SDT provides anticancer effects mainly via the sonosensitizer-mediated generation of reactive oxygen species (ROS), although the precise nature of the underpinning mechanism is still under debate. This work investigates the SDT anticancer activity of hypericin (Hyp) in vitro in two- (2D) and three-dimensional (3D) HT-29 colon cancer models, and uses PDT as a yardstick due to its well-known Hyp phototoxicity. The cancer cell uptake and cellular localization of Hyp were investigated first to determine the proper noncytotoxic concentration and incubation time of Hyp for SDT. Furthermore, ROS production, cell proliferation, and cell death were evaluated after Hyp was exposed to US. Since cancer relapse and transporter-mediated multidrug resistance (MDR) are important causes of cancer treatment failure, the US-mediated ability of Hyp to elicit immunogenic cell death (ICD) and overcome MDR was also investigated. SDT showed strong ROS-mediated anticancer activity 48 h after treatment in both the HT-29 models. Specific damage-associated molecular patterns that are consistent with ICD, such as calreticulin (CRT) exposure and high-mobility group box 1 protein (HMGB1) release, were observed after SDT with Hyp. Moreover, the expression of the ABC transporter, P-glycoprotein (P-gp), in HT-29/MDR cells was not able to hinder cancer cell responsiveness to SDT with Hyp. This work reveals, for the first time, the US responsiveness of Hyp with significant anticancer activity being displayed, making it a full-fledged sonosensitizer for the SDT of cancer.
Collapse
Affiliation(s)
- Federica Foglietta
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| | - Roberto Canaparo
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| | - Simone Cossari
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Torino, 10125 Torino, Italy;
| | - Franco Dosio
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, 10125 Torino, Italy; (F.F.); (R.C.); (S.C.); (L.S.)
| |
Collapse
|
3
|
Radiation-induced bystander and abscopal effects: important lessons from preclinical models. Br J Cancer 2020; 123:339-348. [PMID: 32581341 PMCID: PMC7403362 DOI: 10.1038/s41416-020-0942-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 03/10/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is a pivotal component in the curative treatment of patients with localised cancer and isolated metastasis, as well as being used as a palliative strategy for patients with disseminated disease. The clinical efficacy of radiotherapy has traditionally been attributed to the local effects of ionising radiation, which induces cell death by directly and indirectly inducing DNA damage, but substantial work has uncovered an unexpected and dual relationship between tumour irradiation and the host immune system. In clinical practice, it is, therefore, tempting to tailor immunotherapies with radiotherapy in order to synergise innate and adaptive immunity against cancer cells, as well as to bypass immune tolerance and exhaustion, with the aim of facilitating tumour regression. However, our understanding of how radiation impacts on immune system activation is still in its early stages, and concerns and challenges regarding therapeutic applications still need to be overcome. With the increasing use of immunotherapy and its common combination with ionising radiation, this review briefly delineates current knowledge about the non-targeted effects of radiotherapy, and aims to provide insights, at the preclinical level, into the mechanisms that are involved with the potential to yield clinically relevant combinatorial approaches of radiotherapy and immunotherapy.
Collapse
|
4
|
Kis B, Ifrim FC, Buda V, Avram S, Pavel IZ, Antal D, Paunescu V, Dehelean CA, Ardelean F, Diaconeasa Z, Soica C, Danciu C. Cannabidiol-from Plant to Human Body: A Promising Bioactive Molecule with Multi-Target Effects in Cancer. Int J Mol Sci 2019; 20:E5905. [PMID: 31775230 PMCID: PMC6928757 DOI: 10.3390/ijms20235905] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/01/2023] Open
Abstract
Cannabis sativa L. is a plant long used for its textile fibers, seed oil, and oleoresin with medicinal and psychoactive properties. It is the main source of phytocannabinoids, with over 100 compounds detected so far. In recent years, a lot of attention has been given to the main phytochemicals present in Cannabis sativa L., namely, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC). Compared to THC, CBD has non-psychoactive effects, an advantage for clinical applications of anti-tumor benefits. The review is designed to provide an update regarding the multi-target effects of CBD in different types of cancer. The main focus is on the latest in vitro and in vivo studies that present data regarding the anti-proliferative, pro-apoptotic, cytotoxic, anti-invasive, anti-antiangiogenic, anti-inflammatory, and immunomodulatory properties of CBD together with their mechanisms of action. The latest clinical evidence of the anticancer effects of CBD is also outlined. Moreover, the main aspects of the pharmacological and toxicological profiles are given.
Collapse
Affiliation(s)
- Brigitta Kis
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş“, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (B.K.); (S.A.); (I.Z.P.); (C.D.)
- Centre for Gene and Cellular Therapies in the Treatment of Cancer- OncoGen, Clinical County Hospital of Timişoara, Liviu Rebreanu Blvd. 156, 300736 Timişoara, Romania;
| | - Feng Chen Ifrim
- Department of Marketing, medical technology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Valentina Buda
- Department of Pharmacology and Clinical Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Stefana Avram
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş“, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (B.K.); (S.A.); (I.Z.P.); (C.D.)
| | - Ioana Zinuca Pavel
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş“, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (B.K.); (S.A.); (I.Z.P.); (C.D.)
| | - Diana Antal
- Department of Pharmaceutical Botany, University of Medicine and Pharmacy “Victor Babeş“, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (D.A.); (F.A.)
| | - Virgil Paunescu
- Centre for Gene and Cellular Therapies in the Treatment of Cancer- OncoGen, Clinical County Hospital of Timişoara, Liviu Rebreanu Blvd. 156, 300736 Timişoara, Romania;
- Department of Functional Sciences, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Department of Toxicology, “Victor Babeş“University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania;
| | - Florina Ardelean
- Department of Pharmaceutical Botany, University of Medicine and Pharmacy “Victor Babeş“, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (D.A.); (F.A.)
| | - Zorita Diaconeasa
- Department of Food Science and Technology, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, Calea Manastur, 3-5, 400372 Cluj-Napoca, Romania;
| | - Codruta Soica
- Department of Pharmaceutical Chemistry, University of Medicine and Pharmacy “Victor Babeş“, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania;
| | - Corina Danciu
- Department of Pharmacognosy, University of Medicine and Pharmacy “Victor Babeş“, Eftimie Murgu Square, No. 2, 300041 Timişoara, Romania; (B.K.); (S.A.); (I.Z.P.); (C.D.)
| |
Collapse
|
5
|
Park DS, Robertson-Tessi M, Luddy KA, Maini PK, Bonsall MB, Gatenby RA, Anderson ARA. The Goldilocks Window of Personalized Chemotherapy: Getting the Immune Response Just Right. Cancer Res 2019; 79:5302-5315. [PMID: 31387920 PMCID: PMC6801094 DOI: 10.1158/0008-5472.can-18-3712] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/20/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022]
Abstract
The immune system is a robust and often untapped accomplice of many standard cancer therapies. A majority of tumors exist in a state of immune tolerance where the patient's immune system has become insensitive to the cancer cells. Because of its lymphodepleting effects, chemotherapy has the potential to break this tolerance. To investigate this, we created a mathematical modeling framework of tumor-immune dynamics. Our results suggest that optimal chemotherapy scheduling must balance two opposing objectives: maximizing tumor reduction while preserving patient immune function. Successful treatment requires therapy to operate in a "Goldilocks Window" where patient immune health is not overly compromised. By keeping therapy "just right," we show that the synergistic effects of immune activation and chemotherapy can maximize tumor reduction and control. SIGNIFICANCE: To maximize the synergy between chemotherapy and antitumor immune response, lymphodepleting therapy must be balanced in a "Goldilocks Window" of optimal dosing.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/20/5302/F1.large.jpg.
Collapse
Affiliation(s)
- Derek S Park
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Mark Robertson-Tessi
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kimberly A Luddy
- Comparative Immunology Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Philip K Maini
- Mathematical Institute, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | | | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Alexander R A Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
| |
Collapse
|
6
|
Immunomodulatory Changes Following Isolated RF Ablation in Colorectal Liver Metastases: A Case Report. MEDICINES 2019; 6:medicines6020056. [PMID: 31085982 PMCID: PMC6631927 DOI: 10.3390/medicines6020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/26/2022]
Abstract
Background: Colorectal cancer (CRC) is the third most common cancer worldwide and the second leading cause of cancer-related deaths in developed countries. The liver is the most prevalent site of metastasis from CRC. Currently, the gold-standard treatment for colorectal liver metastases (CLMs) is surgical resection. However, depending on the pattern of the disease, a significant number of patients may require different approaches alone or in combination with surgery, including thermal ablation (radiofrequency (RFA) or microwave (MWA) ablation) or transarterial liver-directed therapies, although the latter is not yet part of the standard treatment for CRC liver metastases. Methods and Results: We present the case of a 63-yearold man with bilobar CLM who was treated with transarterial embolization (TAE) and RFA followed by chemotherapy. A post-RFA study of immune parameters revealed the downregulation of CD39 expression in the circulating CD4+ T cell population and a reduction of the serum levels of cytokines IL-10, TGF-β, IFN-gamma and IL-17, which positively correlated with the diminished serum level of gamma-glutamyl transferase (GGT) and the subdued inflammatory markers: the neutrophil/lymphocyte ratio (NLR) and platelet/lymphocyte ratio (PLR). Later, the patient underwent chemotherapy. Liver failure developed within two years and nine months following tumour ablation, leading to the death of the patient. Conclusions: However, the denial of adjuvant chemotherapy by the patient gave us the opportunity to assess the immunomodulatory changes following RFA in the absence of any other therapeutic modalities.
Collapse
|
7
|
Darling HS, Bellmunt J. Immunotherapy in non-metastatic urothelial cancer: back to the ‘future’. Expert Opin Biol Ther 2019; 19:685-695. [DOI: 10.1080/14712598.2019.1604673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- H. S. Darling
- Medical Oncology & Hemato-oncology, Artemis Hospital, Gurugram, India
| | | |
Collapse
|
8
|
Mechanisms and immunogenicity of nsPEF-induced cell death in B16F10 melanoma tumors. Sci Rep 2019; 9:431. [PMID: 30674926 PMCID: PMC6344591 DOI: 10.1038/s41598-018-36527-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
Accumulating data indicates that some cancer treatments can restore anticancer immunosurveillance through the induction of tumor immunogenic cell death (ICD). Nanosecond pulsed electric fields (nsPEF) have been shown to efficiently ablate melanoma tumors. In this study we investigated the mechanisms and immunogenicity of nsPEF-induced cell death in B16F10 melanoma tumors. Our data show that in vitro nsPEF (20–200, 200-ns pulses, 7 kV/cm, 2 Hz) caused a rapid dose-dependent cell death which was not accompanied by caspase activation or PARP cleavage. The lack of nsPEF-induced apoptosis was confirmed in vivo in B16F10 tumors. NsPEF also failed to trigger ICD-linked responses such as necroptosis and autophagy. Our results point at necrosis as the primary mechanism of cell death induced by nsPEF in B16F10 cells. We finally compared the antitumor immunity in animals treated with nsPEF (750, 200-ns, 25 kV/cm, 2 Hz) with animals were tumors were surgically removed. Compared to the naïve group where all animals developed tumors, nsPEF and surgery protected 33% (6/18) and 28.6% (4/14) of the animals, respectively. Our data suggest that, under our experimental conditions, the local ablation by nsPEF restored but did not boost the natural antitumor immunity which stays dormant in the tumor-bearing host.
Collapse
|
9
|
Sherman H, Gitschier HJ, Rossi AE. A Novel Three-Dimensional Immune Oncology Model for High-Throughput Testing of Tumoricidal Activity. Front Immunol 2018; 9:857. [PMID: 29740450 PMCID: PMC5924962 DOI: 10.3389/fimmu.2018.00857] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/06/2018] [Indexed: 12/22/2022] Open
Abstract
The latest advancements in oncology research are focused on autologous immune cell therapy. However, the effectiveness of this type of immunotherapy for cancer remediation is not equivalent for all patients or cancer types. This suggests the need for better preclinical screening models that more closely recapitulate in vivo tumor biology. The established method for investigating tumoricidal activity of immunotherapies has been study of two-dimensional (2D) monolayer cultures of immortalized cancer cell lines or primary tumor cells in standard tissue culture vessels. Indeed, a proven means to examine immune cell migration and invasion are 2D chemotaxis assays in permeabilized supports or Boyden chambers. Nevertheless, the more in vivo-like three-dimensional (3D) multicellular tumor spheroids are quickly becoming the favored model to examine immune cell invasion and tumor cell cytotoxicity. Accordingly, we have developed a 3D immune oncology model by combining 96-well permeable support systems and 96-well low-attachment microplates. The use of the permeable support system enables assessment of immune cell migration, which was tested in this study as chemotactic response of natural killer NK-92MI cells to human stromal-cell derived factor-1 (SDF-1α). Immune invasion was assessed by measuring NK-92MI infiltration into lung carcinoma A549 cell spheroids that were formed in low-attachment microplates. The novel pairing of the permeable support system with low-attachment microplates permitted simultaneous investigation of immune cell homing, immune invasion of tumor spheroids, and spheroid cytotoxicity. In effect, the system represents a more comprehensive and in vivo-like immune oncology model that can be utilized for high-throughput study of tumoricidal activity.
Collapse
Affiliation(s)
- Hilary Sherman
- Life Sciences Division, Corning Incorporated, Kennebunk, ME, United States
| | - Hannah J Gitschier
- Life Sciences Division, Corning Incorporated, Kennebunk, ME, United States
| | - Ann E Rossi
- Life Sciences Division, Corning Incorporated, Kennebunk, ME, United States
| |
Collapse
|
10
|
Wang YH, Zhang TQ, Fu JN, Liu Y, Jia HY. The role of macrophages in the differentiation process of ureteral polyps. J Int Med Res 2017; 46:1015-1023. [PMID: 29243545 PMCID: PMC5972249 DOI: 10.1177/0300060517735977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To evaluate the role of macrophage infiltration in the differentiation process of ureteral polyps and cancers. Methods This retrospective immunohistochemical study analysed archival samples of pathologically-confirmed specimens of low- and high-grade ureteral cancer, ureteral papilloma and ureteral polyps. The samples were immunohistochemically stained for cluster of differentiation (CD)4, CD8, CD16, CD25, CD56 and CD68 using immunofluorescence in order to identify different T-lymphocyte populations and macrophages. Results A total of 70 specimens were included in the analysis: 21 specimens of ureteral cancer, 17 specimens of ureteral papilloma, and 32 specimens of ureteral polyps. The largest proportion of CD4+CD25+ regulatory T cells was observed in the low-grade ureteral cancer group and almost none were observed in ureteral papillomas. The largest proportion of CD8+ cytotoxic T-lymphocytes was observed in the ureteral polyps. The largest proportion of CD56+ natural killer cells was detected in the ureteral polyps, with very low levels observed in the other three groups. The largest proportion of CD16+CD68+ macrophages was observed in the high-grade ureteral cancer group, which was significantly higher than that observed in the ureteral papillomas. Conclusions This study revealed that CD16+CD68+ macrophages appear to participate in ureteral neoplastic transformation.
Collapse
Affiliation(s)
- Yue-Hui Wang
- 1 Department of Oncology, Siping Cancer Hospital, Siping, Jilin Province, China
| | - Tian-Qi Zhang
- 2 Public Health School of Jilin University, Changchun, Jilin Province, China
| | - Ji-Ning Fu
- 3 Department of General Surgery, the Central Hospital of Siping, Siping, Jilin Province, China
| | - Ying Liu
- 4 The Key Tissue Engineering Laboratory of Jilin Province, the Central Hospital of Siping. Siping, Jilin Province, China
| | - Hai-Yan Jia
- 5 Department of Psychiatry, the Central Hospital of Siping, Siping, Jilin Province, China
| |
Collapse
|