1
|
Chen Q, Zhao H, Hu J. A robust six-gene prognostic signature based on two prognostic subtypes constructed by chromatin regulators is correlated with immunological features and therapeutic response in lung adenocarcinoma. Aging (Albany NY) 2023; 15:12330-12368. [PMID: 37938151 PMCID: PMC10683604 DOI: 10.18632/aging.205183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023]
Abstract
Accumulating evidence has demonstrated that chromatin regulators (CRs) regulate immune cell infiltration and are correlated with prognoses of patients in some cancers. However, the immunological and prognostic roles of CRs in lung adenocarcinoma (LUAD) are still unclear. Here, we systematically revealed the correlations of CRs with immunological features and the survival in LUAD patients based on a cohort of gene expression datasets from the public TCGA and GEO databases and real RNA-seq data by an integrative analysis using a comprehensive bioinformatics method. Totals of 160 differentially expressed CRs (DECRs) were identified between LUAD and normal lung tissues, and two molecular prognostic subtypes (MPSs) were constructed and evaluated based on 27 prognostic DECRs using five independent datasets (p =0.016, <0.0001, =0.008, =0.00038 and =0.00055, respectively). Six differentially expressed genes (DEGs) (CENPK, ANGPTL4, CCL20, CPS1, GJB3, TPSB2) between two MPSs had the most important prognostic feature and a six-gene prognostic model was established. LUAD patients in the low-risk subgroup showed a higher overall survival (OS) rate than those in the high-risk subgroup in nine independent datasets (p <0.0001, =0.021, =0.016, =0.0099, <0.0001, =0.0045, <0.0001, =0.0038 and =0.00013, respectively). Six-gene prognostic signature had the highest concordance index of 0.673 compared with 19 reported prognostic signatures. The risk score was significantly correlated with immunological features and activities of oncogenic signaling pathways. LUAD patients in the low-risk subgroup benefited more from immunotherapy and were less sensitive to conventional chemotherapy agents. This study provides novel insights into the prognostic and immunological roles of CRs in LUAD.
Collapse
Affiliation(s)
- Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongbo Zhao
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| | - Jing Hu
- Department of Medical Oncology, First People’s Hospital of Yunnan Province, Kunming, China
- Department of Medical Oncology, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
2
|
Wei S, Zhang J, Shi R, Yu Z, Chen X, Wang H. Identification of an integrated kinase-related prognostic gene signature associated with tumor immune microenvironment in human uterine corpus endometrial carcinoma. Front Oncol 2022; 12:944000. [PMID: 36158685 PMCID: PMC9491090 DOI: 10.3389/fonc.2022.944000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 08/15/2022] [Indexed: 12/02/2022] Open
Abstract
In the worldwide, uterine corpus endometrial carcinoma (UCEC) is the sixth most common malignancy in women, and the number of women diagnosed is increasing. Kinase plays an important role in the occurrence and development of malignant tumors. However, the research about kinase in endometrial cancer is still unclear. Here, we first downloaded the gene expression data of 552 UCEC patients and 23 healthy endometrial tissues from The Cancer Genome Atlas (TCGA), obtained 538 kinase-related genes from the previous literature, and calculated 67 differentially expressed kinases. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were referenced to identify multiple important biological functions and signaling pathways related to 67 differentially expressed kinases. Using univariate Cox regression and Least absolute shrinkage and selection operator (LASSO), seven kinases (ALPK2, CAMKV, TTK, PTK6, MAST1, CIT, and FAM198B) were identified to establish a prognostic model of endometrial cancer. Then, patients were divided into high- and low-risk groups based on risk scores. Receiver operating characteristic (ROC) curves were plotted to evaluate that the model had a favorable predictive ability. Kaplan–Meier survival analysis suggested that high-risk groups experienced worse overall survival than low-risk groups. qRT-PCR and ISH assays confirmed the consistency between predicted candidate genes and real sample contents. CIBERSORT algorithm and ssGSEA were adopted to investigate the relationship between this signature and tumor immune microenvironment, and revealed that in low- and high-risk groups, the types of tumor-infiltrating immune cells and the immune cell-related functions were significantly different. In summary, a seven-gene signature risk model has been constructed, and could accurately predict the prognosis of UCEC, which may offer ideas and breakthrough points to the kinase-associated development of UCEC.
Collapse
Affiliation(s)
- Sitian Wei
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Shi
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicheng Yu
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingwei Chen
- Department of Industrial engineering, Tsinghua University, Beijing, China
| | - Hongbo Wang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Hongbo Wang,
| |
Collapse
|
3
|
MITF Promotes Cell Growth, Migration and Invasion in Clear Cell Renal Cell Carcinoma by Activating the RhoA/YAP Signal Pathway. Cancers (Basel) 2021; 13:cancers13122920. [PMID: 34208068 PMCID: PMC8230652 DOI: 10.3390/cancers13122920] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Microphthalmia-associated transcription factor (MITF) has been reported to play a role in the progression of melanoma and other cancer types. However, the biological role of MITF in clear cell renal cell carcinoma (ccRCC) is largely unknown. In this study, we elucidate the role of MITF in the progression of ccRCC. MITF- and MITF-mediated signaling pathways were investigated in ccRCC cell through MITF knockdown as well as overexpression of MITF in vitro and in vivo. MITF contributed to cell proliferation, migration, invasion and tumor growth in ccRCC through activation of the RhoA/YAP signaling pathways. This study suggests that MITF has potential as a therapeutic target in ccRCC. Abstract Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor involved in the lineage-specific regulation of melanocytes, osteoclasts and mast cells. MITF is also involved in the progression of melanomas and other carcinomas, including the liver, pancreas and lung. However, the role of MITF in clear cell renal cell carcinoma (ccRCC) is largely unknown. This study investigates the functional role of MITF in cancer and the molecular mechanism underlying disease progression in ccRCC. MITF knockdown inhibited cell proliferation and shifted the cell cycle in ccRCC cells. In addition, MITF knockdown reduced wound healing, cell migration and invasion compared with the controls. Conversely, MITF overexpression in SN12C and SNU482 cells increased cell migration and invasion. Overexpression of MITF activated the RhoA/YAP signaling pathway, which regulates cell proliferation and invasion, and increased YAP signaling promoted cell cycle-related protein expression. Additionally, tumor formation was impaired by MITF knockdown and enhanced by MITF overexpression in vivo. In summary, MITF expression was associated with aggressive tumor behavior, and increased the migratory and invasive capabilities of ccRCC cells. These effects were reversed by MITF suppression. These results suggest that MITF is a potential therapeutic target for the treatment of ccRCC.
Collapse
|
4
|
Hanicinec V, Brynychova V, Rosendorf J, Palek R, Liska V, Oliverius M, Kala Z, Mohelnikova-Duchonova B, Krus I, Soucek P. Gene expression of cytokinesis regulators PRC1, KIF14 and CIT has no prognostic role in colorectal and pancreatic cancer. Oncol Lett 2021; 22:598. [PMID: 34188700 PMCID: PMC8228381 DOI: 10.3892/ol.2021.12859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer is one of the most common cancers and pancreatic cancer is among the most fatal and difficult to treat. New prognostic biomarkers are urgently needed to improve the treatment of colorectal and pancreatic cancer. Protein regulating cytokinesis 1 (PRC1), kinesin family member 14 (KIF14) and citron Rho-interacting serine/threonine kinase (CIT) serve important roles in cytokinesis, are strongly associated with cancer progression and have prognostic potential. The present study aimed to investigate the prognostic relevance of the PRC1, KIF14 and CIT genes in colorectal and pancreatic cancer. PRC1, KIF14 and CIT transcript expression was assessed by reverse transcription-quantitative PCR in tumors and paired distant unaffected mucosa from 67 patients with colorectal cancer and tumors and paired non-neoplastic control tissues from 48 patients with pancreatic cancer. The extent of transcript dysregulation between tumor and control tissues and between groups of patients divided by main clinical characteristics, namely patients' age and sex, disease stage, localization and grade, was determined. Finally, the associations of transcript levels in tumors with disease-free interval and overall survival time were evaluated. PRC1, KIF14 and CIT transcripts were upregulated in tumors compared with control tissues. PRC1, KIF14 and CIT levels strongly correlated to each other in both colorectal and pancreatic tumor and control tissues after correction for multiple testing. However, no significant associations were found among the transcript levels of PRC1, KIF14 and CIT and disease-free interval or overall survival time. In summary, the present study demonstrated mutual correlation of PRC1, KIF14 and CIT cytokinesis regulators with no clear prognostic value in pancreatic and colorectal cancers. Hence, according to the results of the present study, transcript levels of these genes cannot be clinically exploited as prognostic biomarkers in colorectal or pancreatic cancer patients.
Collapse
Affiliation(s)
- Vojtech Hanicinec
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
| | - Veronika Brynychova
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
| | - Jachym Rosendorf
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic.,Deparment of Surgery, Teaching Hospital and Faculty of Medicine in Pilsen, Charles University, 30460 Pilsen, Czech Republic
| | - Richard Palek
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic.,Deparment of Surgery, Teaching Hospital and Faculty of Medicine in Pilsen, Charles University, 30460 Pilsen, Czech Republic
| | - Vaclav Liska
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic.,Deparment of Surgery, Teaching Hospital and Faculty of Medicine in Pilsen, Charles University, 30460 Pilsen, Czech Republic
| | - Martin Oliverius
- Department of Surgery, Faculty Hospital Kralovske Vinohrady and Third Faculty of Medicine, Charles University, 10000 Prague, Czech Republic
| | - Zdenek Kala
- Department of Surgery, University Hospital Brno and Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Beatrice Mohelnikova-Duchonova
- Department of Oncology and Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 77900 Olomouc, Czech Republic
| | - Ivona Krus
- Department of Toxicogenomics, National Institute of Public Health, Prague 10042, Czech Republic
| | - Pavel Soucek
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic.,Department of Toxicogenomics, National Institute of Public Health, Prague 10042, Czech Republic
| |
Collapse
|
5
|
Nita A, Abraham SP, Krejci P, Bosakova M. Oncogenic FGFR Fusions Produce Centrosome and Cilia Defects by Ectopic Signaling. Cells 2021; 10:1445. [PMID: 34207779 PMCID: PMC8227969 DOI: 10.3390/cells10061445] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022] Open
Abstract
A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.
Collapse
Affiliation(s)
- Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Sara P. Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic; (A.N.); (S.P.A.); (P.K.)
- Institute of Animal Physiology and Genetics of the CAS, 60200 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| |
Collapse
|
6
|
Choong WK, Sung TY. Somatic mutation subtypes of lung adenocarcinoma in East Asian reveal divergent biological characteristics and therapeutic vulnerabilities. iScience 2021; 24:102522. [PMID: 34142036 PMCID: PMC8188494 DOI: 10.1016/j.isci.2021.102522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/25/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Lung adenocarcinoma (LUAD) patients in East Asia predominantly harbor oncogenic EGFR mutations. However, there remains a limited understanding of the biological characteristics and therapeutic vulnerabilities of the concurrent mutations of EGFR and other genes in LUAD. Here, we performed comprehensive bioinformatics analyses on 88 treatment-naïve East Asian LUAD patients. Based on somatic mutation clustering, we identified three somatic mutation subtypes: EGFR + TP53 co-mutation, EGFR mutation, and multiple-gene mutation. A proteogenomic analysis among subtypes revealed varying degrees of dysregulation in cell-cycle-related and immune-related processes. An immune-characteristic analysis revealed higher PDL1 protein expression in the EGFR + TP53 co-mutation subtype than in the EGFR mutation subtype, which may affect the therapeutic efficacy of anti-PD-L1 therapy. Moreover, integrating known and potential therapeutic target analysis reveals therapeutic vulnerabilities of specific subtypes and nominates candidate biomarkers for therapeutic intervention. This study provides new biological insight and therapeutic opportunities with respect to EGFR-mutant LUAD subtypes. Comprehensive clustering analysis reveals three somatic mutation subtypes Prognosis of EGFRmut/TP53mut subtype is worse than EGFRmut subtype EGFRmut/TP53mut subtype shows IFN signaling and antigen processing pathway signatures Proteome analysis identifies druggable proteins and candidates for drug repositioning
Collapse
Affiliation(s)
- Wai-Kok Choong
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
7
|
Davies R, Liu L, Taotao S, Tuano N, Chaturvedi R, Huang KK, Itman C, Mandoli A, Qamra A, Hu C, Powell D, Daly RJ, Tan P, Rosenbluh J. CRISPRi enables isoform-specific loss-of-function screens and identification of gastric cancer-specific isoform dependencies. Genome Biol 2021; 22:47. [PMID: 33499898 PMCID: PMC7836456 DOI: 10.1186/s13059-021-02266-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022] Open
Abstract
Introduction Genes contain multiple promoters that can drive the expression of various transcript isoforms. Although transcript isoforms from the same gene could have diverse and non-overlapping functions, current loss-of-function methodologies are not able to differentiate between isoform-specific phenotypes. Results Here, we show that CRISPR interference (CRISPRi) can be adopted for targeting specific promoters within a gene, enabling isoform-specific loss-of-function genetic screens. We use this strategy to test functional dependencies of 820 transcript isoforms that are gained in gastric cancer (GC). We identify a subset of GC-gained transcript isoform dependencies, and of these, we validate CIT kinase as a novel GC dependency. We further show that some genes express isoforms with opposite functions. Specifically, we find that the tumour suppressor ZFHX3 expresses an isoform that has a paradoxical oncogenic role that correlates with poor patient outcome. Conclusions Our work finds isoform-specific phenotypes that would not be identified using current loss-of-function approaches that are not designed to target specific transcript isoforms. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02266-6.
Collapse
Affiliation(s)
- Rebecca Davies
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ling Liu
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Sheng Taotao
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, 138672, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, 169856, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore.,Singapore Gastric Cancer Consortium, Singapore, 119074, Singapore
| | - Natasha Tuano
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Richa Chaturvedi
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Kie Kyon Huang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, 138672, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, 169856, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore.,Singapore Gastric Cancer Consortium, Singapore, 119074, Singapore
| | - Catherine Itman
- Functional Genomics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Amit Mandoli
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
| | - Aditi Qamra
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, 138672, Singapore.,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, 169856, Singapore.,Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore.,Singapore Gastric Cancer Consortium, Singapore, 119074, Singapore
| | - Changyuan Hu
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - David Powell
- Monash Bioinformatics Platform, Monash University, Clayton, VIC, 3800, Australia
| | - Roger J Daly
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Patrick Tan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore. .,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, 138672, Singapore. .,SingHealth/Duke-NUS Institute of Precision Medicine, National Heart Centre Singapore, Singapore, 169856, Singapore. .,Cellular and Molecular Research, National Cancer Centre, Singapore, 169610, Singapore. .,Singapore Gastric Cancer Consortium, Singapore, 119074, Singapore.
| | - Joseph Rosenbluh
- Cancer Research Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia. .,Functional Genomics Platform, Monash University, Clayton, VIC, 3800, Australia.
| |
Collapse
|
8
|
Ma J, Sun S, Song C, Li N, Li N, Xu L, Yang T, Lan Y, Li M. Screening potential microRNAs associated with pancreatic cancer: Data mining based on RNA sequencing and microarrays. Exp Ther Med 2020; 20:2705-2715. [PMID: 32765765 PMCID: PMC7401655 DOI: 10.3892/etm.2020.8991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/17/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is a malignant tumor of the digestive tract, rendering it difficult to make an accurate diagnosis. The 5 year survival rate for pancreatic cancer is <1%, and surgical resection rarely proves to be effective. Therefore, the identification of more effective methods for the early detection of pancreatic cancer is an urgent requirement. The present study aimed to explore key genes and microRNAs (miRNAs) associated with the pathogenesis of pancreatic cancer. Public databases were searched, and the data were integrated from The Cancer Genome Atlas and Gene Expression Omnibus databases, leading to the identification of 23 differentially expressed miRNAs (DE-miRNAs). A total of four of the DE-miRNAs were upregulated (hsa-miR-892b, hsa-miR-194-2, hsa-miR-200a and hsa-miR-194-1), whereas 19 downregulated DE-miRNAs (hsa-miR-424, hsa-miR-191, hsa-miR-484, hsa-miR-142, hsa-miR-15b, hsa-miR-450a-1, hsa-miR-423, hsa-miR-126, hsa-miR-505, hsa-miR-16-1, hsa-miR-342, hsa-miR-130a, hsa-miR-3613, hsa-miR-450a-2, hsa-miR-26b, hsa-miR-451, hsa-miR-19b-2, hsa-miR-106a and hsa-miR-503) were identified using the cut-off criteria of P<0.05 and |log 2FC|>1.0. Hsa-miR-3613-5p was identified as a prognostic DE-miRNA. The functional enrichment analyses demonstrated that the target genes of hsa-miR-3613-5p may be associated with the p53 signaling pathway. Survival analysis performed for genes in the p53 signaling pathway revealed that cyclin-dependent kinase 6 and ribonucleoside-diphosphate reductase subunit M2 may be the most likely to be associated with prognostic value. The integrated analysis performed in the current study demonstrated that hsa-miR-3613-5p may be used as a potential prognostic marker for pancreatic cancer.
Collapse
Affiliation(s)
- Jing Ma
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Siwen Sun
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Chen Song
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ning Li
- Department of Foreign Languages, Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Lingzhi Xu
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Ting Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Yulong Lan
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| | - Man Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China
| |
Collapse
|
9
|
Shreberk-Shaked M, Dassa B, Sinha S, Di Agostino S, Azuri I, Mukherjee S, Aylon Y, Blandino G, Ruppin E, Oren M. A Division of Labor between YAP and TAZ in Non-Small Cell Lung Cancer. Cancer Res 2020; 80:4145-4157. [PMID: 32816858 DOI: 10.1158/0008-5472.can-20-0125] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/07/2020] [Accepted: 08/04/2020] [Indexed: 11/16/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. The paralogous transcriptional cofactors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ, also called WWTR1), the main downstream effectors of the Hippo signal transduction pathway, are emerging as pivotal determinants of malignancy in lung cancer. Traditionally, studies have tended to consider YAP and TAZ as functionally redundant transcriptional cofactors with similar biological impact. However, there is growing evidence that each of them also possesses distinct attributes. Here we sought to systematically characterize the division of labor between YAP and TAZ in non-small cell lung cancer (NSCLC), the most common histological subtype of lung cancer. Representative NSCLC cell lines as well as patient-derived data showed that the two paralogs orchestrated nonoverlapping transcriptional programs in this cancer type. YAP preferentially regulated gene sets associated with cell division and cell-cycle progression, whereas TAZ preferentially regulated genes associated with extracellular matrix organization. Depletion of YAP resulted in growth arrest, whereas its overexpression promoted cell proliferation. Likewise, depletion of TAZ compromised cell migration, whereas its overexpression enhanced migration. The differential effects of YAP and TAZ on key cellular processes were also associated with differential response to anticancer therapies. Uncovering the different activities and downstream effects of YAP and TAZ may thus facilitate better stratification of patients with lung cancer for anticancer therapies. SIGNIFICANCE: Thease findings show that oncogenic paralogs YAP and TAZ have distinct roles in NSCLC and are associated with differential response to anticancer drugs, knowledge that may assist lung cancer therapy decisions.
Collapse
Affiliation(s)
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Sanju Sinha
- Cancer Data Science Laboratory, NCI, NIH, Bethesda, Maryland.,Center for Bioinformatics and Computational Biology & Department of Computer Sciences, University of Maryland, College Park, Maryland
| | - Silvia Di Agostino
- Oncogenomic and Epigenetic Lab., IRCCS Regina Elena National Cancer Institute-IFO, Rome, Italy
| | - Ido Azuri
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Saptaparna Mukherjee
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Lab., IRCCS Regina Elena National Cancer Institute-IFO, Rome, Italy
| | - Eytan Ruppin
- Cancer Data Science Laboratory, NCI, NIH, Bethesda, Maryland.,Center for Bioinformatics and Computational Biology & Department of Computer Sciences, University of Maryland, College Park, Maryland
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
10
|
Liu Z, Yang Y, Yang Z, Xia S, Lin D, Xiao B, Xiu Y. Novel circRNA_0071196/miRNA‑19b‑3p/CIT axis is associated with proliferation and migration of bladder cancer. Int J Oncol 2020; 57:767-779. [PMID: 32705161 PMCID: PMC7384843 DOI: 10.3892/ijo.2020.5093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 06/19/2020] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are non-coding RNAs that are connected at the 3′ and 5′ ends by an exon or intron. Studies increasingly show that circRNAs play an important role in tumorigenesis by acting as a 'sponge' for microRNAs (miRNAs), which abrogates the latter's effect on their target mRNAs. To identify a possible circRNA/miRNA/mRNA network in bladder cancer (BCa), we analyzed the circRNA and mRNA expression profiles of BCa and adjacent normal bladder tissues. A total of 127 circRNAs and 1,612 mRNAs were differentially expressed in the tumor tissues, and were primarily associated with cancer-related pathways. A competing endogenous RNAs (ceRNA) network was then constructed which predicted a regulatory axis of circRNA_0071196, miRNA-19b-3p and its target gene citron Rho-interacting serine/threonine kinase (CIT). Luciferase reporter assay validated the relationship between circRNA_0071196 and miRNA-19b-3p and of the latter with CIT. Furthermore, CIT was overexpressed in the BCa tissues, and was found to be correlated with metastasis and tumor histological grade. Knockdown of CIT in the human bladder cancer cell line 5367 significantly inhibited the proliferation, migration and colony formation capacity of the cells, and also upregulated the mediators of the p53 and RhoA-ROCK signaling cascades that regulate cell cycle and migration. Taken together, our findings indicate that circRNA-0071196 upregulates CIT levels in BCa by sponging off miRNA-19b-3p, and the circRNA_0071196/miRNA-19b-3p/CIT axis is a potential therapeutic target in BCa.
Collapse
Affiliation(s)
- Zan Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yang Yang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhe Yang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shunyao Xia
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dasen Lin
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Bang Xiao
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Youcheng Xiu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
11
|
Zhou X, Zhi Y, Yu J, Xu D. The Yin and Yang of Autosomal Recessive Primary Microcephaly Genes: Insights from Neurogenesis and Carcinogenesis. Int J Mol Sci 2020; 21:ijms21051691. [PMID: 32121580 PMCID: PMC7084222 DOI: 10.3390/ijms21051691] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022] Open
Abstract
The stem cells of neurogenesis and carcinogenesis share many properties, including proliferative rate, an extensive replicative potential, the potential to generate different cell types of a given tissue, and an ability to independently migrate to a damaged area. This is also evidenced by the common molecular principles regulating key processes associated with cell division and apoptosis. Autosomal recessive primary microcephaly (MCPH) is a neurogenic mitotic disorder that is characterized by decreased brain size and mental retardation. Until now, a total of 25 genes have been identified that are known to be associated with MCPH. The inactivation (yin) of most MCPH genes leads to neurogenesis defects, while the upregulation (yang) of some MCPH genes is associated with different kinds of carcinogenesis. Here, we try to summarize the roles of MCPH genes in these two diseases and explore the underlying mechanisms, which will help us to explore new, attractive approaches to targeting tumor cells that are resistant to the current therapies.
Collapse
Affiliation(s)
- Xiaokun Zhou
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Yiqiang Zhi
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Jurui Yu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
| | - Dan Xu
- College of Biological Science and Engineering, Institute of Life Sciences, Fuzhou University, Fuzhou 350108, China; (X.Z.); (Y.Z.); (J.Y.)
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350005, China
- Correspondence: ; Tel.: +86-17085937559
| |
Collapse
|
12
|
CITK Loss Inhibits Growth of Group 3 and Group 4 Medulloblastoma Cells and Sensitizes Them to DNA-Damaging Agents. Cancers (Basel) 2020; 12:cancers12030542. [PMID: 32111106 PMCID: PMC7139701 DOI: 10.3390/cancers12030542] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/15/2020] [Accepted: 02/23/2020] [Indexed: 02/06/2023] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children, and it is classified into four biological subgroups: WNT, Sonic Hedgehog (SHH), Group 3 and Group 4. The current treatment is surgery, followed by irradiation and chemotherapy. Unfortunately, these therapies are only partially effective. Citron kinase protein (CITK) has been proposed as a promising target for SHH MB, whose inactivation leads to DNA damage and apoptosis. D283 and D341 cell lines (Group 3/Group 4 MB) were silenced with established siRNA sequences against CITK, to assess the direct effects of its loss. Next, D283, D341, ONS-76 and DAOY cells were treated with ionizing radiation (IR) or cisplatin in combination with CITK knockdown. CITK depletion impaired proliferation and induced cytokinesis failure and apoptosis of G3/G4 MB cell lines. Furthermore, CITK knockdown produced an accumulation of DNA damage, with reduced RAD51 nuclear levels. Association of IR or cisplatin with CITK depletion strongly impaired the growth potential of all tested MB cells. These results indicate that CITK inactivation could prevent the expansion of G3/G4 MB and increase their sensitivity to DNA-damaging agents, by impairing homologous recombination. We suggest that CITK inhibition could be broadly associated with IR and adjuvant therapy in MB treatment.
Collapse
|
13
|
Citron Rho-Interacting Serine/Threonine Kinase Promotes HIF1a-CypA Signaling and Growth of Human Pancreatic Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9210891. [PMID: 32185224 PMCID: PMC7060418 DOI: 10.1155/2020/9210891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/19/2020] [Accepted: 01/23/2020] [Indexed: 01/11/2023]
Abstract
In human pancreatic ductal adenocarcinoma (PDAC), the cyclophilin A (CypA) is overexpressed and promotes the development of PDAC. However, the mechanism underlying cyclophilin A expression remains elusive. Here, we reported that the citron Rho-interacting serine/threonine kinase (CIT) promotes the HIF1a-CypA signaling and growth of PDAC cells. CIT expression was higher in PDAC cells compared with the normal epithelial cells, and clinical data showed that CIT was overexpressed in PDAC tissues and high expression of CIT predicted poor overall and disease-free survival. In PDAC cells, knockdown of CIT expression repressed the rate of proliferation and capacity of colony formation, which were accomplished with an increased percentage of apoptotic cells and cell cycle arrest. The knockdown of CIT in PDAC cells reduced the expression of CypA while overexpression of CIT promoted the expression of CypA. We observed that the effects of CIT on the expression of CypA relied on the transcriptional factor HIF1a, which was previously reported to transcriptionally activate the expression of CypA in PDAC cells. Furthermore, the effects of CIT on apoptosis, cell cycle, proliferation, and colony formation of PDAC cells relied on its role in the regulation of CypA expression. Collectively, our data showed that CIT promoted the activation of HIF1-CypA signaling and enhanced the growth of PDAC cells.
Collapse
|
14
|
Liu Z, Yan H, Yang Y, Wei L, Xia S, Xiu Y. Down-regulation of CIT can inhibit the growth of human bladder cancer cells. Biomed Pharmacother 2020; 124:109830. [PMID: 31972359 DOI: 10.1016/j.biopha.2020.109830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/24/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Our study is to examine the citron rho-interacting, serine/threonine kinase 21 (CIT) in bladder cancer. METHODS We examined CIT level in human bladder cancer tissues by immunohistochemical staining. To explore the impact of CIT on cell proliferation and apoptosis, we down-regulated its expression in two human bladder cancer cell lines, 5367 and T24. We examined cell growth in 5367 and T24. We also performed in vivo analysis using T24 cells. We further used microarray expression profiling to investigate genes differentially expressed in T24 cells with CIT down-regulated. RESULTS In 100 human samples, CIT was expressed by only 2 of 30 (6.7 %) controls in bladder tissues, whereas by 64 of 70 (91.4 %) cancer patients in tumor tissues (p < 0.001). in vitro analysis demonstrated that CIT knockdown represses cell proliferation by 50 % in both cells and colony formation (77 ± 5 vs. 13 ± 2, p = 0.001 for T24, 58 ± 3 vs. 1 ± 1, p < 0.001 for 5637). We also found CIT knockdown could induce cell cycle arrest, and promote apoptosis in both cells. Tumor-volume monitoring and live in vivo bladder cancer imaging in human xenograft model confirmed that CIT knockdown reduces tumor volume (668.4 ± 333.0 vs. 305.7 ± 170.4 mm3, p = 0.02) and weight (0.27 ± 0.15 vs. 0.57 ± 0.32 g, p = 0.02). Microarray analysis revealed that CIT may regulate cell cycle signalling pathway through various cell cycle regulators. CONCLUSIONS In summary, we provided clinical and experimental evidence that CIT may promote bladder cancer through regulation of cell cycle pathway.
Collapse
Affiliation(s)
- Zan Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haiyan Yan
- Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yang Yang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liangjun Wei
- Departments of Urology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Shunyao Xia
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Youcheng Xiu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China; Heilongjiang Academy of Medical Sciences, Heilongjiang, China.
| |
Collapse
|
15
|
Yao J, Chen Y, Nguyen DT, Thompson ZJ, Eroshkin AM, Nerlakanti N, Patel AK, Agarwal N, Teer JK, Dhillon J, Coppola D, Zhang J, Perera R, Kim Y, Mahajan K. The Homeobox gene, HOXB13, Regulates a Mitotic Protein-Kinase Interaction Network in Metastatic Prostate Cancers. Sci Rep 2019; 9:9715. [PMID: 31273254 PMCID: PMC6609629 DOI: 10.1038/s41598-019-46064-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/18/2019] [Indexed: 12/15/2022] Open
Abstract
HOXB13, a homeodomain transcription factor, is linked to recurrence following radical prostatectomy. While HOXB13 regulates Androgen Receptor (AR) functions in a context dependent manner, its critical effectors in prostate cancer (PC) metastasis remain largely unknown. To identify HOXB13 transcriptional targets in metastatic PCs, we performed integrative bioinformatics analysis of differentially expressed genes (DEGs) in the proximity of the human prostate tumor-specific AR binding sites. Unsupervised Principal Component Analysis (PCA) led to a focused core HOXB13 target gene-set referred to as HOTPAM9 (HOXB13 Targets separating Primary And Metastatic PCs). HOTPAM9 comprised 7 mitotic kinase genes overexpressed in metastatic PCs, TRPM8, and the heat shock protein HSPB8, whose levels were significantly lower in metastatic PCs compared to the primary disease. The expression of a two-gene set, CIT and HSPB8 with an overall balanced accuracy of 98.8% and a threshold value of 0.2347, was sufficient to classify metastasis. HSPB8 mRNA expression was significantly increased following HOXB13 depletion in multiple metastatic CRPC models. Increased expression of HSPB8 by the microtubule inhibitor Colchicine or by exogenous means suppressed migration of mCRPC cells. Collectively, our results indicate that HOXB13 promotes metastasis of PCs by coordinated regulation of mitotic kinases and blockade of a putative tumor suppressor gene.
Collapse
Affiliation(s)
- Jiqiang Yao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Yunyun Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Duy T Nguyen
- Department of Surgery, Washington University in St. Louis, MO, USA
| | - Zachary J Thompson
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Alexey M Eroshkin
- Bioinformatics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Niveditha Nerlakanti
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ami K Patel
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Neha Agarwal
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jamie K Teer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jasreman Dhillon
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Domenico Coppola
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Jingsong Zhang
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ranjan Perera
- Analytical Genomics and Bioinformatics, Sanford Burnham Prebys Discovery Institute, Orlando, FL, USA
| | - Youngchul Kim
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, USA
| | - Kiran Mahajan
- Department of Surgery, Washington University in St. Louis, MO, USA.
| |
Collapse
|
16
|
Qiao H, Wang Y, Zhu B, Jiang L, Yuan W, Zhou Y, Guan Q. Enolase1 overexpression regulates the growth of gastric cancer cells and predicts poor survival. J Cell Biochem 2019; 120:18714-18723. [PMID: 31218757 DOI: 10.1002/jcb.29179] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 11/06/2022]
Abstract
Gastric cancer has become the third most common cancer around the world. In patients with gastric cancer, the 5-year survival rate is still low. However, the mechanism underlying gastric cancer remains largely unknown. As a glycolytic enzyme, enolase 1 (ENO1) is widely expressed in most tissues. The functions of ENO1 have been reported in various types of cancer. Here in this study, we identified that ENO1 promoted the growth of gastric cancer cells through diverse mechanisms. Our immunohistochemical, bioinformatic and Western blot data showed that ENO1 was significantly overexpressed in human gastric cancer cell lines and tissues. The survival analysis revealed that ENO1 overexpression predicted poor survival in the patients suffering gastric cancer. Knockdown of ENO1 expression repressed the rate of proliferation and capacity of colony formation in two human gastric cancer cell lines (MGC-803 and MKN-45). In addition, knockdown of the expression of ENO1 led to the arrest of the cell cycle at the G1 phase and promoted the apoptosis of MKN-45 and MGC-803 cells. The further microarray and bioinformatic analysis revealed that ENO1 regulated the expression of diverse genes, many of which are involved in the progress of cancer. Taken together, our data demonstrated that ENO1 was an oncogene-like factor and might serve as a promising target for the treatment of human gastric cancer.
Collapse
Affiliation(s)
- Hui Qiao
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yufeng Wang
- Department of Oncology, Tumor Hospital of Gansu Province, Lanzhou, China
| | - Bingdong Zhu
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland.,Institute of Pathogenic Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lei Jiang
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Wenzhen Yuan
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Disease of Gansu Province, Lanzhou, China
| | - Quanlin Guan
- Department of Oncology Surgery, The First Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory for Gastrointestinal Disease of Gansu Province, Lanzhou, China
| |
Collapse
|
17
|
Haiping C, Qi X, Dawei L, Qiang W. [Citron Rho-interacting serine/threonine kinase knockdown suppresses prostate cancer cell proliferation and metastasis by blocking Hippo-YAP pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:257-263. [PMID: 31068310 DOI: 10.12122/j.issn.1673-4254.2019.03.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Citron Rho-interacting serine/threonine kinase (CIT) was identified recently as an oncogene involved in the progression of various malignant tumors, but its role in prostate cancer (PCa) remains unclear. In this study, we aimed to investigate the biological functions of CIT in PCa. METHODS We analyzed the expression of CIT in PCa tissues and its clinical correlations based on the Cancer Genome Atlas (TCGA) and Memorial Sloan-Kettering Cancer Center (MSKCC) dataset. We then examined the effects of RNA interference-mediated CIT silencing on the proliferation, migration and invasion of PC-3 cells using cell counting kit-8, wound healing assay and Transwell assay. We also investigated the effect of CIT silencing on epithelial-mesenchymal transition (EMT) and Hippo-Yap signaling pathway in the cells using Western blotting. RESULTS CIT expression was significantly elevated in PCa tissues from TCGA cohort (P < 0.05). MSKCC dataset analysis showed that an elevated expression of CIT was significantly correlated with N stage (P=0.001), distant metastasis (P < 0.001), Gleason score (P=0.010) and PSA (P=0.004). In cultured PC-3 cells, knockdown of CIT significantly inhibited cell proliferation, migration and invasion, reversed the EMT phenotype and decreased the expression and activity of YAP. CONCLUSIONS CIT might function as an oncogene in PCa by modulating the Hippo-YAP signaling pathway and serve as a candidate therapeutic target for PCa.
Collapse
Affiliation(s)
- Chen Haiping
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Urology, Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Xiang Qi
- Department of Urology, Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Liu Dawei
- Department of Urology, Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Wei Qiang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|