1
|
Zhang Y, Wu Y, Liu Z, Yang K, Lin H, Xiong K. Non-coding RNAs as potential targets in metformin therapy for cancer. Cancer Cell Int 2024; 24:333. [PMID: 39354464 PMCID: PMC11445969 DOI: 10.1186/s12935-024-03516-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Metformin, a widely used oral hypoglycemic drug, has emerged as a potential therapeutic agent for cancer treatment. While initially known for its role in managing diabetes, accumulating evidence suggests that metformin exhibits anticancer properties through various mechanisms. Several cellular or animal experiments have attempted to elucidate the role of non-coding RNA molecules, including microRNAs and long non-coding RNAs, in mediating the anticancer effects of metformin. The present review summarized the current understanding of the mechanisms by which non-coding RNAs modulate the response to metformin in cancer cells. The regulatory roles of non-coding RNAs, particularly miRNAs, in key cellular processes such as cell proliferation, cell death, angiogenesis, metabolism and epigenetics, and how metformin affects these processes are discussed. This review also highlights the role of lncRNAs in cancer types such as lung adenocarcinoma, breast cancer, and renal cancer, and points out the need for further exploration of the mechanisms by which metformin regulates lncRNAs. In addition, the present review explores the potential advantages of metformin-based therapies over direct delivery of ncRNAs, and this review highlights the mechanisms of non-coding RNA regulation when metformin is combined with other therapies. Overall, the present review provides insights into the molecular mechanisms underlying the anticancer effects of metformin mediated by non-coding RNAs, offering novel opportunities for the development of personalized treatment strategies in cancer patients.
Collapse
Affiliation(s)
- Yihan Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Yunhao Wu
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Zixu Liu
- The First School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Kangping Yang
- The Second School of Clinical Medicine, Jiangxi Medical College, Nanchang, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang, China
| | - Kai Xiong
- Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330008, Jiangxi, China.
| |
Collapse
|
2
|
Yeh YW, Hsu TW, Su YH, Wang CH, Liao PH, Chiu CF, Tseng PC, Chen TM, Lee WR, Tzeng YS. Silencing of Dicer enhances dacarbazine resistance in melanoma cells by inhibiting ADSL expression. Aging (Albany NY) 2023; 15:12873-12889. [PMID: 37976135 DOI: 10.18632/aging.205207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/15/2023] [Indexed: 11/19/2023]
Abstract
Dacarbazine (DTIC) is the primary first-line treatment for advanced-stage metastatic melanoma; thus, DTIC resistance is poses a major challenge. Therefore, investigating the mechanism underlying DTIC resistance must be investigated. Dicer, a type III cytoplasmic endoribonuclease, plays a pivotal role in the maturation of miRNAs. Aberrant Dicer expression may contribute to tumor progression, clinical aggressiveness, and poor prognosis in various tumors. Dicer inhibition led to a reduction in DTIC sensitivity and an augmentation in stemness in melanoma cells. Clinical analyses indicated a low Dicer expression level as a predictor of poor prognosis factor. Metabolic alterations in tumor cells may interfere with drug response. Adenylosuccinate lyase (ADSL) is a crucial enzyme in the purine metabolism pathway. An imbalance in ADSL may interfere with the therapeutic efficacy of drugs. We discovered that DTIC treatment enhanced ADSL expression and that Dicer silencing significantly reduced ADSL expression in melanoma cells. Furthermore, ADSL overexpression reversed Dicer silencing induced DTIC resistance and cancer stemness. These findings indicate that Dicer-mediated ADSL regulation influences DTIC sensitivity and stemness in melanoma cells.
Collapse
Affiliation(s)
- Yu-Wen Yeh
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan
- Division of Dermatology, Tri-Service General Hospital Songshan Branch, National Defense Medical Center, Taipei 105, Taiwan
| | - Tung-Wei Hsu
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
| | - Yen-Hao Su
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
- Department of General Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chih-Hsin Wang
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Po-Hsiang Liao
- Department of Surgery, Division of General Surgery, Shuang Ho Hospital, Taipei Medical University, Taipei 235, Taiwan
| | - Ching-Feng Chiu
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Po-Chen Tseng
- Department of Ophthalmology, Taipei City Hospital, Renai Branch, Taipei 106, Taiwan
- Department of Ophthalmology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Tim-Mo Chen
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Woan-Ruoh Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yuan-Sheng Tzeng
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department of Surgery, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 813, Taiwan
| |
Collapse
|
3
|
Cioce M, Fumagalli MR, Donzelli S, Goeman F, Canu V, Rutigliano D, Orlandi G, Sacconi A, Pulito C, Palcau AC, Fanciulli M, Morrone A, Diodoro MG, Caricato M, Crescenzi A, Verri M, Fazio VM, Zapperi S, Levrero M, Strano S, Grazi GL, La Porta C, Blandino G. Interrogating colorectal cancer metastasis to liver: a search for clinically viable compounds and mechanistic insights in colorectal cancer Patient Derived Organoids. J Exp Clin Cancer Res 2023; 42:170. [PMID: 37460938 DOI: 10.1186/s13046-023-02754-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Approximately 20-50% of patients presenting with localized colorectal cancer progress to stage IV metastatic disease (mCRC) following initial treatment and this is a major prognostic determinant. Here, we have interrogated a heterogeneous set of primary colorectal cancer (CRC), liver CRC metastases and adjacent liver tissue to identify molecular determinants of the colon to liver spreading. Screening Food and Drug Administration (FDA) approved drugs for their ability to interfere with an identified colon to liver metastasis signature may help filling an unmet therapeutic need. METHODS RNA sequencing of primary colorectal cancer specimens vs adjacent liver tissue vs synchronous and asynchronous liver metastases. Pathways enrichment analyses. The Library of Integrated Network-based Cellular Signatures (LINCS)-based and Connectivity Map (CMAP)-mediated identification of FDA-approved compounds capable to interfere with a 22 gene signature from primary CRC and liver metastases. Testing the identified compounds on CRC-Patient Derived Organoid (PDO) cultures. Microscopy and Fluorescence Activated Cell Sorting (FACS) based analysis of the treated PDOs. RESULTS We have found that liver metastases acquire features of the adjacent liver tissue while partially losing those of the primary tumors they derived from. We have identified a 22-gene signature differentially expressed among primary tumors and metastases and validated in public databases. A pharmacogenomic screening for FDA-approved compounds capable of interfering with this signature has been performed. We have validated some of the identified representative compounds in CRC-Patient Derived Organoid cultures (PDOs) and found that pentoxyfilline and, to a minor extent, dexketoprofen and desloratadine, can variably interfere with number, size and viability of the CRC -PDOs in a patient-specific way. We explored the pentoxifylline mechanism of action and found that pentoxifylline treatment attenuated the 5-FU elicited increase of ALDHhigh cells by attenuating the IL-6 mediated STAT3 (tyr705) phosphorylation. CONCLUSIONS Pentoxifylline synergizes with 5-Fluorouracil (5-FU) in attenuating organoid formation. It does so by interfering with an IL-6-STAT3 axis leading to the emergence of chemoresistant ALDHhigh cell subpopulations in 5-FU treated PDOs. A larger cohort of CRC-PDOs will be required to validate and expand on the findings of this proof-of-concept study.
Collapse
Affiliation(s)
- Mario Cioce
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome, Italy.
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy.
| | - Maria Rita Fumagalli
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milano, Italy
- CNR - Consiglio Nazionale Delle Ricerche, Biophysics Institute, Via De Marini 6, 16149, Genoa, Italy
| | - Sara Donzelli
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Frauke Goeman
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Valeria Canu
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Daniela Rutigliano
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome, Italy
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Giulia Orlandi
- Scientific Direction, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Andrea Sacconi
- Clinical Trial Center, Biostatistics and Bioinformatics Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Alina Catalina Palcau
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Maurizio Fanciulli
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Aldo Morrone
- Scientific Direction, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Maria Grazia Diodoro
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marco Caricato
- Colorectal Surgery Unit, Fondazione Policlinico Universitario Campus Bio-Medico, Università Campus Bio-Medico, Rome, Italy
| | - Anna Crescenzi
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome, Italy
- Unit of Endocrine Organs and Neuromuscular Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Martina Verri
- Unit of Endocrine Organs and Neuromuscular Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Vito Michele Fazio
- Department of Medicine, Laboratory of Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, Rome, Italy
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Stefano Zapperi
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133, Milano, Italy
- Istituto Di Chimica Della Materia Condensata E Di Tecnologie Per L'Energia, CNR - Consiglio Nazionale Delle Ricerche, Via R. Cozzi 53, 20125, Milano, Italy
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), UMR Inserm, CNRS 5286 Mixte CLB, Université de Lyon, 1 (UCBL1), 69003, Lyon, France
| | - Sabrina Strano
- Department of Research, Diagnosis and Innovative Technologies, UOSD SAFU, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy
| | - Gian Luca Grazi
- Department of Experimental and Clinical Medicine, Hepato-Biliary Pancreatic Surgery, University of Florence, Florence, Italy
| | - Caterina La Porta
- Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, Via Celoria 26, 20133, Milano, Italy
- CNR - Consiglio Nazionale Delle Ricerche, Istituto Di Biofisica, Via Celoria 26, 20133, Milano, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Advanced Diagnostic and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144, Rome, Italy.
| |
Collapse
|
4
|
Metformin and Breast Cancer: Where Are We Now? Int J Mol Sci 2022; 23:ijms23052705. [PMID: 35269852 PMCID: PMC8910543 DOI: 10.3390/ijms23052705] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most prevalent cancer and the leading cause of cancer-related death among women worldwide. Type 2 diabetes–associated metabolic traits such as hyperglycemia, hyperinsulinemia, inflammation, oxidative stress, and obesity are well-known risk factors for breast cancer. The insulin sensitizer metformin, one of the most prescribed oral antidiabetic drugs, has been suggested to function as an antitumoral agent, based on epidemiological and retrospective clinical data as well as preclinical studies showing an antiproliferative effect in cultured breast cancer cells and animal models. These benefits provided a strong rationale to study the effects of metformin in routine clinical care of breast cancer patients. However, the initial enthusiasm was tempered after disappointing results in randomized controlled trials, particularly in the metastatic setting. Here, we revisit the current state of the art of metformin mechanisms of action, critically review past and current metformin-based clinical trials, and briefly discuss future perspectives on how to incorporate metformin into the oncologist’s armamentarium for the prevention and treatment of breast cancer.
Collapse
|
5
|
Heft Neal ME, Brenner JC, Prince MEP, Chinn SB. Advancement in Cancer Stem Cell Biology and Precision Medicine-Review Article Head and Neck Cancer Stem Cell Plasticity and the Tumor Microenvironment. Front Cell Dev Biol 2022; 9:660210. [PMID: 35047489 PMCID: PMC8762309 DOI: 10.3389/fcell.2021.660210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 12/01/2021] [Indexed: 12/16/2022] Open
Abstract
Head and Neck cancer survival has continued to remain around 50% despite treatment advances. It is thought that cancer stem cells play a key role in promoting tumor heterogeneity, treatment resistance, metastasis, and recurrence in solid malignancies including head and neck cancer. Initial studies identified cancer stem cell markers including CD44 and ALDH in head and neck malignancies and found that these cells show aggressive features in both in vitro and in vivo studies. Recent evidence has now revealed a key role of the tumor microenvironment in maintaining a cancer stem cell niche and promoting cancer stem cell plasticity. There is an increasing focus on identifying and targeting the crosstalk between cancer stem cells and surrounding cells within the tumor microenvironment (TME) as new therapeutic potential, however understanding how CSC maintain a stem-like state is critical to understanding how to therapeutically alter their function. Here we review the current evidence for cancer stem cell plasticity and discuss how interactions with the TME promote the cancer stem cell niche, increase tumor heterogeneity, and play a role in treatment resistance.
Collapse
Affiliation(s)
- Molly E Heft Neal
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - J Chad Brenner
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Mark E P Prince
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States
| | - Steven B Chinn
- Department of Otolaryngology-Head and Neck Surgery, University of Michigan, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Enhanced Antiproliferation Potency of Electrical Pulse-Mediated Metformin and Cisplatin Combination Therapy on MDA-MB-231 Cells. Appl Biochem Biotechnol 2021; 194:18-36. [PMID: 34741262 DOI: 10.1007/s12010-021-03723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/08/2021] [Indexed: 10/19/2022]
Abstract
We investigated the combined potency of metformin and cisplatin on the MDA-MB-231, triple-negative breast cancer (TNBC) cells with the application of electrical pulses. There are no targeted therapies for this subset of breast cancer because of the absence of specific biomarkers. Cytotoxic chemotherapy is the mainstream mode of treatment for TNBC, and cisplatin is the most commonly used chemotherapeutic drug. While there is a good response initially, TNBC cells develop drug resistance eventually. Thus, there is a need for alternate therapies. Toward this, we studied the antiproliferation characteristics of electrical pulse-mediated combination therapy using metformin, the commonly used Type-2 diabetes drug, along with cisplatin. We used metformin, as it has various anticancer properties caused by repressing energy pathways in a cancer cell. Application of 8 pulses of 1000 V/cm, 100 µs, at 1 Hz frequency, enhanced the drug uptake leading to cell viability as low as 25.86% at 30 µM cisplatin and 5 mM metformin in a 24 h study. Also, the same studies were conducted on MCF10A, a non-cancerous human epithelial cell. It aided in comparing the result for both MDA-MB-231 and MCF10A cell lines while establishing a better understanding of the experimental outcomes. Overall, the various experimental results from colony-forming assay, reactive oxidative analysis, and the intracellular glucose metabolic assay indicate the possibility of the electrical pulses-based cisplatin and metformin drug combination as a potential alternative to TNBC treatment.
Collapse
|
7
|
Anticancer potential of metformin: focusing on gastrointestinal cancers. Cancer Chemother Pharmacol 2021; 87:587-598. [PMID: 33744985 DOI: 10.1007/s00280-021-04256-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 03/08/2021] [Indexed: 12/15/2022]
Abstract
Gastrointestinal cancers are one of the most common types of cancer that have high annual mortality; therefore, identification and introduction of safe drugs in the control and prevention of these cancers are of particular importance. Metformin, a lipophilic biguanide, is the most commonly prescribed agent for type 2 diabetes management. In addition to its great effects on lowering the blood glucose concentrations, the anti-cancer properties of this drug have been reported in many types of cancers such as gastrointestinal cancers. Hence the effects of this agent as a safe drug on the reduction of gastrointestinal cancer risk and suppression of these types of cancers have been studied in different clinical trials. Furthermore, the proposed mechanisms of metformin in preventing the growth of these cancers have been investigated in several studies. In this review, we discuss recent advances in elucidating the molecular mechanisms that are relevant for metformin use in gastrointestinal cancer treatment.
Collapse
|
8
|
Tang Z, Tang N, Jiang S, Bai Y, Guan C, Zhang W, Fan S, Huang Y, Lin H, Ying Y. The Chemosensitizing Role of Metformin in Anti-Cancer Therapy. Anticancer Agents Med Chem 2021; 21:949-962. [PMID: 32951587 DOI: 10.2174/1871520620666200918102642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/23/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
Chemoresistance, which leads to the failure of chemotherapy and further tumor recurrence, presents the largest hurdle for the success of anti-cancer therapy. In recent years, metformin, a widely used first-line antidiabetic drug, has attracted increasing attention for its anti-cancer effects. A growing body of evidence indicates that metformin can sensitize tumor responses to different chemotherapeutic drugs, such as hormone modulating drugs, anti-metabolite drugs, antibiotics, and DNA-damaging drugs via selective targeting of Cancer Stem Cells (CSCs), improving the hypoxic microenvironment, and by suppressing tumor metastasis and inflammation. In addition, metformin may regulate metabolic programming, induce apoptosis, reverse Epithelial to Mesenchymal Transition (EMT), and Multidrug Resistance (MDR). In this review, we summarize the chemosensitization effects of metformin and focus primarily on its molecular mechanisms in enhancing the sensitivity of multiple chemotherapeutic drugs, through targeting of mTOR, ERK/P70S6K, NF-κB/HIF-1 α, and Mitogen- Activated Protein Kinase (MAPK) signaling pathways, as well as by down-regulating the expression of CSC genes and Pyruvate Kinase isoenzyme M2 (PKM2). Through a comprehensive understanding of the molecular mechanisms of chemosensitization provided in this review, the rationale for the use of metformin in clinical combination medications can be more systematically and thoroughly explored for wider adoption against numerous cancer types.>.
Collapse
Affiliation(s)
- Zhimin Tang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Nan Tang
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Shanshan Jiang
- Institute of Hematological Research, Shanxi Provincial People's Hospital, Xian 710000, China
| | - Yangjinming Bai
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Chenxi Guan
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Wansi Zhang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Shipan Fan
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory (GRMH-GDL), Guangzhou 510005, China
| | - Yonghong Huang
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Hui Lin
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| |
Collapse
|
9
|
Cioce M, Pulito C, Strano S, Blandino G, Fazio VM. Metformin: Metabolic Rewiring Faces Tumor Heterogeneity. Cells 2020; 9:E2439. [PMID: 33182253 PMCID: PMC7695274 DOI: 10.3390/cells9112439] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/13/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor heterogeneity impinges on all the aspects of tumor history, from onset to metastasis and relapse. It is growingly recognized as a propelling force for tumor adaptation to environmental and micro-environmental cues. Metabolic heterogeneity perfectly falls into this process. It strongly contributes to the metabolic plasticity which characterizes cancer cell subpopulations-capable of adaptive switching under stress conditions, between aerobic glycolysis and oxidative phosphorylation-in both a convergent and divergent modality. The mitochondria appear at center-stage in this adaptive process and thus, targeting mitochondria in cancer may prove of therapeutic value. Metformin is the oldest and most used anti-diabetic medication and its relationship with cancer has witnessed rises and falls in the last 30 years. We believe it is useful to revisit the main mechanisms of action of metformin in light of the emerging views on tumor heterogeneity. We first analyze the most consolidated view of its mitochondrial mechanism of action and then we frame the latter in the context of tumor adaptive strategies, cancer stem cell selection, metabolic zonation of tumors and the tumor microenvironment. This may provide a more critical point of view and, to some extent, may help to shed light on some of the controversial evidence for metformin's anticancer action.
Collapse
Affiliation(s)
- Mario Cioce
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
| | - Claudio Pulito
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.P.); (G.B.)
| | - Sabrina Strano
- SAFU Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.P.); (G.B.)
| | - Vito Michele Fazio
- Department of Medicine, R.U. in Molecular Medicine and Biotechnology, University Campus Bio-Medico of Rome, 00128 Rome, Italy;
- Institute of Translation Pharmacology, National Research Council of Italy (CNR), 00133 Rome, Italy
| |
Collapse
|
10
|
Parca L, Truglio M, Biagini T, Castellana S, Petrizzelli F, Capocefalo D, Jordán F, Carella M, Mazza T. Pyntacle: a parallel computing-enabled framework for large-scale network biology analysis. Gigascience 2020; 9:giaa115. [PMID: 33084878 PMCID: PMC7576925 DOI: 10.1093/gigascience/giaa115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/10/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Some natural systems are big in size, complex, and often characterized by convoluted mechanisms of interaction, such as epistasis, pleiotropy, and trophism, which cannot be immediately ascribed to individual natural events or biological entities but that are often derived from group effects. However, the determination of important groups of entities, such as genes or proteins, in complex systems is considered a computationally hard task. RESULTS We present Pyntacle, a high-performance framework designed to exploit parallel computing and graph theory to efficiently identify critical groups in big networks and in scenarios that cannot be tackled with traditional network analysis approaches. CONCLUSIONS We showcase potential applications of Pyntacle with transcriptomics and structural biology data, thereby highlighting the outstanding improvement in terms of computational resources over existing tools.
Collapse
Affiliation(s)
- Luca Parca
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| | - Mauro Truglio
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| | - Tommaso Biagini
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| | - Stefano Castellana
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| | - Francesco Petrizzelli
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
- Department of Experimental Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Daniele Capocefalo
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| | - Ferenc Jordán
- Balaton Limnological Institute, Centre for Ecological Research Klebelsberg Kuno 3, 8237 Tihany, Hungary
| | - Massimo Carella
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Medical Genetics, Viale Padre Pio 7d, 71013, San Giovanni Rotondo (FG), Italy
| | - Tommaso Mazza
- IRCCS Casa Sollievo della Sofferenza, Laboratory of Bioinformatics, Viale Cappuccini 1, 71013, San Giovanni Rotondo (FG), Italy
| |
Collapse
|
11
|
Balcerczyk A, Damblon C, Elena-Herrmann B, Panthu B, Rautureau GJP. Metabolomic Approaches to Study Chemical Exposure-Related Metabolism Alterations in Mammalian Cell Cultures. Int J Mol Sci 2020; 21:E6843. [PMID: 32961865 PMCID: PMC7554780 DOI: 10.3390/ijms21186843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Biological organisms are constantly exposed to an immense repertoire of molecules that cover environmental or food-derived molecules and drugs, triggering a continuous flow of stimuli-dependent adaptations. The diversity of these chemicals as well as their concentrations contribute to the multiplicity of induced effects, including activation, stimulation, or inhibition of physiological processes and toxicity. Metabolism, as the foremost phenotype and manifestation of life, has proven to be immensely sensitive and highly adaptive to chemical stimuli. Therefore, studying the effect of endo- or xenobiotics over cellular metabolism delivers valuable knowledge to apprehend potential cellular activity of individual molecules and evaluate their acute or chronic benefits and toxicity. The development of modern metabolomics technologies such as mass spectrometry or nuclear magnetic resonance spectroscopy now offers unprecedented solutions for the rapid and efficient determination of metabolic profiles of cells and more complex biological systems. Combined with the availability of well-established cell culture techniques, these analytical methods appear perfectly suited to determine the biological activity and estimate the positive and negative effects of chemicals in a variety of cell types and models, even at hardly detectable concentrations. Metabolic phenotypes can be estimated from studying intracellular metabolites at homeostasis in vivo, while in vitro cell cultures provide additional access to metabolites exchanged with growth media. This article discusses analytical solutions available for metabolic phenotyping of cell culture metabolism as well as the general metabolomics workflow suitable for testing the biological activity of molecular compounds. We emphasize how metabolic profiling of cell supernatants and intracellular extracts can deliver valuable and complementary insights for evaluating the effects of xenobiotics on cellular metabolism. We note that the concepts and methods discussed primarily for xenobiotics exposure are widely applicable to drug testing in general, including endobiotics that cover active metabolites, nutrients, peptides and proteins, cytokines, hormones, vitamins, etc.
Collapse
Affiliation(s)
- Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Christian Damblon
- Unité de Recherche MolSys, Faculté des sciences, Université de Liège, 4000 Liège, Belgium;
| | | | - Baptiste Panthu
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Univ Lyon, Université Claude Bernard Lyon 1, 69921 Oullins CEDEX, France;
- Hospices Civils de Lyon, Faculté de Médecine, Hôpital Lyon Sud, 69921 Oullins CEDEX, France
| | - Gilles J. P. Rautureau
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (CRMN FRE 2034 CNRS, UCBL, ENS Lyon), Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| |
Collapse
|
12
|
Keshandehghan A, Nikkhah S, Tahermansouri H, Heidari-Keshel S, Gardaneh M. Co-Treatment with Sulforaphane and Nano-Metformin Molecules Accelerates Apoptosis in HER2+ Breast Cancer Cells by Inhibiting Key Molecules. Nutr Cancer 2019; 72:835-848. [DOI: 10.1080/01635581.2019.1655073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- A. Keshandehghan
- Department of Stem Cells and Regenerative Medicine, Division of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - S. Nikkhah
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - H. Tahermansouri
- Department of Chemistry, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - S. Heidari-Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M. Gardaneh
- Department of Stem Cells and Regenerative Medicine, Division of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
13
|
Roshan MH, Shing YK, Pace NP. Metformin as an adjuvant in breast cancer treatment. SAGE Open Med 2019; 7:2050312119865114. [PMID: 31360518 PMCID: PMC6637843 DOI: 10.1177/2050312119865114] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is one of the most common malignancies in females. It is an etiologically complex disease driven by a multitude of cellular pathways. The proliferation and spread of breast cancer is intimately linked to cellular glucose metabolism, given that glucose is an essential cellular metabolic substrate and that insulin signalling has mitogenic effects. Growing interest has focused on anti-diabetic agents in the management of breast cancer. Epidemiologic studies show that metformin reduces cancer incidence and mortality among type 2 diabetic patients. Preclinical in vitro and in vivo research provides intriguing insight into the cellular mechanisms behind the oncostatic effects of metformin. This article aims to provide an overview of the mechanisms in which metformin may elicit its anti-cancerous effects and discuss its potential role as an adjuvant in the management of breast cancer.
Collapse
Affiliation(s)
- Mohsin Hk Roshan
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Yan K Shing
- Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | - Nikolai P Pace
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
14
|
Metformin in breast cancer: preclinical and clinical evidence. Curr Probl Cancer 2019; 44:100488. [PMID: 31235186 DOI: 10.1016/j.currproblcancer.2019.06.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/25/2019] [Accepted: 06/08/2019] [Indexed: 12/11/2022]
Abstract
Metformin, a well-acknowledged biguanide, safety profile and multiaction drug with low cost for management of type 2 diabetes, makes a first-class candidate for repurposing. The off-patent drug draws huge attention for repositioned for anticancer drug delivery recently. Still few unanswered questions are challenging, among them one leading question; can metformin use as a generic therapy for all breast cancer subtypes? And is metformin able to get over the problem of drug resistance? The review focused on the mechanisms of metformin action specifically for breast cancer therapy and overcoming the resistance; also discusses preclinical and ongoing and completed clinical trials. The existing limitation such as therapeutic dose specifically for cancer treatment, resistance of metformin in breast cancer and organic cation transporters heterogeneity of the drug opens up a new pathway for improved understanding and successful application as repurposed effective chemotherapeutics for breast cancer. However, much more additional research is needed to confirm the accurate efficacy of metformin treatment for prevention of cancer and its recurrence.
Collapse
|
15
|
Faria J, Negalha G, Azevedo A, Martel F. Metformin and Breast Cancer: Molecular Targets. J Mammary Gland Biol Neoplasia 2019; 24:111-123. [PMID: 30903363 DOI: 10.1007/s10911-019-09429-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Metformin has been the first-line drug for the treatment of type II diabetes mellitus for decades, being presently the most widely prescribed antihyperglycemic drug. Retrospective studies associate the use of metformin with a reduction in cancer incidence and cancer-related death. However, despite extensive research about the molecular effects of metformin in cancer cells, its mode of action remains controversial. The major molecular targets of metformin include complex I of the mitochondrial electron transport chain, adenosine monophosphate (AMP)-activated protein kinase (AMPK), and mechanistic target of rapamycin complex 1 (mTORC1), but AMPK-independent effects of metformin have also been described. Breast cancer is one of the leading causes of cancer-related morbidity and mortality among women worldwide. Several studies have reinforced a link between breast cancer risk and diabetes. Moreover, metformin significantly reduces breast cancer risk, compared to patients who are not using metformin and is independent of diabetes status. In this review, we summarize the current molecular evidence to elucidate metformin's mode of action against breast cancer cells.
Collapse
Affiliation(s)
- J Faria
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - G Negalha
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - A Azevedo
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - F Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal.
- I3S, Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
| |
Collapse
|
16
|
Mastroianni A, Ciniselli CM, Panella R, Macciotta A, Cavalleri A, Venturelli E, Taverna F, Mazzocchi A, Bruno E, Muti P, Berrino F, Verderio P, Morelli D, Pasanisi P. Monitoring Vitamin B 12 in Women Treated with Metformin for Primary Prevention of Breast Cancer and Age-Related Chronic Diseases. Nutrients 2019; 11:nu11051020. [PMID: 31067706 PMCID: PMC6567263 DOI: 10.3390/nu11051020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 02/08/2023] Open
Abstract
Metformin (MET) is currently being used in several trials for cancer prevention or treatment in non-diabetics. However, long-term MET use in diabetics is associated with lower serum levels of total vitamin B12. In a pilot randomized controlled trial of the Mediterranean diet (MedDiet) and MET, whose participants were characterized by different components of metabolic syndrome, we tested the effect of MET on serum levels of B12, holo transcobalamin II (holo-TC-II), and methylmalonic acid (MMA). The study was conducted on 165 women receiving MET or placebo for three years. Results of the study indicate a significant overall reduction in both serum total B12 and holo-TC-II levels according with MET-treatment. In particular, in the MET group 26 of 81 patients and 10 of the 84 placebo-treated subjects had B12 below the normal threshold (<221 pmol/L) at the end of the study. Considering jointly all B12, Holo-TC-II, and MMA, 13 of the 165 subjects (10 MET and 3 placebo-treated) had at least two deficits in the biochemical parameters at the end of the study, without reporting clinical signs. Although our results do not affect whether women remain in the trial, B12 monitoring for MET-treated individuals should be implemented.
Collapse
Affiliation(s)
- Antonio Mastroianni
- Laboratory Medicine-Department of Pathology and Laboratory Medicine, Fondazione IRCSS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy.
| | - Chiara Maura Ciniselli
- Bioinformatics and Biostatistics Unit-Department of Applied Research and Technological Development, Fondazione IRCSS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy.
| | - Rossella Panella
- Laboratory Medicine-Department of Pathology and Laboratory Medicine, Fondazione IRCSS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy.
| | - Alessandra Macciotta
- Bioinformatics and Biostatistics Unit-Department of Applied Research and Technological Development, Fondazione IRCSS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy.
| | - Adalberto Cavalleri
- Epidemiology and Prevention Unit-Department of Research, Fondazione IRCSS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy.
| | - Elisabetta Venturelli
- Epidemiology and Prevention Unit-Department of Research, Fondazione IRCSS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy.
| | - Francesca Taverna
- Immunohematology and Transfusion Medicine Service-Department of Research, Fondazione IRCSS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy.
| | - Arabella Mazzocchi
- Epidemiology and Prevention Unit-Department of Research, Fondazione IRCSS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy.
| | - Eleonora Bruno
- Epidemiology and Prevention Unit-Department of Research, Fondazione IRCSS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy.
| | - Paola Muti
- Chair Cancer Experimental Therapeutics, Department of Oncology Faculty of Health Science, McMaster University, Hamilton, ON L8V 1C3, Canada.
| | - Franco Berrino
- Epidemiology and Prevention Unit-Department of Research, Fondazione IRCSS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy.
| | - Paolo Verderio
- Bioinformatics and Biostatistics Unit-Department of Applied Research and Technological Development, Fondazione IRCSS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy.
| | - Daniele Morelli
- Laboratory Medicine-Department of Pathology and Laboratory Medicine, Fondazione IRCSS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy.
| | - Patrizia Pasanisi
- Epidemiology and Prevention Unit-Department of Research, Fondazione IRCSS Istituto Nazionale dei Tumori di Milano, 20133 Milano, Italy.
| |
Collapse
|
17
|
Costantini D, Overi D, Casadei L, Cardinale V, Nevi L, Carpino G, Di Matteo S, Safarikia S, Valerio M, Melandro F, Bizzarri M, Manetti C, Berloco PB, Gaudio E, Alvaro D. Simulated microgravity promotes the formation of tridimensional cultures and stimulates pluripotency and a glycolytic metabolism in human hepatic and biliary tree stem/progenitor cells. Sci Rep 2019; 9:5559. [PMID: 30944365 PMCID: PMC6447605 DOI: 10.1038/s41598-019-41908-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 03/12/2019] [Indexed: 12/28/2022] Open
Abstract
Many pivotal biological cell processes are affected by gravity. The aim of our study was to evaluate biological and functional effects, differentiation potential and exo-metabolome profile of simulated microgravity (SMG) on human hepatic cell line (HepG2) and human biliary tree stem/progenitor cells (hBTSCs). Both hBTSCs and HepG2 were cultured in a weightless and protected environment SGM produced by the Rotary Cell Culture System (Synthecon) and control condition in normal gravity (NG). Self-replication and differentiation toward mature cells were determined by culturing hBTSCs in Kubota’s Medium (KM) and in hormonally defined medium (HDM) tailored for hepatocyte differentiation. The effects on the expression and cell exo-metabolome profiles of SMG versus NG cultures were analyzed. SMG promotes tridimensional (3D) cultures of hBTSCs and HepG2. Significative increase of stemness gene expression (p < 0.05) has been observed in hBTSCs cultured in SMG when compared to NG condition. At the same time, the expression of hepatocyte lineage markers in hBTSCs differentiated by HDM was significantly lower (p < 0.05) in SMG compared to NG, demonstrating an impaired capability of hBTSCs to differentiate in vitro toward mature hepatocytes when cultured in SMG condition. Furthermore, in HepG2 cells the SMG caused a lower (p < 0.05 vs controls) transcription of CYP3A4, a marker of late-stage (i.e. Zone 3) hepatocytes. Exo-metabolome NMR-analysis showed that both cell cultures consumed a higher amount of glucose and lower glutamate in SMG respect to NG (p < 0.05). Moreover, hBTSCs media cultures resulted richer of released fermentation (lactate, acetate) and ketogenesis products (B-hydroxybutyrate) in SGM (p < 0.05) than NG. While, HepG2 cells showed higher consumption of amino acids and release of ketoacids (3-Methyl-2-oxovalerate, 2-oxo-4-methyl-valerate) and formiate with respect to normogravity condition (p < 0.05). Based on our results, SMG could be helpful for developing hBTSCs-derived liver devices. In conclusion, SMG favored the formation of hBTSCs and HepG2 3D cultures and the maintenance of stemness contrasting cell differentiation; these effects being associated with stimulation of glycolytic metabolism. Interestingly, the impact of SMG on stem cell biology should be taken into consideration for workers involved in space medicine programs.
Collapse
Affiliation(s)
- Daniele Costantini
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Diletta Overi
- Division of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Luca Casadei
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy.
| | - Lorenzo Nevi
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Sabina Di Matteo
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Samira Safarikia
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Fabio Melandro
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Cesare Manetti
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | | - Eugenio Gaudio
- Division of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
18
|
Shimamura M, Yamamoto K, Kurashige T, Nagayama Y. Intracellular redox status controls spherogenicity, an in vitro cancer stem cell marker, in thyroid cancer cell lines. Exp Cell Res 2018; 370:699-707. [PMID: 30053445 DOI: 10.1016/j.yexcr.2018.07.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/17/2018] [Accepted: 07/23/2018] [Indexed: 01/17/2023]
Abstract
Cancer stem cells (CSCs), a small fraction of a tumor mass, are proposed to be highly crucial for cancer initiation, recurrence and metastasis. We have recently found that aldehyde dehydrogenase (ALDH) 1A3 is a CSC marker in some thyroid cancer cell lines, whose functional activity is, however, not relevant for thyroid cancer stemness. Since previous studies on malignancies in other organs suggest that intracellular reactive oxygen species (ROS) might be a functional and targetable CSC marker, the present study was conducted to elucidate the significance of ROS as a functional CSC marker in thyroid cancer cell lines. We first found that ROS levels controlled spherogenicity; that is, ROSlow cells were more spherogenic than ROShigh cells. However, unlike typical CSCs in other cancers, CSC-like ROSlow cells in thyroid cancer cells were plastic and were not accompanied by de-differentiation status (i.e., expression of stemness markers/thyroid-specific transcription factors) or chemo-/radio-resistance. The lower levels of ROS were functionally critical because a forced increase in ROS levels by L-buthionine-S,R-sulfoximine, an inhibitor of glutathione (GSH) synthesis, and irradiation suppressed spherogenicity. ROS levels were also correlated with the number of double strand DNA breaks determined by 53BP1 staining. Lower ROS levels appear to be a result of decreased mitochondrial oxidative phosphorylation and elevated GSH contents. Given the importance of CSC-targeted therapy for achieving long-term disease eradication by exhausting self-renewal and growth potential of cancer tissues, ROS may be a good candidate for CSC-targeted therapy in thyroid cancer.
Collapse
Affiliation(s)
- Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kazuo Yamamoto
- Biomedical Research Support Center, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tomomi Kurashige
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
19
|
Candido S, Abrams SL, Steelman L, Lertpiriyapong K, Martelli AM, Cocco L, Ratti S, Follo MY, Murata RM, Rosalen PL, Lombardi P, Montalto G, Cervello M, Gizak A, Rakus D, Suh PG, Libra M, McCubrey JA. Metformin influences drug sensitivity in pancreatic cancer cells. Adv Biol Regul 2018; 68:13-30. [PMID: 29482945 DOI: 10.1016/j.jbior.2018.02.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive, highly metastatic malignancy and accounts for 85% of pancreatic cancers. PDAC patients have poor prognosis with a five-year survival of only 5-10% after diagnosis and treatment. Pancreatic cancer has been associated with type II diabetes as the frequency of recently diagnosed diabetics that develop pancreatic cancer within a 10-year period of initial diagnosis of diabetes in increased in comparison to non-diabetic patients. Metformin is a very frequently prescribed drug used to treat type II diabetes. Metformin acts in part by stimulating AMP-kinase (AMPK) and results in the suppression of mTORC1 activity and the induction of autophagy. In the following studies, we have examined the effects of metformin in the presence of various chemotherapeutic drugs, signal transduction inhibitors and natural products on the growth of three different PDAC lines. Metformin, by itself, was not effective at suppressing growth of the pancreatic cancer cell lines at concentration less than 1000 nM, however, in certain PDAC lines, a suboptimal dose of metformin (250 nM) potentiated the effects of various chemotherapeutic drugs used to treat pancreatic cancer (e.g., gemcitabine, cisplatin, 5-fluorouracil) and other cancer types (e.g., doxorubicin, docetaxel). Furthermore, metformin could increase anti-proliferative effects of mTORC1 and PI3K/mTOR inhibitors as well as natural products such as berberine and the anti-malarial drug chloroquine in certain PDAC lines. Thus, metformin can enhance the effects of certain drugs and signal transduction inhibitors which are used to treat pancreatic and various other cancers.
Collapse
Affiliation(s)
- Saverio Candido
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Linda Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine at East Carolina University, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Matilde Y Follo
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Ramiro M Murata
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA; Department of Foundational Sciences, School of Dental Medicine, East Carolina University, USA
| | - Pedro L Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, State University of Campinas, Piracicaba, Brazil
| | - Paolo Lombardi
- Naxospharma, Via Giuseppe Di Vittorio 70, Novate Milanese 20026, Italy
| | - Giuseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Agnieszka Gizak
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, Wroclaw University, Wroclaw, Poland
| | - Pann-Gill Suh
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences - Pathology & Oncology Section, University of Catania, Catania, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| |
Collapse
|
20
|
Signs SA, Fisher RC, Tran U, Chakrabarti S, Sarvestani SK, Xiang S, Liska D, Roche V, Lai W, Gittleman HR, Wessely O, Huang EH. Stromal miR-20a controls paracrine CXCL8 secretion in colitis and colon cancer. Oncotarget 2018; 9:13048-13059. [PMID: 29560130 PMCID: PMC5849194 DOI: 10.18632/oncotarget.24495] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/10/2018] [Indexed: 01/24/2023] Open
Abstract
Inflammatory bowel disease (IBD) affects one million people in the US. Ulcerative colitis (UC) is a subtype of IBD that can lead to colitis-associated cancer (CAC). In UC, the rate of CAC is 3-5-fold greater than the rate of sporadic colorectal cancer (CRC). The pathogenesis of UC and CAC are due to aberrant interactions between host immune system and microenvironment, but precise mechanisms are still unknown. In colitis and CAC, microenvironmental fibroblasts exhibit an activated, inflammatory phenotype that contributes to tumorigenesis accompanied by excessive secretion of the chemokine CXCL8. However, mechanisms regulating CXCL8 secretion are unclear. Since it is known that miRNAs regulate chemokines such as CXCL8, we queried a microRNA library for mimics affecting CXCL8 secretion. Among the identified microRNAs, miR-20a/b was further investigated as its stromal expression levels inversely correlated with the amounts of CXCL8 secreted and predicted fibroblast tumor-promoting activity. Indeed, miR-20a directly bound to the 3′UTR of CXCL8 mRNA and regulated its expression by translational repression. In vivo co-inoculation studies with CRC stem cells demonstrated that fibroblasts characterized by high miR-20a expression had reduced tumor-promoting activities. These studies reveal that in stromal fibroblasts, miR-20a modulates CXCL8 function, therefore influencing tumor latency.
Collapse
Affiliation(s)
- Steven A Signs
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Robert C Fisher
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Uyen Tran
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Susmita Chakrabarti
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Samaneh K Sarvestani
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shao Xiang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - David Liska
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Colorectal Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | - Veronique Roche
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Wei Lai
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Haley R Gittleman
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio USA
| | - Oliver Wessely
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Emina H Huang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Colorectal Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Andrzejewski S, Siegel PM, St-Pierre J. Metabolic Profiles Associated With Metformin Efficacy in Cancer. Front Endocrinol (Lausanne) 2018; 9:372. [PMID: 30186229 PMCID: PMC6110930 DOI: 10.3389/fendo.2018.00372] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Metformin is one of the most commonly prescribed medications for the treatment of type 2 diabetes. Numerous reports have suggested potential anti-cancerous and cancer preventive properties of metformin, although these findings vary depending on the intrinsic properties of the tumor, as well as the systemic physiology of patients. These intriguing studies have led to a renewed interest in metformin use in the oncology setting, and fueled research to unveil its elusive mode of action. It is now appreciated that metformin inhibits complex I of the electron transport chain in mitochondria, causing bioenergetic stress in cancer cells, and rendering them dependent on glycolysis for ATP production. Understanding the mode of action of metformin and the consequences of its use on cancer cell bioenergetics permits the identification of cancer types most susceptible to metformin action. Such knowledge may also shed light on the varying results to metformin usage that have been observed in clinical trials. In this review, we discuss metabolic profiles of cancer cells that are associated with metformin sensitivity, and rationalize combinatorial treatment options. We use the concept of bioenergetic flexibility, which has recently emerged in the field of cancer cell metabolism, to further understand metabolic rearrangements that occur upon metformin treatment. Finally, we advance the notion that metabolic fitness of cancer cells increases during progression to metastatic disease and the emergence of therapeutic resistance. As a result, sophisticated combinatorial approaches that prevent metabolic compensatory mechanisms will be required to effectively manage metastatic disease.
Collapse
Affiliation(s)
- Sylvia Andrzejewski
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Peter M. Siegel
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Julie St-Pierre
- Department of Biochemistry, Microbiology and Immunology, and Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Julie St-Pierre
| |
Collapse
|
22
|
Metabolic Portraits of Breast Cancer by HR MAS MR Spectroscopy of Intact Tissue Samples. Metabolites 2017; 7:metabo7020018. [PMID: 28509845 PMCID: PMC5487989 DOI: 10.3390/metabo7020018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/20/2017] [Accepted: 05/09/2017] [Indexed: 12/17/2022] Open
Abstract
Despite progress in early detection and therapeutic strategies, breast cancer remains the second leading cause of cancer-related death among women globally. Due to the heterogeneity and complexity of tumor biology, breast cancer patients with similar diagnosis might have different prognosis and response to treatment. Thus, deeper understanding of individual tumor properties is necessary. Cancer cells must be able to convert nutrients to biomass while maintaining energy production, which requires reprogramming of central metabolic processes in the cells. This phenomenon is increasingly recognized as a potential target for treatment, but also as a source for biomarkers that can be used for prognosis, risk stratification and therapy monitoring. Magnetic resonance (MR) metabolomics is a widely used approach in translational research, aiming to identify clinically relevant metabolic biomarkers or generate novel understanding of the molecular biology in tumors. Ex vivo proton high-resolution magic angle spinning (HR MAS) MR spectroscopy is widely used to study central metabolic processes in a non-destructive manner. Here we review the current status for HR MAS MR spectroscopy findings in breast cancer in relation to glucose, amino acid and choline metabolism.
Collapse
|
23
|
Zhang C, Ma Q, Shi Y, Li X, Wang M, Wang J, Ge J, Chen Z, Wang Z, Jiang H. A novel 5-fluorouracil-resistant human esophageal squamous cell carcinoma cell line Eca-109/5-FU with significant drug resistance-related characteristics. Oncol Rep 2017; 37:2942-2954. [DOI: 10.3892/or.2017.5539] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/31/2016] [Indexed: 11/05/2022] Open
|
24
|
Kamarajan P, Rajendiran TM, Kinchen J, Bermúdez M, Danciu T, Kapila YL. Head and Neck Squamous Cell Carcinoma Metabolism Draws on Glutaminolysis, and Stemness Is Specifically Regulated by Glutaminolysis via Aldehyde Dehydrogenase. J Proteome Res 2017; 16:1315-1326. [PMID: 28168879 PMCID: PMC5417077 DOI: 10.1021/acs.jproteome.6b00936] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer cells use alternate energetic pathways; however, cancer stem cell (CSC) metabolic energetic pathways are unknown. The purpose of this study was to define the metabolic characteristics of head and neck cancer at different points of its pathogenesis with a focus on its CSC compartment. UPLC-MS/MS-profiling and GC-MS-validation studies of human head and neck cancer tissue, saliva, and plasma were used in conjunction with in vitro and in vivo models to carry out this investigation. We identified metabolite biomarker panels that distinguish head and neck cancer from healthy controls, and confirmed involvement of glutamate and glutaminolysis. Glutaminase, which catalyzes glutamate formation from glutamine, and aldehyde dehydrogenase (ALDH), a stemness marker, were highly expressed in primary and metastatic head and neck cancer tissues, tumorspheres, and CSC versus controls. Exogenous glutamine induced stemness via glutaminase, whereas inhibiting glutaminase suppressed stemness in vitro and tumorigenesis in vivo. Head and neck CSC (CD44hi/ALDHhi) exhibited higher glutaminase, glutamate, and sphere levels than CD44lo/ALDHlo cells. Glutaminase drove transcriptional and translational ALDH expression, and glutamine directed even CD44lo/ALDHlo cells toward stemness. Glutaminolysis regulates tumorigenesis and CSC metabolism via ALDH. These findings indicate that glutamate is an important marker of cancer metabolism whose regulation via glutaminase works in concert with ALDH to mediate cancer stemness. Future analyses of glutaminolytic-ALDH driven mechanisms underlying tumorigenic transitions may help in the development of targeted therapies for head and neck cancer and its CSC compartment.
Collapse
Affiliation(s)
- Pachiyappan Kamarajan
- Department of Orofacial Sciences, UCSF School of Dentistry, University of California, San Francisco, California 94110, United States
| | - Thekkelnaycke M. Rajendiran
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan Regional Comprehensive Metabolomics Resource Core and Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jason Kinchen
- Metabolon, Inc., Durham, North Carolina 27713, United States
| | - Mercedes Bermúdez
- FES Zaragoza, National Autonomous University of Mexico, Mexico City, 09320, Mexico
| | - Theodora Danciu
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yvonne L. Kapila
- Department of Orofacial Sciences, UCSF School of Dentistry, University of California, San Francisco, California 94110, United States
| |
Collapse
|
25
|
Aldehyde dehydrogenase 3A1 promotes multi-modality resistance and alters gene expression profile in human breast adenocarcinoma MCF-7 cells. Int J Biochem Cell Biol 2016; 77:120-128. [PMID: 27276244 DOI: 10.1016/j.biocel.2016.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/21/2016] [Accepted: 06/03/2016] [Indexed: 12/20/2022]
Abstract
Aldehyde dehydrogenases participate in a variety of cellular homeostatic mechanisms like metabolism, proliferation, differentiation, apoptosis, whereas recently, they have been implicated in normal and cancer cell stemness. We explored roles for ALDH3A1 in conferring resistance to chemotherapeutics/radiation/oxidative stress and whether ectopic overexpression of ALDH3A1 could lead to alterations of gene expression profile associated with cancer stem cell-like phenotype. MCF-7 cells were stably transfected either with an empty vector (mock) or human aldehyde dehydrogenase 3A1 cDNA. The expression of aldehyde dehydrogenase 3A1 in MCF-7 cells was associated with altered cell proliferation rate and enhanced cell resistance against various chemotherapeutic drugs (4-hydroxyperoxycyclophosphamide, doxorubicin, etoposide, and 5-fluorouracil). Aldehyde dehydrogenase 3A1 expression also led to increased tolerance of MCF-7 cells to gamma radiation and hydrogen peroxide-induced stress. Furthermore, aldehyde dehydrogenase 3A1-expressing MCF-7 cells exhibited gene up-regulation of cyclins A, B1, B2, and down-regulation of cyclin D1 as well as transcription factors p21, CXR4, Notch1, SOX2, SOX4, OCT4, and JAG1. When compared to mock cells, no changes were observed in mRNA levels of ABCA2 and ABCB1 protein pumps with only a minor decrease of the ABCG2 pump in the aldehyde dehydrogenase 3A1-expressing cells. Also, the adhesion molecules EpCAM and CD49F were also found to be up-regulated in aldehyde dehydrogenase 3A1expressing cells. Taken together, ALDH3A1 confers a multi-modality resistance phenotype in MCF-7 cells associated with slower growth rate, increased clonogenic capacity, and altered gene expression profile, underlining its significance in cell homeostasis.
Collapse
|
26
|
Sun Y, Tao C, Huang X, He H, Shi H, Zhang Q, Wu H. Metformin induces apoptosis of human hepatocellular carcinoma HepG2 cells by activating an AMPK/p53/miR-23a/FOXA1 pathway. Onco Targets Ther 2016; 9:2845-53. [PMID: 27274280 PMCID: PMC4869652 DOI: 10.2147/ott.s99770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The antidiabetic drug metformin has been shown to possess antitumor functions in many types of cancers. Although studies have revealed its beneficial effects on the prognosis of hepatocellular carcinoma (HCC), the detailed molecular mechanism underlying this event remains largely unknown. In this work, we showed that miR-23a was significantly induced upon metformin treatment; inhibition of miR-23a abrogated the proapoptotic effect of metformin in HepG2 cells. We next established forkhead box protein A1 (FOXA1) as the functional target of miR-23a, and silencing FOXA1 mimicked the effect of metformin. Moreover, the phosphorylation of AMP-activated protein kinase (AMPK) and the expression of p53 were increased upon metformin treatment, and the inhibition of p53 abrogated the induction of miR-23a by metformin, suggesting that AMPK/p53 signaling axis is responsible for the induction of miR-23a by metformin. In summary, we unraveled a novel AMPK/p53/miR-23a/FOXA1 axis in the regulation of apoptosis in HCC, and the application of metformin could, therefore, be effective in the treatment of HCC.
Collapse
Affiliation(s)
- Yunpeng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chonglin Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiaming Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Han He
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hongqi Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qiyu Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Huanhuan Wu
- Department of Infectious Disease, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
27
|
Taniguchi K, Sakai M, Sugito N, Kuranaga Y, Kumazaki M, Shinohara H, Ueda H, Futamura M, Yoshida K, Uchiyama K, Akao Y. PKM1 is involved in resistance to anti-cancer drugs. Biochem Biophys Res Commun 2016; 473:174-180. [PMID: 27012213 DOI: 10.1016/j.bbrc.2016.03.074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
Abstract
Resistance to chemotherapy is a crucial problem in the clinical situation. To overcome this issue, many mechanisms of chemoresistance have been elucidated so far. However, this problem still has not been solved completely. In this study, we investigated the mechanism of chemoresistance from the view of cancer metabolism-related genes, especially focusing on the expression profile of pyruvate kinase muscle (PKM) isoforms, which are rate-limiting enzymes in cancer-specific metabolism (Warburg effect). Herein, we showed that PKM1, which promotes oxidative phosphorylation (OXPHOS), was commonly up-regulated in various chemoresistant cells. To clarify the functions of PKM1 in chemoresistance, we investigated effects of PKM1 expression in DLD-1 parental, 5-FU-resistant and oxaliplatin-resistant DLD-1 cells. The overexpression of PKM1 resulted in resistance of the parental cells to 5-FU and oxaliplatin. Moreover, gene-silencing of PKM1 induced apoptosis in these cells including the resistant cells by causing a decrease in the mitochondrial membrane potential. Furthermore, combination therapy using 5-FU or oxaliplatin with siR-PKM1 was also effective against the resistant cells. Our findings should lead to the development of new agents that can cancel the chemoresistance from the view of cancer energy metabolism.
Collapse
Affiliation(s)
- Kohei Taniguchi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of General and Gastroenterological Surgery, Osaka Medical College, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan.
| | - Miku Sakai
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Nobuhiko Sugito
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yuki Kuranaga
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Minami Kumazaki
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Haruka Shinohara
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroshi Ueda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Manabu Futamura
- Department of Oncological Surgery, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazuhiro Yoshida
- Department of Oncological Surgery, Gifu University School of Medicine, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazuhisa Uchiyama
- Department of General and Gastroenterological Surgery, Osaka Medical College, Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Yukihiro Akao
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
28
|
Granja S, Marchiq I, Le Floch R, Moura CS, Baltazar F, Pouysségur J. Disruption of BASIGIN decreases lactic acid export and sensitizes non-small cell lung cancer to biguanides independently of the LKB1 status. Oncotarget 2016; 6:6708-21. [PMID: 25894929 PMCID: PMC4466644 DOI: 10.18632/oncotarget.2862] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/02/2014] [Indexed: 01/10/2023] Open
Abstract
Most cancers rely on aerobic glycolysis to generate energy and metabolic intermediates. To maintain a high glycolytic rate, cells must efficiently export lactic acid through the proton-coupled monocarboxylate transporters (MCT1/4). These transporters require a chaperone, CD147/BASIGIN (BSG) for trafficking to the plasma membrane and function. To validate the key role of these transporters in lung cancer, we first analysed the expression of MCT1/4 and BSG in 50 non-small lung cancer (NSCLC) cases. These proteins were specifically upregulated in tumour tissues. We then disrupted BSG in three NSCLC cell lines (A549, H1975 and H292) via ‘Zinc-Finger Nucleases’. The three homozygous BSG−/− cell lines displayed a low MCT activity (10- to 5-fold reduction, for MCT1 and MCT4, respectively) compared to wild-type cells. Consequently, the rate of glycolysis, compared to the wild-type counterpart, was reduced by 2.0- to 3.5-fold, whereas the rate of respiration was stimulated in BSG−/− cell lines. Both wild-type and BSG-null cells were extremely sensitive to the mitochondria inhibitor metformin/phenformin in normoxia. However, only BSG-null cells, independently of their LKB1 status, remained sensitive to biguanides in hypoxia in vitro and tumour growth in nude mice. Our results demonstrate that inhibiting glycolysis by targeting lactic acid export sensitizes NSCLC to phenformin.
Collapse
Affiliation(s)
- Sara Granja
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/ Guimarães, Portugal
| | - Ibtissam Marchiq
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre A. Lacassagne, Nice, France
| | - Renaud Le Floch
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre A. Lacassagne, Nice, France
| | - Conceição Souto Moura
- Department of Pathology, Centro Hospitalar de São João, Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP) and Medical Faculty of University of Porto, Porto, Portugal
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/ Guimarães, Portugal
| | - Jacques Pouysségur
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre A. Lacassagne, Nice, France.,Centre Scientifique de Monaco (CSM), Monaco
| |
Collapse
|
29
|
Casadei L, Valerio M. (1)H NMR Metabolomic Footprinting Analysis for the In Vitro Screening of Potential Chemopreventive Agents. Methods Mol Biol 2016; 1379:89-97. [PMID: 26608292 DOI: 10.1007/978-1-4939-3191-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Metabolomics is the quantification and analysis of the concentration profiles of low-molecular-weight compounds present in biological samples. In particular metabolic footprinting analysis, based on the monitoring of metabolites consumed from and secreted into the growth medium, is a valuable tool for the study of pharmacological and toxicological effects of drugs. Mass spectrometry and nuclear magnetic resonance (NMR) are the two main complementary techniques used in this field. Although less sensitive, NMR gives a direct fingerprint of the system, and the spectra obtained contain metabolic information that can be distilled by chemometric techniques. In this chapter, we present how metabolomic footprinting can be used to assess in vitro a potential chemopreventive molecule as metformin.
Collapse
Affiliation(s)
- Luca Casadei
- Department of Chemistry, "Sapienza" University of Rome, Piazzale Aldo More 5, 00185, Rome, Italy.
| | - Mariacristina Valerio
- Department of Chemistry, "Sapienza" University of Rome, Piazzale Aldo More 5, 00185, Rome, Italy.
| |
Collapse
|
30
|
Shen YA, Wang CY, Hsieh YT, Chen YJ, Wei YH. Metabolic reprogramming orchestrates cancer stem cell properties in nasopharyngeal carcinoma. Cell Cycle 2015; 14:86-98. [PMID: 25483072 DOI: 10.4161/15384101.2014.974419] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) represent a subpopulation of tumor cells endowed with self-renewal capacity and are considered as an underlying cause of tumor recurrence and metastasis. The metabolic signatures of CSCs and the mechanisms involved in the regulation of their stem cell-like properties still remain elusive. We utilized nasopharyngeal carcinoma (NPC) CSCs as a model to dissect their metabolic signatures and found that CSCs underwent metabolic shift and mitochondrial resetting distinguished from their differentiated counterparts. In metabolic shift, CSCs showed a greater reliance on glycolysis for energy supply compared with the parental cells. In mitochondrial resetting, the quantity and function of mitochondria of CSCs were modulated by the biogenesis of the organelles, and the round-shaped mitochondria were distributed in a peri-nuclear manner similar to those seen in the stem cells. In addition, we blocked the glycolytic pathway, increased the ROS levels, and depolarized mitochondrial membranes of CSCs, respectively, and examined the effects of these metabolic factors on CSC properties. Intriguingly, the properties of CSCs were curbed when we redirected the quintessential metabolic reprogramming, which indicates that the plasticity of energy metabolism regulated the balance between acquisition and loss of the stemness status. Taken together, we suggest that metabolic reprogramming is critical for CSCs to sustain self-renewal, deter from differentiation and enhance the antioxidant defense mechanism. Characterization of metabolic reprogramming governing CSC properties is paramount to the design of novel therapeutic strategies through metabolic intervention of CSCs.
Collapse
Key Words
- ATP6, ATP synthase 6
- COX, cytochrome c oxidase
- Cu/ZnSOD, copper/zinc superoxide dismutase
- GLUT1, glucose transporter 1
- GPI, glucose-6-phosphate isomerase
- GR, glutathione reductase
- HK, hexokinase
- MnSOD, manganese superoxide dismutase
- ND1, NADH dehydrogenase subunit 1
- PDH, pyruvate dehydrogenase
- PDK, pyruvate dehydrogenase kinase
- PGC-1α, peroxisome proliferator-activated receptor gamma coactivator 1α
- POLG, mitochondrial DNA polymerase gamma
- TFAM, mitochondrial transcription factor A
- cancer stem cells
- metabolic reprogramming
- metabolic shift
- mitochondrial membrane potential
- mitochondrial resetting
- nasopharyngeal carcinoma
- reactive oxygen species
Collapse
Affiliation(s)
- Yao-An Shen
- a Institute of Biochemistry and Molecular Biology ; Taipei , Taiwan
| | | | | | | | | |
Collapse
|
31
|
Metformin and erlotinib synergize to inhibit basal breast cancer. Oncotarget 2015; 5:10503-17. [PMID: 25361177 PMCID: PMC4279389 DOI: 10.18632/oncotarget.2391] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/21/2014] [Indexed: 12/16/2022] Open
Abstract
Basal-like breast cancers (BBCs) are enriched for increased EGFR expression and decreased expression of PTEN. We found that treatment with metformin and erlotinib synergistically induced apoptosis in a subset of BBC cell lines. The drug combination led to enhanced reduction of EGFR, AKT, S6 and 4EBP1 phosphorylation, as well as prevented colony formation and inhibited mammosphere outgrowth. Our data with other compounds suggested that biguanides combined with EGFR inhibitors have the potential to outperform other targeted drug combinations and could be employed in other breast cancer subtypes, as well as other tumor types, with activated EGFR and PI3K signaling. Analysis of BBC cell line alterations led to the hypothesis that loss of PTEN sensitized cells to the drug combination which was confirmed using isogenic cell line models with and without PTEN expression. Combined metformin and erlotinib led to partial regression of PTEN-null and EGFR-amplified xenografted MDA-MB-468 BBC tumors with evidence of significant apoptosis, reduction of EGFR and AKT signaling, and lack of altered plasma insulin levels. Combined treatment also inhibited xenografted PTEN null HCC-70 BBC cells. Measurement of trough plasma drug levels in xenografted mice and a separately performed pharmacokinetics modeling study support possible clinical translation.
Collapse
|
32
|
Islam SMR, Suenaga Y, Takatori A, Ueda Y, Kaneko Y, Kawana H, Itami M, Ohira M, Yokoi S, Nakagawara A. Sendai virus-mediated expression of reprogramming factors promotes plasticity of human neuroblastoma cells. Cancer Sci 2015; 106:1351-61. [PMID: 26190440 PMCID: PMC4638011 DOI: 10.1111/cas.12746] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/26/2015] [Accepted: 07/07/2015] [Indexed: 12/18/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor that originates from multipotent neural crest cells. NB cell populations that express embryonic stem cell-associated genes have been identified and shown to retain a multipotent phenotype. However, whether somatic reprogramming of NB cells can produce similar stem-cell like populations is unknown. Here, we sought to reprogram NB cell lines using an integration-free Sendai virus vector system. Of four NB cell lines examined, only SH-IN cells formed induced pluripotent stem cell-like colonies (SH-IN 4F colonies) at approximately 6 weeks following transduction. These SH-IN 4F colonies were alkaline phosphatase-positive. Array comparative genomic hybridization analysis indicated identical genomic aberrations in the SH-IN 4F cells as in the parental cells. SH-IN 4F cells had the ability to differentiate into the three embryonic germ layers in vitro, but rather formed NBs in vivo. Furthermore, SH-IN 4F cells exhibited resistance to cisplatin treatment and differentiated into endothelial-like cells expressing CD31 in the presence of vascular endothelial growth factor. These results suggest that SH-IN 4F cells are partially reprogrammed NB cells, and could be a suitable model for investigating the plasticity of aggressive tumors.
Collapse
Affiliation(s)
- S M Rafiqul Islam
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yusuke Suenaga
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, Chiba, Japan.,Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Atsushi Takatori
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Yasuji Ueda
- Division of Business & Technology Development, DNAVEC Corporation, Tokyo, Japan
| | - Yoshiki Kaneko
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Hidetada Kawana
- Division of Surgical Pathology, Chiba Cancer Center, Chiba, Japan
| | - Makiko Itami
- Division of Surgical Pathology, Chiba Cancer Center, Chiba, Japan
| | - Miki Ohira
- Laboratory of Cancer Genomics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Sana Yokoi
- Cancer Genome Center, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Akira Nakagawara
- Division of Biochemistry and Innovative Cancer Therapeutics and Children's Cancer Research Center, Chiba Cancer Center Research Institute, Chiba, Japan
| |
Collapse
|
33
|
Jara JA, López-Muñoz R. Metformin and cancer: Between the bioenergetic disturbances and the antifolate activity. Pharmacol Res 2015; 101:102-8. [PMID: 26277279 DOI: 10.1016/j.phrs.2015.06.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 01/18/2023]
Abstract
For decades, metformin has been the first-line drug for the treatment of type II diabetes mellitus, and it thus is the most widely prescribed antihyperglycemic drug. Retrospective studies associate the use of metformin with a reduction in cancer incidence and cancer-related death. However, despite extensive research about the molecular effects of metformin in cancer cells, its mode of action remains controversial. In this review, we summarize the current molecular evidence in an effort to elucidate metformin's mode of action against cancer cells. Some authors describe that metformin acts directly on mitochondria, inhibiting complex I and restricting the cell's ability to cope with energetic stress. Furthermore, as the drug interrupts the tricarboxylic acid cycle, metformin-induced alteration of mitochondrial function leads to a compensatory increase in lactate and glycolytic ATP. It has also been reported that cell cycle arrest, autophagy, apoptosis and cell death induction is mediated by the activation of AMPK and Redd1 proteins, thus inhibiting the mTOR pathway. Additionally, unbiased metabolomics studies have provided strong evidence to support that metformin alters the methionine and folate cycles, with a concomitant decrease in nucleotide synthesis. Indeed, purines such as thymidine or hypoxanthine restore the proliferation of tumor cells treated with metformin in vitro. Consequently, some authors prefer to refer to metformin as an "antimetabolite drug" rather than a "mitochondrial toxin". Finally, we also review the current controversy concerning the relationship between the experimental conditions of in vitro-reported effects and the plasma concentrations achieved by chronic treatment with metformin.
Collapse
Affiliation(s)
- J A Jara
- Unidad de Farmacología y Farmacogenética, ICOD, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - R López-Muñoz
- Instituto de Farmacología y Morfofisiología, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
34
|
Qi C, Zhou Q, Li B, Yang Y, Cao L, Ye Y, Li J, Ding Y, Wang H, Wang J, He X, Zhang Q, Lan T, Lee KKH, Li W, Song X, Zhou J, Yang X, Wang L. Glipizide, an antidiabetic drug, suppresses tumor growth and metastasis by inhibiting angiogenesis. Oncotarget 2015; 5:9966-79. [PMID: 25294818 PMCID: PMC4259451 DOI: 10.18632/oncotarget.2483] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Angiogenesis is involved in the development, progression and metastasis of various human cancers. Herein, we report the discovery of glipizide, a widely used drug for type 2 diabetes mellitus, as a promising anticancer agent through the inhibition of tumor angiogenesis. By high-throughput screening (HTS) of an FDA approved drug library utilizing our in vivo chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models, glipizide has been identified to significantly inhibit blood vessel formation and development. Moreover, glipizide was found to suppress tumor angiogenesis, tumor growth and metastasis using xenograft tumor and MMTV-PyMT transgenic mouse models. We further revealed that the anticancer capability of glipizide is not attributed to its antiproliferative effects, which are not significant against various human cancer cell lines. To investigate whether its anticancer efficacy is associated with the glucose level alteration induced by glipizide application, glimepiride, another medium to long-acting sulfonylurea antidiabetic drug in the same class, was employed for the comparison studies in the same fashion. Interestingly, glimepiride has demonstrated no significant impact on the tumor growth and metastasis, indicating that the anticancer effects of glipizide is not ascribed to its antidiabetic properties. Furthermore, glipizide suppresses endothelial cell migration and the formation of tubular structures, thereby inhibiting angiogenesis by up-regulating the expression of natriuretic peptide receptor A. These findings uncover a novel mechanism of glipizide as a potential cancer therapy, and also for the first time, provide direct evidence to support that treatment with glipizide may reduce the cancer risk for diabetic patients.
Collapse
Affiliation(s)
- Cuiling Qi
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China. These authors contributed equally to this work
| | - Qin Zhou
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China. These authors contributed equally to this work
| | - Bin Li
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yang Yang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, China Medical University, He Ping District, Shen Yang City, Liao Ning Province, China
| | - Yuxiang Ye
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jiangchao Li
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Ding
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiping Wang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jintao Wang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaodong He
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianqian Zhang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tian Lan
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kenneth Ka Ho Lee
- Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Weidong Li
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiaoyu Song
- Key Laboratory of Medical Cell Biology, China Medical University, He Ping District, Shen Yang City, Liao Ning Province, China
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Xuesong Yang
- Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology & Embryology, Medical College, Jinan University, Guangzhou, China
| | - Lijing Wang
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
35
|
Hatoum D, McGowan EM. Recent advances in the use of metformin: can treating diabetes prevent breast cancer? BIOMED RESEARCH INTERNATIONAL 2015; 2015:548436. [PMID: 25866793 PMCID: PMC4383151 DOI: 10.1155/2015/548436] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/21/2014] [Indexed: 12/16/2022]
Abstract
There is substantial epidemiological evidence pointing to an increased incidence of breast cancer and morbidity in obese, prediabetic, and diabetic patients. In vitro studies strongly support metformin, a diabetic medication, in breast cancer therapy. Although metformin has been heralded as an exciting new breast cancer treatment, the principal consideration is whether metformin can be used as a generic treatment for all breast cancer types. Importantly, will metformin be useful as an inexpensive therapy for patients with comorbidity of diabetes and breast cancer? In general, meta-analyses of clinical trial data from retrospective studies in which metformin treatment has been used for patients with diabetes and breast cancer have a positive trend; nevertheless, the supporting clinical data outcomes remain inconclusive. The heterogeneity of breast cancer, confounded by comorbidity of disease in the elderly population, makes it difficult to determine the actual benefits of metformin therapy. Despite the questionable evidence available from observational clinical studies and meta-analyses, randomized phases I-III clinical trials are ongoing to test the efficacy of metformin for breast cancer. This special issue review will focus on recent research, highlighting in vitro research and retrospective observational clinical studies and current clinical trials on metformin action in breast cancer.
Collapse
Affiliation(s)
- Diana Hatoum
- School of Medical and Molecular Biosciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Eileen M. McGowan
- School of Medical and Molecular Biosciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
- School of Medicine, University of Sydney, Camperdown, Sydney, NSW 2006, Australia
| |
Collapse
|
36
|
Pulito C, Donzelli S, Muti P, Puzzo L, Strano S, Blandino G. microRNAs and cancer metabolism reprogramming: the paradigm of metformin. ANNALS OF TRANSLATIONAL MEDICINE 2014; 2:58. [PMID: 25333033 PMCID: PMC4200659 DOI: 10.3978/j.issn.2305-5839.2014.06.03] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/26/2014] [Indexed: 12/13/2022]
Abstract
Increasing evidence witnesses that cancer metabolism alterations represent a critical hallmark for many types of human tumors. There is a strong need to understand and dissect the molecular mechanisms underlying cancer metabolism to envisage specific biomarkers and underpin critical molecular components that might represent novel therapeutic targets. One challenge, that is the focus of this review, is the reprogramming of the altered metabolism of a cancer cell toward that of un-transformed cell. The anti-hyperglicemic agent, metformin has proven to be effective in reprogramming the metabolism of cancer cells even from those subpopulations endowed with cancer stem like features and very high chemoresistenace to conventional anticancer treatments. A functional interplay involving selective modulation of microRNAs (miRNAs) takes place along the anticancer metabolic effects exerted by metformin. The implications of this interplay will be also discussed in this review.
Collapse
|