1
|
The ERK5/NF-κB signaling pathway targets endometrial cancer proliferation and survival. Cell Mol Life Sci 2022; 79:524. [PMID: 36123565 PMCID: PMC9485191 DOI: 10.1007/s00018-022-04541-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
Endometrial cancer (EC) is the most common type of gynecologic cancer in women of developed countries. Despite surgery combined with chemo-/radiotherapy regimens, overall survival of patients with high-risk EC tumors is poor, indicating a need for novel therapies. The MEK5-ERK5 pathway is activated in response to growth factors and to different stressors, including oxidative stress and cytokines. Previous evidence supports a role for the MEK5-ERK5 pathway in the pathology of several cancers. We investigated the role of ERK5 in EC. In silico analysis of the PanCancer Atlas dataset showed alterations in components of the MEK5-ERK5 pathway in 48% of EC patients. Here, we show that ERK5 inhibition or silencing decreased EGF-induced EC cell proliferation, and that genetic deletion of MEK5 resulted in EC impaired proliferation and reduced tumor growth capacity in nude mice. Pharmacologic inhibition or ERK5 silencing impaired NF-kB pathway in EC cells and xenografts. Furthermore, we found a positive correlation between ERK5 and p65/RELA protein levels in human EC tumor samples. Mechanistically, genetic or pharmacologic impairment of ERK5 resulted in downregulation of NEMO/IKKγ expression, leading to impaired p65/RELA activity and to apoptosis in EC cells and xenografts, which was rescued by NEMO/IKKγ overexpression. Notably, ERK5 inhibition, MEK5 deletion or NF-kB inhibition sensitized EC cells to standard EC chemotherapy (paclitaxel/carboplatin) toxicity, whereas ERK5 inhibition synergized with paclitaxel to reduce tumor xenograft growth in mice. Together, our results suggest that the ERK5-NEMO-NF-κB pathway mediates EC cell proliferation and survival. We propose the ERK5/NF-κB axis as new target for EC treatment.
Collapse
|
2
|
Wang L, Ji X, Mao C, Yu R. BAY-885, a mitogen-activated protein kinase kinase 5 inhibitor, induces apoptosis by regulating the endoplasmic reticulum stress/Mcl-1/Bim pathway in breast cancer cells. Bioengineered 2022; 13:12888-12898. [PMID: 35609325 PMCID: PMC9275924 DOI: 10.1080/21655979.2022.2078557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022] Open
Abstract
The mitogen-activated protein kinase kinase 5 (MEK5)/extracellular signal-regulated kinase 5 (ERK5) axis has been reported to promote tumorigenesis in breast cancer (BC). Therefore, targeting the MEK5/ERK5 axis is a potential strategy against BC. BAY-885 is a novel inhibitor of ERK5; however, to date, its anti-tumor effects in BC have not been investigated. This study aimed to assess the anti-tumor effects of BAY-885 in BC and identify its underlying mechanisms of action. Unlike other ERK5 inhibitors, which frequently failed to mimic ERK5 genetic ablation phenotypes, the BAY-885 treatment effectively recapitulated ERK5 depletion effects in BC cells. Results revealed that BAY-885 affected the viability and induced apoptosis in BC cells. Moreover, the BAY-885-mediated downregulation of myeloid cell leukemia-1 (Mcl-1) and upregulation of Bim were dependent on ERK5 inhibition. Furthermore, BAY-885 triggered activation of endoplasmic reticulum (ER) stress, which further led to the upregulation of Bim and downregulation of Mcl-1. ER stress was induced in an ERK5 inhibition-dependent manner. These findings suggested that BAY-885 induced apoptosis in BC cells via ER stress/Mcl-1/Bim axis, suggesting that BAY-885 may serve as a therapeutic agent for BC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Thyroid and Breast Surgery, Ningbo Medical Centre, the Affiliated Lihuili Hospital of Ningbo University, Ningbo
| | - Xiaochun Ji
- Department of Thyroid and Breast Surgery, Ningbo Medical Centre, the Affiliated Lihuili Hospital of Ningbo University, Ningbo
| | - Chenxiao Mao
- Department of Electronic Commerce, Zhejiang Fashion Institute of Technology, Ningbo
| | - Rui Yu
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo
| |
Collapse
|
3
|
Zhang J, Pearson AJ, Sabherwal N, Telfer BA, Ali N, Kan K, Xu Q, Zhang W, Chen F, Li S, Wang J, Gray NS, Risa-Ebrí B, Finegan KG, Cross MJ, Giurisato E, Whitmarsh AJ, Tournier C. Inhibiting ERK5 overcomes breast cancer resistance to anti-HER2 therapy by targeting the G1/S cell cycle transition. CANCER RESEARCH COMMUNICATIONS 2022; 2:131-145. [PMID: 36466034 PMCID: PMC7613885 DOI: 10.1158/2767-9764.crc-21-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Targeting the human epidermal growth factor receptor 2 (HER2) became a landmark in the treatment of HER2-driven breast cancer. Nonetheless, the clinical efficacy of anti-HER2 therapies can be short-lived and a significant proportion of patients ultimately develop metastatic disease and die. One striking consequence of oncogenic activation of HER2 in breast cancer cells is the constitutive activation of the extracellular-regulated protein kinase 5 (ERK5) through its hyperphosphorylation. In this study, we sought to decipher the significance of this unique molecular signature in promoting therapeutic resistance to anti-HER2 agents. We found that a small-molecule inhibitor of ERK5 suppressed the phosphorylation of the retinoblastoma protein (RB) in HER2 positive breast cancer cells. As a result, ERK5 inhibition enhanced the anti-proliferative activity of single-agent anti-HER2 therapy in resistant breast cancer cell lines by causing a G1 cell cycle arrest. Moreover, ERK5 knockdown restored the anti-tumor activity of the anti-HER2 agent lapatinib in human breast cancer xenografts. Taken together, these findings support the therapeutic potential of ERK5 inhibitors to improve the clinical benefit that patients receive from targeted HER2 therapies.
Collapse
Affiliation(s)
- Jingwei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Adam J Pearson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Nitin Sabherwal
- Division of Developmental Biology and Medicine, School of Medical Sciences, FBMH, University of Manchester, UK
| | - Brian A Telfer
- Division of Pharmacy and Optometry, School of Health Sciences, FBMH, University of Manchester, UK
| | - Nisha Ali
- Manchester University NHS FT, Wythenshawe hospital, UK
| | - Karmern Kan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Qiuping Xu
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Wei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Fuhui Chen
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK
| | - Shiyang Li
- Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, FBMH, University of Manchester, UK
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, USA
| | - Blanca Risa-Ebrí
- Division of Pharmacy and Optometry, School of Health Sciences, FBMH, University of Manchester, UK
| | - Katherine G Finegan
- Division of Pharmacy and Optometry, School of Health Sciences, FBMH, University of Manchester, UK
| | - Michael J Cross
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, UK
| | - Emanuele Giurisato
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK,Department of Biotechnology Chemistry and Pharmacy, University of Siena, Italy
| | - Alan J Whitmarsh
- Division of Molecular and Cellular Function, School of Biological Sciences, FBMH, University of Manchester, UK
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, UK,Corresponding author: Cathy Tournier, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK, Tel: +44 161 275 5417,
| |
Collapse
|
4
|
Small molecule ERK5 kinase inhibitors paradoxically activate ERK5 signalling: be careful what you wish for…. Biochem Soc Trans 2021; 48:1859-1875. [PMID: 32915196 PMCID: PMC7609025 DOI: 10.1042/bst20190338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
ERK5 is a protein kinase that also contains a nuclear localisation signal and a transcriptional transactivation domain. Inhibition of ERK5 has therapeutic potential in cancer and inflammation and this has prompted the development of ERK5 kinase inhibitors (ERK5i). However, few ERK5i programmes have taken account of the ERK5 transactivation domain. We have recently shown that the binding of small molecule ERK5i to the ERK5 kinase domain stimulates nuclear localisation and paradoxical activation of its transactivation domain. Other kinase inhibitors paradoxically activate their intended kinase target, in some cases leading to severe physiological consequences highlighting the importance of mitigating these effects. Here, we review the assays used to monitor ERK5 activities (kinase and transcriptional) in cells, the challenges faced in development of small molecule inhibitors to the ERK5 pathway, and classify the molecular mechanisms of paradoxical activation of protein kinases by kinase inhibitors.
Collapse
|
5
|
Xu Q, Zhang J, Telfer BA, Zhang H, Ali N, Chen F, Risa B, Pearson AJ, Zhang W, Finegan KG, Ucar A, Giurisato E, Tournier C. The extracellular-regulated protein kinase 5 (ERK5) enhances metastatic burden in triple-negative breast cancer through focal adhesion protein kinase (FAK)-mediated regulation of cell adhesion. Oncogene 2021; 40:3929-3941. [PMID: 33981002 PMCID: PMC8195737 DOI: 10.1038/s41388-021-01798-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 03/23/2021] [Accepted: 04/14/2021] [Indexed: 12/22/2022]
Abstract
There is overwhelming clinical evidence that the extracellular-regulated protein kinase 5 (ERK5) is significantly dysregulated in human breast cancer. However, there is no definite understanding of the requirement of ERK5 in tumor growth and metastasis due to very limited characterization of the pathway in disease models. In this study, we report that a high level of ERK5 is a predictive marker of metastatic breast cancer. Mechanistically, our in vitro data revealed that ERK5 was critical for maintaining the invasive capability of triple-negative breast cancer (TNBC) cells through focal adhesion protein kinase (FAK) activation. Specifically, we found that phosphorylation of FAK at Tyr397 was controlled by a kinase-independent function of ERK5. Accordingly, silencing ERK5 in mammary tumor grafts impaired FAK phosphorylation at Tyr397 and suppressed TNBC cell metastasis to the lung without preventing tumor growth. Collectively, these results establish a functional relationship between ERK5 and FAK signaling in promoting malignancy. Thus, targeting the oncogenic ERK5-FAK axis represents a promising therapeutic strategy for breast cancer exhibiting aggressive clinical behavior.
Collapse
Affiliation(s)
- Qiuping Xu
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jingwei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Brian A Telfer
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nisha Ali
- Manchester University NHS FT, Wythenshawe hospital, Manchester, UK
| | - Fuhui Chen
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Blanca Risa
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Adam J Pearson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Wei Zhang
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Katherine G Finegan
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ahmet Ucar
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Emanuele Giurisato
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Department of Biotechnology Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Cathy Tournier
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Drug Resistance in Metastatic Breast Cancer: Tumor Targeted Nanomedicine to the Rescue. Int J Mol Sci 2021; 22:ijms22094673. [PMID: 33925129 PMCID: PMC8125767 DOI: 10.3390/ijms22094673] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer, specifically metastatic breast, is a leading cause of morbidity and mortality in women. This is mainly due to relapse and reoccurrence of tumor. The primary reason for cancer relapse is the development of multidrug resistance (MDR) hampering the treatment and prognosis. MDR can occur due to a multitude of molecular events, including increased expression of efflux transporters such as P-gp, BCRP, or MRP1; epithelial to mesenchymal transition; and resistance development in breast cancer stem cells. Excessive dose dumping in chemotherapy can cause intrinsic anti-cancer MDR to appear prior to chemotherapy and after the treatment. Hence, novel targeted nanomedicines encapsulating chemotherapeutics and gene therapy products may assist to overcome cancer drug resistance. Targeted nanomedicines offer innovative strategies to overcome the limitations of conventional chemotherapy while permitting enhanced selectivity to cancer cells. Targeted nanotheranostics permit targeted drug release, precise breast cancer diagnosis, and importantly, the ability to overcome MDR. The article discusses various nanomedicines designed to selectively target breast cancer, triple negative breast cancer, and breast cancer stem cells. In addition, the review discusses recent approaches, including combination nanoparticles (NPs), theranostic NPs, and stimuli sensitive or “smart” NPs. Recent innovations in microRNA NPs and personalized medicine NPs are also discussed. Future perspective research for complex targeted and multi-stage responsive nanomedicines for metastatic breast cancer is discussed.
Collapse
|
7
|
Lim Kam Sian TCC, Chüeh AC, Daly RJ. Proteomics-based interrogation of the kinome and its implications for precision oncology. Proteomics 2021; 21:e2000161. [PMID: 33547865 DOI: 10.1002/pmic.202000161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
The identification of specific protein kinases as oncogenic drivers in a variety of cancer types, coupled with the clinical success of particular kinase-directed targeted therapies, has cemented the human kinome as an attractive source of "actionable" targets for cancer therapy. However, "mining" of the human kinome for precision oncology applications has yet to yield its full potential. This reflects a variety of issues, including oncogenic kinase dysregulation at levels not detectable by genomic sequencing and the uncharacterized nature of a considerable fraction of the kinome. In addition, selective therapeutic targeting of specific kinases requires efficient mapping of total kinome space impacted by candidate small molecule drugs. Fortunately, recent developments in proteomics techniques, particularly in mass spectrometry-based phosphoproteomics and kinomics, provide the necessary technology platforms to address these impediments. Moreover, initiatives such as the Clinical Proteomic Tumour Analysis Consortium have enabled the generation, deposition and integration of genomic, transcriptomic and (phospho)proteomic data for many cancer types, providing unprecedented insights into oncogenic kinases and cancer cell signalling generally. These multi-omic data are identifying novel therapeutic targets, highlighting opportunities for drug re-purposing, and helping assign optimal therapies to specific tumour subtypes, heralding a new era of "enhanced" precision oncology.
Collapse
Affiliation(s)
- Terry C C Lim Kam Sian
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Anderly C Chüeh
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Roger J Daly
- Cancer Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Canonical ErbB-2 isoform and ErbB-2 variant c located in the nucleus drive triple negative breast cancer growth. Oncogene 2020; 39:6245-6262. [PMID: 32843720 DOI: 10.1038/s41388-020-01430-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023]
Abstract
Triple negative breast cancer (TNBC) refers to tumors that do not express clinically significant levels of estrogen and progesterone receptors, and lack membrane overexpression or gene amplification of ErbB-2/HER2, a receptor tyrosine kinase. Transcriptome and proteome heterogeneity of TNBC poses a major challenge to precision medicine. Clinical biomarkers and targeted therapies for this disease remain elusive, so chemotherapy has been the standard of care for early and metastatic TNBC. Our present findings placed ErbB-2 in an unanticipated scenario: the nucleus of TNBC (NErbB-2). Our study on ErbB-2 alternative splicing events, using a PCR-sequencing approach combined with an RNA interference strategy, revealed that TNBC cells express either the canonical (wild-type) ErbB-2, encoded by transcript variant 1, or the non-canonical ErbB-2 isoform c, encoded by alternative variant 3 (RefSeq), or both. These ErbB-2 isoforms function in the nucleus as transcription factors. Evicting both from the nucleus or silencing isoform c only, blocks TN cell and tumor growth. This reveals not only NErbB-2 canonical and alternative isoforms role as targets of therapy in TNBC, but also isoform c dominant oncogenic potential. Furthermore, we validated our findings in the clinic and observed that NErbB-2 correlates with poor prognosis in primary TN tumors, disclosing NErbB-2 as a novel biomarker for TNBC. Our discoveries challenge the present scenario of drug development for personalized BC medicine that focuses on wild-type RefSeq proteins, which conserve the canonical domains and are located in their classical cellular compartments.
Collapse
|
9
|
Targeted Avenues for Cancer Treatment: The MEK5-ERK5 Signaling Pathway. Trends Mol Med 2020; 26:394-407. [PMID: 32277933 DOI: 10.1016/j.molmed.2020.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Twenty years have passed since extracellular signal-regulated kinase 5 (ERK5) and its upstream activator, mitogen-activated protein kinase 5 (MEK5), first emerged onto the cancer research scene. Although we have come a long way in defining the liaison between dysregulated MEK5-ERK5 signaling and the pathogenesis of epithelial and nonepithelial malignancies, selective targeting of this unique pathway remains elusive. Here, we provide an updated review of the existing evidence for a correlation between aberrant MEK5-ERK5 (phospho)proteomic/transcriptomic profiles, aggressive cancer states, and poor patient outcomes. We then focus on emerging insights from preclinical models regarding the relevance of upregulated ERK5 activity in promoting tumor growth, metastasis, therapy resistance, undifferentiated traits, and immunosuppression, highlighting the opportunities, prospects, and challenges of selectively blocking this cascade for antineoplastic treatment and chemosensitization.
Collapse
|
10
|
Wright TD, Raybuck C, Bhatt A, Monlish D, Chakrabarty S, Wendekier K, Gartland N, Gupta M, Burow ME, Flaherty PT, Cavanaugh JE. Pharmacological inhibition of the MEK5/ERK5 and PI3K/Akt signaling pathways synergistically reduces viability in triple-negative breast cancer. J Cell Biochem 2019; 121:1156-1168. [PMID: 31464004 DOI: 10.1002/jcb.29350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023]
Abstract
Triple-negative breast cancers (TNBCs) represent 15% to 20% of all breast cancers and are often associated with poor prognosis. The lack of targeted therapies for TNBCs contributes to higher mortality rates. Aberrations in the phosphoinositide-3-kinase (PI3K) and mitogen-activated protein kinase pathways have been linked to increased breast cancer proliferation and survival. It has been proposed that these survival characteristics are enhanced through compensatory signaling and crosstalk mechanisms. While the crosstalk between PI3K and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways has been characterized in several systems, new evidence suggests that MEK5/ERK5 signaling is a key component in the proliferation and survival of several aggressive cancers. In this study, we examined the effects of dual inhibition of PI3K/protein kinase B (Akt) and MEK5/ERK5 in the MDA-MB-231, BT-549, and MDA-MB-468 TNBC cell lines. We used the Akt inhibitor ipatasertib, ERK5 inhibitors XMD8-92 and AX15836, and the novel MEK5 inhibitor SC-1-181 to investigate the effects of dual inhibition. Our results indicated that dual inhibition of PI3K/Akt and MEK5/ERK5 signaling was more effective at reducing the proliferation and survival of TNBCs than single inhibition of either pathway alone. In particular, a loss of Bad phosphorylation at two distinct sites was observed with dual inhibition. Furthermore, the inhibition of both pathways led to p21 restoration, decreased cell proliferation, and induced apoptosis. In addition, the dual inhibition strategy was determined to be synergistic in MDA-MB-231 and BT-549 cells and was relatively nontoxic in the nonneoplastic MCF-10 cell line. In summary, the results from this study provide a unique prospective into the utility of a novel dual inhibition strategy for targeting TNBCs.
Collapse
Affiliation(s)
- Thomas D Wright
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Christopher Raybuck
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Akshita Bhatt
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Darlene Monlish
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania.,Department of Pediatrics, Washington University in St Louis, St Louis, Missouri
| | - Suravi Chakrabarty
- Department of Medicinal Chemistry, Duquesne University, Pittsburgh, Pennsylvania.,Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Katy Wendekier
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Nathan Gartland
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| | - Mohit Gupta
- Department of Medicinal Chemistry, Duquesne University, Pittsburgh, Pennsylvania
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Patrick T Flaherty
- Department of Medicinal Chemistry, Duquesne University, Pittsburgh, Pennsylvania
| | - Jane E Cavanaugh
- Department of Pharmacology and Toxicology, Duquesne University, Pittsburgh, Pennsylvania
| |
Collapse
|
11
|
Huang KL, Wu Y, Primeau T, Wang YT, Gao Y, McMichael JF, Scott AD, Cao S, Wendl MC, Johnson KJ, Ruggles K, Held J, Payne SH, Davies S, Dar A, Kinsinger CR, Mesri M, Rodriguez H, Ellis MJ, Townsend RR, Chen F, Fenyö D, Li S, Liu T, Carr SA, Ding L. Regulated Phosphosignaling Associated with Breast Cancer Subtypes and Druggability. Mol Cell Proteomics 2019; 18:1630-1650. [PMID: 31196969 PMCID: PMC6682998 DOI: 10.1074/mcp.ra118.001243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/02/2019] [Indexed: 12/25/2022] Open
Abstract
Aberrant phospho-signaling is a hallmark of cancer. We investigated kinase-substrate regulation of 33,239 phosphorylation sites (phosphosites) in 77 breast tumors and 24 breast cancer xenografts. Our search discovered 2134 quantitatively correlated kinase-phosphosite pairs, enriching for and extending experimental or binding-motif predictions. Among the 91 kinases with auto-phosphorylation, elevated EGFR, ERBB2, PRKG1, and WNK1 phosphosignaling were enriched in basal, HER2-E, Luminal A, and Luminal B breast cancers, respectively, revealing subtype-specific regulation. CDKs, MAPKs, and ataxia-telangiectasia proteins were dominant, master regulators of substrate-phosphorylation, whose activities are not captured by genomic evidence. We unveiled phospho-signaling and druggable targets from 113 kinase-substrate pairs and cascades downstream of kinases, including AKT1, BRAF and EGFR. We further identified kinase-substrate-pairs associated with clinical or immune signatures and experimentally validated activated phosphosites of ERBB2, EIF4EBP1, and EGFR. Overall, kinase-substrate regulation revealed by the largest unbiased global phosphorylation data to date connects driver events to their signaling effects.
Collapse
Affiliation(s)
- Kuan-Lin Huang
- ‡Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029; §Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; ¶Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029.
| | - Yige Wu
- **Department of Medicine, Washington University in St. Louis, MO 63108; ‡‡McDonnell Genome Institute, Washington University in St. Louis, MO 63108
| | - Tina Primeau
- ‡‡McDonnell Genome Institute, Washington University in St. Louis, MO 63108
| | - Yi-Ting Wang
- §§§Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Yuqian Gao
- §§§Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | | | - Adam D Scott
- **Department of Medicine, Washington University in St. Louis, MO 63108; ‡‡McDonnell Genome Institute, Washington University in St. Louis, MO 63108
| | - Song Cao
- **Department of Medicine, Washington University in St. Louis, MO 63108; ‡‡McDonnell Genome Institute, Washington University in St. Louis, MO 63108
| | - Michael C Wendl
- ‡‡McDonnell Genome Institute, Washington University in St. Louis, MO 63108; §§Department of Genetics, Washington University in St. Louis, MO 63108; ¶¶Department of Mathematics, Washington University in St. Louis, MO 63108.
| | - Kimberly J Johnson
- ‖‖Siteman Cancer Center, Washington University in St. Louis, MO 63108; ‡‡‡Brown School of Social Work, Washington University in St. Louis, MO 63108
| | - Kelly Ruggles
- ¶¶¶Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016
| | - Jason Held
- **Department of Medicine, Washington University in St. Louis, MO 63108; ‖‖Siteman Cancer Center, Washington University in St. Louis, MO 63108
| | - Samuel H Payne
- §§§Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Sherri Davies
- **Department of Medicine, Washington University in St. Louis, MO 63108; ‖‖Siteman Cancer Center, Washington University in St. Louis, MO 63108
| | - Arvin Dar
- ‖Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Mehdi Mesri
- ‖‖‖National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Henry Rodriguez
- ‖‖‖National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Matthew J Ellis
- ‡‡‡‡Dan L. Duncan Cancer Center & Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - R Reid Townsend
- **Department of Medicine, Washington University in St. Louis, MO 63108; ‖‖Siteman Cancer Center, Washington University in St. Louis, MO 63108
| | - Feng Chen
- **Department of Medicine, Washington University in St. Louis, MO 63108; ‖‖Siteman Cancer Center, Washington University in St. Louis, MO 63108
| | - David Fenyö
- ¶¶Department of Mathematics, Washington University in St. Louis, MO 63108
| | - Shunqiang Li
- **Department of Medicine, Washington University in St. Louis, MO 63108; ‖‖Siteman Cancer Center, Washington University in St. Louis, MO 63108
| | - Tao Liu
- ‡‡McDonnell Genome Institute, Washington University in St. Louis, MO 63108
| | - Steven A Carr
- §§§§The Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Li Ding
- **Department of Medicine, Washington University in St. Louis, MO 63108; §§Department of Genetics, Washington University in St. Louis, MO 63108; ‖‖Siteman Cancer Center, Washington University in St. Louis, MO 63108
| |
Collapse
|
12
|
Impact of ERK5 on the Hallmarks of Cancer. Int J Mol Sci 2019; 20:ijms20061426. [PMID: 30901834 PMCID: PMC6471124 DOI: 10.3390/ijms20061426] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) belongs to the mitogen-activated protein kinase (MAPK) family that consists of highly conserved enzymes expressed in all eukaryotic cells and elicits several biological responses, including cell survival, proliferation, migration, and differentiation. In recent years, accumulating lines of evidence point to a relevant role of ERK5 in the onset and progression of several types of cancer. In particular, it has been reported that ERK5 is a key signaling molecule involved in almost all the biological features of cancer cells so that its targeting is emerging as a promising strategy to suppress tumor growth and spreading. Based on that, in this review, we pinpoint the hallmark-specific role of ERK5 in cancer in order to identify biological features that will potentially benefit from ERK5 targeting.
Collapse
|
13
|
Kalimutho M, Sinha D, Mittal D, Srihari S, Nanayakkara D, Shafique S, Raninga P, Nag P, Parsons K, Khanna KK. Blockade of PDGFRβ circumvents resistance to MEK-JAK inhibition via intratumoral CD8 + T-cells infiltration in triple-negative breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:85. [PMID: 30777101 PMCID: PMC6379987 DOI: 10.1186/s13046-019-1075-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/30/2019] [Indexed: 12/26/2022]
Abstract
BACKGROUND Despite the increasing progress in targeted and immune based-directed therapies for other solid organ malignancies, currently there is no targeted therapy available for TNBCs. A number of mechanisms have been reported both in pre-clinical and clinical settings that involve inherent, acquired and adaptive resistance to small molecule inhibitors. Here, we demonstrated a novel resistance mechanism in TNBC cells mediated by PDGFRβ in response to JAK2 inhibition. METHODS Multiple in vitro (subG1, western blotting, immunofluorescence, RT-PCR, Immunoprecipitation), in vivo and publically available datasets were used. RESULTS We showed that TNBC cells exposed to MEK1/2-JAK2 inhibitors exhibit resistant colonies in anchorage-independent growth assays. Moreover, cells treated with various small molecule inhibitors including JAK2 promote PDGFRβ upregulation. Using publically available databases, we showed that patients expressing high PDGFRβ or its ligand PDGFB exhibit poor relapse-free survival upon chemotherapeutic treatment. Mechanistically we found that JAK2 expression controls steady state levels of PDGFRβ. Thus, co-blockade of PDGFRβ with JAK2 and MEK1/2 inhibitors completely eradicated resistant colonies in vitro. We found that triple-combined treatment had a significant impact on CD44+/CD24- stem-cell-like cells. Likewise, we found a significant tumor growth inhibition in vivo through intratumoral CD8+ T cells infiltration in a manner that is reversed by anti-CD8 antibody treatment. CONCLUSION These findings reveal a novel regulatory role of JAK2-mediated PDGFRβ proteolysis and provide an example of a PDGFRβ-mediated resistance mechanism upon specific target inhibition in TNBC.
Collapse
Affiliation(s)
- Murugan Kalimutho
- Signal Transduction laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.
| | - Debottam Sinha
- Signal Transduction laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Sriganesh Srihari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Devathri Nanayakkara
- Signal Transduction laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Shagufta Shafique
- Signal Transduction laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Prahlad Raninga
- Signal Transduction laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Purba Nag
- Signal Transduction laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.,School of Environment and Science, Griffith University, Nathan, QLD, 4111, Australia
| | - Kate Parsons
- Signal Transduction laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia
| | - Kum Kum Khanna
- Signal Transduction laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
14
|
Pinto SM, Subbannayya Y, Prasad TSK. Functional Proteomic Analysis to Characterize Signaling Crosstalk. Methods Mol Biol 2019; 1871:197-224. [PMID: 30276742 DOI: 10.1007/978-1-4939-8814-3_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The biological activities of a cell are determined by its response to external stimuli. The signals are transduced from either intracellular or extracellular milieu through networks of multi-protein complexes and post-translational modifications of proteins (PTMs). Most PTMs including phosphorylation, acetylation, ubiquitination, and SUMOylation, among others, modulate activities of proteins and regulate biological processes such as proliferation, differentiation, as well as host pathogen interaction. Conventionally, reverse genetics analysis and single molecule-based studies were employed to identify and characterize the function of PTMs and enzyme-substrate networks regulated by them. With the advent of high-throughput technologies, it is now possible to identify and quantify thousands of PTM sites in a single experiment. Here, we discuss recent advances in enrichment strategies of various PTMs. We also describe a method for the identification and relative quantitation of proteins using a tandem mass tag labeling approach combined with serial enrichment of phosphorylation, acetylation and succinylation using antibody enrichment strategy.
Collapse
Affiliation(s)
- Sneha M Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Yashwanth Subbannayya
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India.
| |
Collapse
|
15
|
Pinker K, Chin J, Melsaether AN, Morris EA, Moy L. Precision Medicine and Radiogenomics in Breast Cancer: New Approaches toward Diagnosis and Treatment. Radiology 2018; 287:732-747. [PMID: 29782246 DOI: 10.1148/radiol.2018172171] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Precision medicine is medicine optimized to the genotypic and phenotypic characteristics of an individual and, when present, his or her disease. It has a host of targets, including genes and their transcripts, proteins, and metabolites. Studying precision medicine involves a systems biology approach that integrates mathematical modeling and biology genomics, transcriptomics, proteomics, and metabolomics. Moreover, precision medicine must consider not only the relatively static genetic codes of individuals, but also the dynamic and heterogeneous genetic codes of cancers. Thus, precision medicine relies not only on discovering identifiable targets for treatment and surveillance modification, but also on reliable, noninvasive methods of identifying changes in these targets over time. Imaging via radiomics and radiogenomics is poised for a central role. Radiomics, which extracts large volumes of quantitative data from digital images and amalgamates these together with clinical and patient data into searchable shared databases, potentiates radiogenomics, which is the combination of genetic and radiomic data. Radiogenomics may provide voxel-by-voxel genetic information for a complete, heterogeneous tumor or, in the setting of metastatic disease, set of tumors and thereby guide tailored therapy. Radiogenomics may also quantify lesion characteristics, to better differentiate between benign and malignant entities, and patient characteristics, to better stratify patients according to risk for disease, thereby allowing for more precise imaging and screening. This report provides an overview of precision medicine and discusses radiogenomics specifically in breast cancer. © RSNA, 2018.
Collapse
Affiliation(s)
- Katja Pinker
- From the Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, New York, NY (K.P., J.C., E.A.M.); and Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York University of Medicine, 160 E 34th St, New York, NY 10016 (A.N.M., L.M.)
| | - Joanne Chin
- From the Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, New York, NY (K.P., J.C., E.A.M.); and Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York University of Medicine, 160 E 34th St, New York, NY 10016 (A.N.M., L.M.)
| | - Amy N Melsaether
- From the Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, New York, NY (K.P., J.C., E.A.M.); and Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York University of Medicine, 160 E 34th St, New York, NY 10016 (A.N.M., L.M.)
| | - Elizabeth A Morris
- From the Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, New York, NY (K.P., J.C., E.A.M.); and Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York University of Medicine, 160 E 34th St, New York, NY 10016 (A.N.M., L.M.)
| | - Linda Moy
- From the Department of Radiology, Breast Imaging Service, Memorial Sloan-Kettering Cancer Center, New York, NY (K.P., J.C., E.A.M.); and Center for Advanced Imaging Innovation and Research, Laura and Isaac Perlmutter Cancer Center, New York University of Medicine, 160 E 34th St, New York, NY 10016 (A.N.M., L.M.)
| |
Collapse
|
16
|
Tusa I, Gagliardi S, Tubita A, Pandolfi S, Urso C, Borgognoni L, Wang J, Deng X, Gray NS, Stecca B, Rovida E. ERK5 is activated by oncogenic BRAF and promotes melanoma growth. Oncogene 2018; 37:2601-2614. [PMID: 29483645 PMCID: PMC5945581 DOI: 10.1038/s41388-018-0164-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Malignant melanoma is among the most aggressive cancers and its incidence is increasing worldwide. Targeted therapies and immunotherapy have improved the survival of patients with metastatic melanoma in the last few years; however, available treatments are still unsatisfactory. While the role of the BRAF-MEK1/2-ERK1/2 pathway in melanoma is well established, the involvement of mitogen-activated protein kinases MEK5-ERK5 remains poorly explored. Here we investigated the function of ERK5 signaling in melanoma. We show that ERK5 is consistently expressed in human melanoma tissues and is active in melanoma cells. Genetic silencing and pharmacological inhibition of ERK5 pathway drastically reduce the growth of melanoma cells and xenografts harboring wild-type (wt) or mutated BRAF (V600E). We also found that oncogenic BRAF positively regulates expression, phosphorylation, and nuclear localization of ERK5. Importantly, ERK5 kinase and transcriptional transactivator activities are enhanced by BRAF. Nevertheless, combined pharmacological inhibition of BRAFV600E and MEK5 is required to decrease nuclear ERK5, that is critical for the regulation of cell proliferation. Accordingly, combination of MEK5 or ERK5 inhibitors with BRAFV600E inhibitor vemurafenib is more effective than single treatments in reducing colony formation and growth of BRAFV600E melanoma cells and xenografts. Overall, these data support a key role of the ERK5 pathway for melanoma growth in vitro and in vivo and suggest that targeting ERK5, alone or in combination with BRAF-MEK1/2 inhibitors, might represent a novel approach for melanoma treatment.
Collapse
Affiliation(s)
- Ignazia Tusa
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Alessandro Tubita
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Silvia Pandolfi
- Core Research Laboratory - Istituto Toscano Tumori, Florence, Italy
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Carmelo Urso
- Anatomic Pathology Unit, Dermatopathology Section, S.M. Annunziata Hospital, Florence, Italy
| | - Lorenzo Borgognoni
- Plastic Surgery Unit, Regional Melanoma Referral Center, S.M. Annunziata Hospital, Florence, Italy
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Xianming Deng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Barbara Stecca
- Core Research Laboratory - Istituto Toscano Tumori, Florence, Italy.
| | - Elisabetta Rovida
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
17
|
Co-targeting poly(ADP-ribose) polymerase (PARP) and histone deacetylase (HDAC) in triple-negative breast cancer: Higher synergism in BRCA mutated cells. Biomed Pharmacother 2018; 99:543-551. [DOI: 10.1016/j.biopha.2018.01.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/24/2017] [Accepted: 01/05/2018] [Indexed: 11/18/2022] Open
|
18
|
Wiegmans AP, Miranda M, Wen SW, Al-Ejeh F, Möller A. RAD51 inhibition in triple negative breast cancer cells is challenged by compensatory survival signaling and requires rational combination therapy. Oncotarget 2018; 7:60087-60100. [PMID: 27507046 PMCID: PMC5312370 DOI: 10.18632/oncotarget.11065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
The molecular rationale to induce synthetic lethality, by targeting defective homologous recombination repair in triple negative breast cancer (TNBC), has proven to have several shortcomings. Not meeting the expected minimal outcomes in clinical trials has highlighted common clinical resistance mechanisms including; increased expression of the target gene PARP1, increased expression or reversion mutation of BRCA1, or up-regulation of the compensatory homologous recombination protein RAD51. Indeed, RAD51 has been demonstrated to be an alternative synthetic lethal target in BRCA1-mutated cancers. To overcome selective pressure on DNA repair pathways, we examined new potential targets within TNBC that demonstrate synthetic lethality in association with RAD51 depletion. We confirmed complementary targets of PARP1/2 and DNA-PK as well as a new synthetic lethality combination with p38. p38 is considered a relevant target in breast cancer, as it has been implicated in resistance to chemotherapy, including tamoxifen. We show that the combination of targeting RAD51 and p38 inhibits cell proliferation both in vitro and in vivo, which was further enhanced by targeting of PARP1. Analysis of the molecular mechanisms revealed that depletion of RAD51 increased ERK1/2 and p38 signaling. Our results highlight a potential compensatory mechanism via p38 that limits DNA targeted therapy.
Collapse
Affiliation(s)
- Adrian P Wiegmans
- Tumor Microenvironment Laboratory, QIMR Berghofer, Herston Rd, Herston QLD 4006, Australia
| | - Mariska Miranda
- Personalized Medicine Laboratory, QIMR Berghofer, Herston Rd, Herston QLD 4006, Australia
| | - Shu Wen Wen
- Tumor Microenvironment Laboratory, QIMR Berghofer, Herston Rd, Herston QLD 4006, Australia
| | - Fares Al-Ejeh
- Personalized Medicine Laboratory, QIMR Berghofer, Herston Rd, Herston QLD 4006, Australia
| | - Andreas Möller
- Tumor Microenvironment Laboratory, QIMR Berghofer, Herston Rd, Herston QLD 4006, Australia.,School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
19
|
Pereira DM, Simões AES, Gomes SE, Castro RE, Carvalho T, Rodrigues CMP, Borralho PM. MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism. Oncotarget 2018; 7:34322-40. [PMID: 27144434 PMCID: PMC5085159 DOI: 10.18632/oncotarget.9107] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/31/2016] [Indexed: 12/22/2022] Open
Abstract
The MEK5/ERK5 signaling pathway is emerging as an important contributor to colon cancer onset, progression and metastasis; however, its relevance to chemotherapy resistance remains unknown. Here, we evaluated the impact of the MEK5/ERK5 cascade in colon cancer cell sensitivity to 5-fluorouracil (5-FU). Increased ERK5 expression was correlated with poor overall survival in colon cancer patients. In colon cancer cells, 5-FU exposure impaired endogenous KRAS/MEK5/ERK5 expression and/or activation. In turn, MEK5 constitutive activation reduced 5-FU-induced cytotoxicity. Using genetic and pharmacological approaches, we showed that ERK5 inhibition increased caspase-3/7 activity and apoptosis following 5-FU exposure. Mechanistically, this was further associated with increased p53 transcriptional activation of p21 and PUMA. In addition, ERK5 inhibition increased the response of HCT116 p53+/+ cells to 5-FU, but failed to sensitize HCT116 p53−/− cells to the cytotoxic effects of this chemotherapeutic agent, suggesting a p53-dependent axis mediating 5-FU sensitization. Finally, ERK5 inhibition using XMD8-92 was shown to increase the antitumor effects of 5-FU in a murine subcutaneous xenograft model, enhancing apoptosis while markedly reducing tumor growth. Collectively, our results suggest that ERK5-targeted in hibition provides a promising therapeutic approach to overcome resistance to 5-FU-based chemotherapy and improve colon cancer treatment.
Collapse
Affiliation(s)
- Diane M Pereira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - André E S Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sofia E Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Tânia Carvalho
- Histology and Comparative Pathology Laboratory, Instituto de Medicina Molecular, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
20
|
García-Aranda M, Redondo M. Protein Kinase Targets in Breast Cancer. Int J Mol Sci 2017; 18:ijms18122543. [PMID: 29186886 PMCID: PMC5751146 DOI: 10.3390/ijms18122543] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
With 1.67 million new cases and 522,000 deaths in the year 2012, breast cancer is the most common type of diagnosed malignancy and the second leading cause of cancer death in women around the world. Despite the success of screening programs and the development of adjuvant therapies, a significant percentage of breast cancer patients will suffer a metastatic disease that, to this day, remains incurable and justifies the research of new therapies to improve their life expectancy. Among the new therapies that have been developed in recent years, the emergence of targeted therapies has been a milestone in the fight against cancer. Over the past decade, many studies have shown a causal role of protein kinase dysregulations or mutations in different human diseases, including cancer. Along these lines, cancer research has demonstrated a key role of many protein kinases during human tumorigenesis and cancer progression, turning these molecules into valid candidates for new targeted therapies. The subsequent discovery and introduction in 2001 of the kinase inhibitor imatinib, as a targeted treatment for chronic myelogenous leukemia, revolutionized cancer genetic pathways research, and lead to the development of multiple small-molecule kinase inhibitors against various malignancies, including breast cancer. In this review, we analyze studies published to date about novel small-molecule kinase inhibitors and evaluate if they would be useful to develop new treatment strategies for breast cancer patients.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
| | - Maximino Redondo
- Biochemistry Department, Hospital Costa del Sol, Carretera de Cádiz km, 187, 29600 Marbella, Málaga, Spain.
- Biochemistry Department, Facultad de Medicina de la Universidad de Málaga, Bulevar Louis Pasteur 32, 29010 Málaga, Spain.
| |
Collapse
|
21
|
Betts JA, Moradi Marjaneh M, Al-Ejeh F, Lim YC, Shi W, Sivakumaran H, Tropée R, Patch AM, Clark MB, Bartonicek N, Wiegmans AP, Hillman KM, Kaufmann S, Bain AL, Gloss BS, Crawford J, Kazakoff S, Wani S, Wen SW, Day B, Möller A, Cloonan N, Pearson J, Brown MA, Mercer TR, Waddell N, Khanna KK, Dray E, Dinger ME, Edwards SL, French JD. Long Noncoding RNAs CUPID1 and CUPID2 Mediate Breast Cancer Risk at 11q13 by Modulating the Response to DNA Damage. Am J Hum Genet 2017; 101:255-266. [PMID: 28777932 PMCID: PMC5544418 DOI: 10.1016/j.ajhg.2017.07.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Breast cancer risk is strongly associated with an intergenic region on 11q13. We have previously shown that the strongest risk-associated SNPs fall within a distal enhancer that regulates CCND1. Here, we report that, in addition to regulating CCND1, this enhancer regulates two estrogen-regulated long noncoding RNAs, CUPID1 and CUPID2. We provide evidence that the risk-associated SNPs are associated with reduced chromatin looping between the enhancer and the CUPID1 and CUPID2 bidirectional promoter. We further show that CUPID1 and CUPID2 are predominantly expressed in hormone-receptor-positive breast tumors and play a role in modulating pathway choice for the repair of double-strand breaks. These data reveal a mechanism for the involvement of this region in breast cancer.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Cell Line, Tumor
- Chromatin/metabolism
- Chromosomes, Human, Pair 11/genetics
- Cyclin D1/genetics
- DNA Breaks, Double-Stranded
- DNA Damage/genetics
- DNA Repair/genetics
- Enhancer Elements, Genetic/genetics
- Estrogens/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease/genetics
- Humans
- MCF-7 Cells
- Polymorphism, Single Nucleotide/genetics
- Promoter Regions, Genetic/genetics
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Small Interfering/genetics
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Joshua A Betts
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Mahdi Moradi Marjaneh
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Fares Al-Ejeh
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Yi Chieh Lim
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Wei Shi
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Haran Sivakumaran
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Romain Tropée
- Queensland University of Technology at the Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Ann-Marie Patch
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Michael B Clark
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX1 2JD, UK; Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Nenad Bartonicek
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Adrian P Wiegmans
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Kristine M Hillman
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Susanne Kaufmann
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Amanda L Bain
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Brian S Gloss
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joanna Crawford
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen Kazakoff
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Shivangi Wani
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Shu W Wen
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Bryan Day
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Andreas Möller
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Nicole Cloonan
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - John Pearson
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Melissa A Brown
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy R Mercer
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicola Waddell
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Kum Kum Khanna
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Eloise Dray
- Queensland University of Technology at the Translational Research Institute, Brisbane, QLD 4102, Australia; Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, QLD 4059, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Stacey L Edwards
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| | - Juliet D French
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| |
Collapse
|
22
|
Hoang VT, Yan TJ, Cavanaugh JE, Flaherty PT, Beckman BS, Burow ME. Oncogenic signaling of MEK5-ERK5. Cancer Lett 2017; 392:51-59. [PMID: 28153789 PMCID: PMC5901897 DOI: 10.1016/j.canlet.2017.01.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/17/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) regulate diverse cellular processes including proliferation, cell survival, differentiation, and apoptosis. While conventional MAPK constituents have well-defined roles in oncogenesis, the MEK5 pathway has only recently emerged in cancer research. In this review, we consider the MEK5 signaling cascade, focusing specifically on its involvement in drug resistance and regulation of aggressive cancer phenotypes. Moreover, we explore the role of MEK5/ERK5 in tumorigenesis and metastatic progression, discussing the discrepancies in preclinical studies and assessing its viability as a therapeutic target for anti-cancer agents.
Collapse
Affiliation(s)
- Van T Hoang
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - Thomas J Yan
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - Jane E Cavanaugh
- Department of Pharmacological Sciences, Division of Medicinal Chemistry, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Patrick T Flaherty
- Department of Pharmacological Sciences, Division of Medicinal Chemistry, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | | | - Matthew E Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA; Department of Pharmacology, Tulane University, New Orleans, LA, USA; Tulane Cancer Center, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
23
|
Bhattacharya R, Banerjee K, Mukherjee N, Sen M, Mukhopadhyay A. From molecular insight to therapeutic strategy: The holistic approach for treating triple negative breast cancer. Pathol Res Pract 2017; 213:177-182. [DOI: 10.1016/j.prp.2017.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 01/02/2017] [Accepted: 01/02/2017] [Indexed: 02/07/2023]
|
24
|
Liu F, Zhang H, Song H. Upregulation of MEK5 by Stat3 promotes breast cancer cell invasion and metastasis. Oncol Rep 2017; 37:83-90. [PMID: 27878304 DOI: 10.3892/or.2016.5256] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/03/2016] [Indexed: 02/05/2023] Open
Abstract
Mitogen extracellular-signal-regulated kinase kinase 5 (MEK5) plays an important role in promoting cell proliferation and tumorigenesis. The aberrant expression of MEK5 has been reported in various malignant diseases including cancers of breast, prostate, lung, colorectal and brain. However, the function and regulation of MEK5 signaling pathway are ambiguous and remain elusive with respect to its oncogenic roles in various cancers, especially in the regulation of the initiation and progression of cancer invasion and metastasis. Ectopic expression of MEK5 or knockdown of MEK5 by shRNA with in vitro cell based models demonstrated the role of MEK5 in regulation of epithelial mesenchymal transition (EMT) and breast cancer invasion and metastasis. Here, we show that MEK5 upregulated by Stat3 promotes breast cancer cell invasion through EMT. Further study demonstrated that Stat3 could bind to promoter region of MEK5 and enhanced MEK5 transcription and expression. In addition, the phosphorylation of MEK5 significantly increased in breast cancer cells corresponding to metastatic capability of breast cancer cells. The depletion of MEK5 by shRNA significantly decreased breast cancer invasion. Ectopic expression of MEK5 could confer non-invasive breast cancer cells to become invasion capable cells. Moreover, the phosphorylation of Erk5, a MEK5-regulated downstream kinase, was also upregulated consistent with the increased level of active MEK5. Our studies provide insights into a molecular mechanism by which MEK5 transcriptionally upregulated by Stat3 augments breast cancer cell EMT, which subsequently enhances cancer cell invasion and metastasis. This finding may suggest that Stat3 and MEK5/Erk5 pathways could be an effective therapeutic target for inhibition of breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Fang Liu
- Xi'an Jiaotong University Suzhou Academy, Suzhou, Jiangsu 215123, P.R. China
| | - Hao Zhang
- Shantou University Medical College Cancer Research Center, Shantou, Guangdong 515041, P.R. China
| | - Hui Song
- Xi'an Jiaotong University Suzhou Academy, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
25
|
EphA3 as a target for antibody immunotherapy in acute lymphoblastic leukemia. Leukemia 2016; 31:1779-1787. [PMID: 27922598 DOI: 10.1038/leu.2016.371] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 10/23/2016] [Accepted: 11/28/2016] [Indexed: 01/26/2023]
Abstract
The human EphA3 gene was discovered in a pre-B acute lymphoblastic leukemia (pre-B-ALL) using the EphA3-specific monoclonal antibody (mAb), IIIA4, which binds and activates both human and mouse EphA3. We use two models of human pre-B-ALL to examine EphA3 function, demonstrating effects on pre-B-cell receptor signaling. In therapeutic targeting studies, we demonstrated antitumor effects of the IIIA4 mAb in EphA3-expressing leukemic xenografts and no antitumor effect in the xenografts with no EphA3 expression providing evidence that EphA3 is a functional therapeutic target in pre-B-ALL. Here we show that the therapeutic effect of the anti-EphA3 antibody was greatly enhanced by adding an α-particle-emitting 213Bismuth payload.
Collapse
|
26
|
Abstract
Our understanding of the natural history of breast cancer has evolved alongside technologies to study its genomic, transcriptomic, proteomic, and metabolomics landscapes. These technologies have helped decipher multiple molecular pathways dysregulated in breast cancer. First-generation 'omics analyses considered each of these dimensions individually, but it is becoming increasingly clear that more holistic, integrative approaches are required to fully understand complex biological systems. The 'omics represent an exciting era of discovery in breast cancer research, although important issues need to be addressed to realize the clinical utility of these data through precision cancer care. How can the data be applied to predict response to molecular-targeted therapies? When should treatment decisions be based on tumor genetics rather than histology? And with the sudden explosion of "big data" from large 'omics consortia and new precision clinical trials, how do we now negotiate evidence-based pathways to clinical translation through this apparent sea of opportunity? The aim of this review is to provide a broad overview of 'omics technologies used in breast cancer research today, the current state-of-play in terms of applying this new knowledge in the clinic, and the practical and ethical issues that will be central to the public discussion on the future of precision cancer care.
Collapse
|
27
|
Gomez N, Erazo T, Lizcano JM. ERK5 and Cell Proliferation: Nuclear Localization Is What Matters. Front Cell Dev Biol 2016; 4:105. [PMID: 27713878 PMCID: PMC5031611 DOI: 10.3389/fcell.2016.00105] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022] Open
Abstract
ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumor growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation, and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote cell proliferation. Although some ERK5 kinase inhibitors have shown antiproliferative activity it is likely that those tumors expressing kinase-inactive nuclear ERK5 will not respond to these inhibitors.
Collapse
Affiliation(s)
| | | | - Jose M. Lizcano
- Protein Kinases and Signal Transduction Laboratory, Institut de Neurociencies and Departament de Bioquimica i Biologia Molecular, Facultat de Medicina, Universitat Autonoma de BarcelonaBarcelona, Spain
| |
Collapse
|
28
|
Novel targets for paclitaxel nano formulations: Hopes and hypes in triple negative breast cancer. Pharmacol Res 2016; 111:577-591. [PMID: 27461138 DOI: 10.1016/j.phrs.2016.07.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
Triple negative breast cancer is defined as one of the utmost prevailing breast cancers worldwide, possessing an inadequate prognosis and treatment option limited to chemotherapy and radiotherapy, creating a challenge for researchers as far as developing a specific targeted therapy is concerned. The past research era has shown several promising outcomes for TNBC such as nano-formulations of the chemotherapeutic agents already used for the management of the malignant tumor. Taking a glance at paclitaxel nano formulations, it has been proven beneficial in several researches in the past decade; nevertheless its solubility is often a challenge to scientists in achieving success. We have henceforth discussed the basic heterogeneity of triple negative breast cancer along with the current management options as well as a brief outlook on pros and cons of paclitaxel, known as the most widely used chemotherapeutic agent for the treatment of the disease. We further analyzed the need of nanotechnology pertaining to the problems encountered with the current paclitaxel formulations available discussing the strategic progress in various nano-formulations till date taking into account the basic research strategies required in terms of solubility, permeability, physicochemical properties, active and passive targeting. A thorough review in recent advances in active targeting for TNBC was carried out whereby the various ligands which are at present finding its way into TNBC research such as hyaluronic acid, folic acid, transferrin, etc. were discussed. These ligands have specific receptor affinity to TNBC tumor cells hence can be beneficial for novel drug targeting approaches. Conversely, there are currently several novel strategies in the research pipeline whose targeting ligands have not yet been studied. Therefore, we reviewed upon the numerous novel receptor targets along with the respective nano-formulation aspects which have not yet been fully researched upon and could be exemplified as outstanding target strategies for TNBC which is currently an urgent requirement.
Collapse
|
29
|
Simões AES, Rodrigues CMP, Borralho PM. The MEK5/ERK5 signalling pathway in cancer: a promising novel therapeutic target. Drug Discov Today 2016; 21:1654-1663. [PMID: 27320690 DOI: 10.1016/j.drudis.2016.06.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/18/2016] [Accepted: 06/08/2016] [Indexed: 12/18/2022]
Abstract
Conventional mitogen-activated protein kinase (MAPK) family members are among the most sought-after oncogenic effectors for the development of novel human cancer treatment strategies. MEK5/ERK5 has been the less-studied MAPK subfamily, despite its increasingly demonstrated relevance in the growth, survival, and differentiation of normal cells. MEK5/ERK5 signalling has already been proposed to have pivotal roles in several cancer hallmarks, and to mediate the effects of a range of oncogenes. Accumulating evidence indicates the contribution of MEK5/ERK5 signalling to therapy resistance and the benefits of using MEK5/ERK5 inhibitory strategies in the treatment of human cancer. Here, we explore the major known contributions of MEK5/ERK5 signalling to the onset and progression of several types of cancer, and highlight the potential clinical relevance of targeting MEK5/ERK5 pathways.
Collapse
Affiliation(s)
- André E S Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
30
|
Abstract
Over the past decade, rapid advances in genomics, proteomics and functional genomics technologies that enable in-depth interrogation of cancer genomes and proteomes and high-throughput analysis of gene function have enabled characterization of the kinome 'at large' in human cancers, providing crucial insights into how members of the protein kinase superfamily are dysregulated in malignancy, the context-dependent functional role of specific kinases in cancer and how kinome remodelling modulates sensitivity to anticancer drugs. The power of these complementary approaches, and the insights gained from them, form the basis of this Analysis article.
Collapse
Affiliation(s)
- Emmy D G Fleuren
- Department of Medical Oncology, Radboud University Medical Centre, Geert Grooteplein-Zuid 10, 6525 GA Nijmegen, The Netherlands
| | - Luxi Zhang
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jianmin Wu
- Cancer Division, Kinghorn Cancer Centre, Garvan Institute of Medical Research, 370 Victoria Street, Sydney, New South Wales 2010, Australia
| | - Roger J Daly
- Cancer Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
31
|
Guestini F, McNamara KM, Ishida T, Sasano H. Triple negative breast cancer chemosensitivity and chemoresistance: current advances in biomarkers indentification. Expert Opin Ther Targets 2015; 20:705-20. [PMID: 26607563 DOI: 10.1517/14728222.2016.1125469] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Triple negative breast cancer (TNBC) is a heterogeneous clinicopathological entity constituting approximately 15 - 20% of all breast cancer (BC) patients. It shows high recurrence rate and poor prognosis. At this juncture, because of the lack of specific targeted therapies available and the development in patients of resistance to some therapeutic agents, clinical and translational settings have gained importance over the past decades. AREAS COVERED The development of novel, safe and effective alternatives for the treatment of TNBC are in high demand. Therefore, this review aims to summarize the state of the art of TNBC, its current therapies and potential therapeutic targets. In particular, focus is put on recent advances regarding the identification of emerging biomarkers as prognostic and/or predictive markers, including surrogate markers for molecular tumor subtyping and identifying potential responders to new therapies. EXPERT OPINION Effective development of informative markers could constitute an important armamentarium tool for identifying appropriate therapies to challenge the aggressiveness of TNBC.
Collapse
Affiliation(s)
- Fouzia Guestini
- a Department of Anatomic Pathology , Tohoku University School of Medicine , Aoba-ku, Sendai , Japan
| | - Keely May McNamara
- a Department of Anatomic Pathology , Tohoku University School of Medicine , Aoba-ku, Sendai , Japan
| | - Takanori Ishida
- b Department of Surgical Oncology , Tohoku University Graduate School of Medicine , Aoba-ku , Sendai , Japan
| | - Hironobu Sasano
- a Department of Anatomic Pathology , Tohoku University School of Medicine , Aoba-ku, Sendai , Japan
| |
Collapse
|
32
|
Kalimutho M, Parsons K, Mittal D, López JA, Srihari S, Khanna KK. Targeted Therapies for Triple-Negative Breast Cancer: Combating a Stubborn Disease. Trends Pharmacol Sci 2015; 36:822-846. [PMID: 26538316 DOI: 10.1016/j.tips.2015.08.009] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 11/17/2022]
Abstract
Triple-negative breast cancers (TNBCs) constitute a heterogeneous subtype of breast cancers that have a poor clinical outcome. Although no approved targeted therapy is available for TNBCs, molecular-profiling efforts have revealed promising molecular targets, with several candidate compounds having now entered clinical trials for TNBC patients. However, initial results remain modest, thereby highlighting challenges potentially involving intra- and intertumoral heterogeneity and acquisition of therapy resistance. We present a comprehensive review on emerging targeted therapies for treating TNBCs, including the promising approach of immunotherapy and the prognostic value of tumor-infiltrating lymphocytes. We discuss the impact of pathway rewiring in the acquisition of drug resistance, and the prospect of employing combination therapy strategies to overcome challenges towards identifying clinically-viable targeted treatment options for TNBC.
Collapse
Affiliation(s)
- Murugan Kalimutho
- Signal Transduction Laboratory, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia.
| | - Kate Parsons
- Signal Transduction Laboratory, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Natural Sciences, Griffith University, Nathan, QLD 411, Australia
| | - Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - J Alejandro López
- School of Natural Sciences, Griffith University, Nathan, QLD 411, Australia; Oncogenomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Sriganesh Srihari
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, Queensland Institute of Medical Research (QIMR) Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia; School of Natural Sciences, Griffith University, Nathan, QLD 411, Australia.
| |
Collapse
|
33
|
Xin J, Ren X, Chen L, Wang Y. Identifying network biomarkers based on protein-protein interactions and expression data. BMC Med Genomics 2015; 8 Suppl 2:S11. [PMID: 26044366 PMCID: PMC4460625 DOI: 10.1186/1755-8794-8-s2-s11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Identifying effective biomarkers to battle complex diseases is an important but challenging task in biomedical research today. Molecular data of complex diseases is increasingly abundant due to the rapid advance of high throughput technologies. However, a great gap remains in identifying the massive molecular data to phenotypic changes, in particular, at a network level, i.e., a novel method for identifying network biomarkers is in pressing need to accurately classify and diagnose diseases from molecular data and shed light on the mechanisms of disease pathogenesis. Rather than seeking differential genes at an individual-molecule level, here we propose a novel method for identifying network biomarkers based on protein-protein interaction affinity (PPIA), which identify the differential interactions at a network level. Specifically, we firstly define PPIAs by estimating the concentrations of protein complexes based on the law of mass action upon gene expression data. Then we select a small and non-redundant group of protein-protein interactions and single proteins according to the PPIAs, that maximizes the discerning ability of cases from controls. This method is mathematically formulated as a linear programming, which can be efficiently solved and guarantees a globally optimal solution. Extensive results on experimental data in breast cancer demonstrate the effectiveness and efficiency of the proposed method for identifying network biomarkers, which not only can accurately distinguish the phenotypes but also provides significant biological insights at a network or pathway level. In addition, our method provides a new way to integrate static protein-protein interaction information with dynamical gene expression data.
Collapse
|
34
|
Miranda M, Rozali E, Khanna KK, Al-Ejeh F. MEK5-ERK5 pathway associates with poor survival of breast cancer patients after systemic treatments. Oncoscience 2015; 2:99-101. [PMID: 25859552 PMCID: PMC4381702 DOI: 10.18632/oncoscience.135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/18/2015] [Indexed: 11/25/2022] Open
Abstract
The MEK5-ERK5 pathway is a mammalian mitogen-activated protein (MAP) kinase cascade that is not well studied compared to other MAP kinase cascades. Two independent studies by Al-Ejeh et al. and Ortiz-Ruiz et al. published in Oncotarget last year concluded that ERK5 is an attractive target in triple negative breast cancer. In this perspective, we briefly describe the findings of these studies and propose the use of pharmacological inhibition of ERK5 in combination with chemotherapy against triple negative breast cancer because MEK5-ERK5 overexpression associates with poor survival of patients treated with chemotherapy.
Collapse
Affiliation(s)
- Mariska Miranda
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| | - Esdy Rozali
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| | - Fares Al-Ejeh
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| |
Collapse
|