1
|
Dang S, Jain A, Dhanda G, Bhattacharya N, Bhattacharya A, Senapati S. One carbon metabolism and its implication in health and immune functions. Cell Biochem Funct 2024; 42:e3926. [PMID: 38269500 DOI: 10.1002/cbf.3926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
One carbon (1C) metabolism is critical for cellular viability and physiological homeostasis. Starting from its crucial involvement in purine biosynthesis to posttranslational modification of proteins, 1C metabolism contributes significantly to the development and cellular differentiation through methionine and folate cycles that are pivotal for cellular function. Genetic polymorphisms of several genes of these pathways are implicated in disease pathogenesis and drug metabolism. Metabolic products of 1C metabolism have significant roles in epigenetic modifications through DNA and histone protein methylation. Homocysteine is a product that has clinical significance in the diagnosis and prognosis of several critical illnesses, including chronic immune diseases and cancers. Regulation of the function and differentiation of immune cells, including T-cells, B-cells, macrophages, and so forth, are directly influenced by 1C metabolism and thus have direct implications in several immune disease biology. Recent research on therapeutic approaches is targeting nuclear, cytoplasmic, and mitochondrial 1C metabolism to manage and treat metabolic (i.e., type 2 diabetes), neurodegenerative (i.e., Alzheimer's disease), or immune (i.e., rheumatoid arthritis) diseases. 1C metabolism is being explored for therapeutic intervention as a common determinant for a spectrum of immune and metabolic diseases. Identifying the association or correlation between essential metabolic products of this pathway and disease onset or prognosis would further facilitate the clinical monitoring of diseases.
Collapse
Affiliation(s)
- Shreya Dang
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Arushi Jain
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Garima Dhanda
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Neetu Bhattacharya
- Department of Zoology, Dyal Singh College, University of Delhi, Delhi, India
| | - Amit Bhattacharya
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
2
|
Petrone I, Bernardo PS, dos Santos EC, Abdelhay E. MTHFR C677T and A1298C Polymorphisms in Breast Cancer, Gliomas and Gastric Cancer: A Review. Genes (Basel) 2021; 12:587. [PMID: 33920562 PMCID: PMC8073588 DOI: 10.3390/genes12040587] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
Folate (vitamin B9) is found in some water-soluble foods or as a synthetic form of folic acid and is involved in many essential biochemical processes. Dietary folate is converted into tetrahydrofolate, a vital methyl donor for most methylation reactions, including DNA methylation. 5,10-methylene tetrahydrofolate reductase (MTHFR) is a critical enzyme in the folate metabolism pathway that converts 5,10-methylenetetrahydrofolate into 5-methyltetrahydrofolate, which produces a methyl donor for the remethylation of homocysteine to methionine. MTHFR polymorphisms result in reduced enzyme activity and altered levels of DNA methylation and synthesis. MTHFR polymorphisms have been linked to increased risks of several pathologies, including cancer. Breast cancer, gliomas and gastric cancer are highly heterogeneous and aggressive diseases associated with high mortality rates. The impact of MTHFR polymorphisms on these tumors remains controversial in the literature. This review discusses the relationship between the MTHFR C677T and A1298C polymorphisms and the increased risk of breast cancer, gliomas, and gastric cancer. Additionally, we highlight the relevance of ethnic and dietary aspects of population-based studies and histological stratification of highly heterogeneous tumors. Finally, this review discusses these aspects as potential factors responsible for the controversial literature concerning MTHFR polymorphisms.
Collapse
Affiliation(s)
- Igor Petrone
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (E.C.d.S.); (E.A.)
- Stricto Sensu Graduate Program in Oncology, INCA, Rio de Janeiro 20230-240, Brazil;
| | - Paula Sabbo Bernardo
- Stricto Sensu Graduate Program in Oncology, INCA, Rio de Janeiro 20230-240, Brazil;
- Laboratory of Cellular and Molecular Hemato-Oncology, Molecular Hemato-Oncology Program, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil
| | - Everton Cruz dos Santos
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (E.C.d.S.); (E.A.)
- Stricto Sensu Graduate Program in Oncology, INCA, Rio de Janeiro 20230-240, Brazil;
| | - Eliana Abdelhay
- Stem Cell Laboratory, Center for Bone Marrow Transplants, Brazilian National Cancer Institute—INCA, Rio de Janeiro 20230-240, Brazil; (E.C.d.S.); (E.A.)
- Stricto Sensu Graduate Program in Oncology, INCA, Rio de Janeiro 20230-240, Brazil;
| |
Collapse
|
3
|
Dai W, Liu H, Liu Y, Xu X, Qian D, Luo S, Cho E, Zhu D, Amos CI, Fang S, Lee JE, Li X, Nan H, Li C, Wei Q. Genetic variants in the folate metabolic pathway genes predict cutaneous melanoma-specific survival. Br J Dermatol 2020; 183:719-728. [PMID: 31955403 DOI: 10.1111/bjd.18878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2020] [Indexed: 01/05/2023]
Abstract
BACKGROUND Folate metabolism plays an important role in DNA methylation and nucleic acid synthesis and thus may function as a regulatory factor in cancer development. Genome-wide association studies (GWASs) have identified some single-nucleotide polymorphisms (SNPs) associated with cutaneous melanoma-specific survival (CMSS), but no SNPs were found in genes involved in the folate metabolic pathway. OBJECTIVES To examine associations between SNPs in folate metabolic pathway genes and CMSS. METHODS We comprehensively evaluated 2645 (422 genotyped and 2223 imputed) common SNPs in folate metabolic pathway genes from a published GWAS of 858 patients from The University of Texas MD Anderson Cancer Center and performed the validation in another GWAS of 409 patients from the Nurses' Health Study and Health Professionals Follow-up Study, in which 95/858 (11·1%) and 48/409 (11·7%) patients died of cutaneous melanoma, respectively. RESULTS We identified two independent SNPs (MTHFD1 rs1950902 G>A and ALPL rs10917006 C>T) to be associated with CMSS in both datasets, and their meta-analysis yielded an allelic hazards ratio of 1·75 (95% confidence interval 1·32-2·32, P = 9·96 × 10-5 ) and 2·05 (1·39-3·01, P = 2·84 × 10-4 ), respectively. The genotype-phenotype correlation analyses provided additional support for the biological plausibility of these two variants' roles in tumour progression, suggesting that variation in SNP-related mRNA expression levels is likely to be the mechanism underlying the observed associations with CMSS. CONCLUSIONS Two possibly functional genetic variants, MTHFD1 rs1950902 and ALPL rs10917006, were likely to be independently or jointly associated with CMSS, which may add to personalized treatment in the future, once further validated. What is already known about this topic? Existing data show that survival rates vary among patients with melanoma with similar clinical characteristics; therefore, it is necessary to identify additional complementary biomarkers for melanoma-specific prognosis. A hypothesis-driven approach, by pooling the effects of single-nucleotide polymorphisms (SNPs) in a specific biological pathway as genetic risk scores, may provide a prognostic utility, and genetic variants of genes in folate metabolism have been reported to be associated with cancer risk. What does this study add? Two genetic variants in the folate metabolic pathway genes, MTHFD1 rs1950902 and ALPL rs10917006, are significantly associated with cutaneous melanoma-specific survival (CMSS). What is the translational message? The identification of genetic variants will make a risk-prediction model possible for CMSS. The SNPs in the folate metabolic pathway genes, once validated in larger studies, may be useful in the personalized management and treatment of patients with cutaneous melanoma.
Collapse
Affiliation(s)
- W Dai
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.,Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - H Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Y Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - X Xu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - D Qian
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - S Luo
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, 27710, USA
| | - E Cho
- Department of Dermatology, Warren Alpert Medical School, Brown University, Providence, RI, 02912, USA.,Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02912, USA.,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - D Zhu
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - C I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - S Fang
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - J E Lee
- Department of Surgical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - X Li
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46202, USA
| | - H Nan
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.,Department of Epidemiology, Fairbanks School of Public Health, Indiana University, Indianapolis, IN, 46202, USA
| | - C Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Q Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| |
Collapse
|
4
|
Yi J, Xiao L, Zhou SQ, Zhang WJ, Liu BY. The C677T Polymorphism of the Methylenetetrahydrofolate Reductase Gene and Susceptibility to Late-onset Alzheimer's Disease. Open Med (Wars) 2019; 14:32-40. [PMID: 30631824 PMCID: PMC6325648 DOI: 10.1515/med-2019-0006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023] Open
Abstract
Folate metabolism makes a crucial contribution towards late-onset Alzheimer's disease (LOAD). Moreover, methylenetetrahydrofolate reductase (MTHFR) constitutes the primary enzyme of the folate pathway. We hypothesize that there is an association of C677T polymorphism in the MTHFR gene with the susceptibility to LOAD. Previous published research has investigated the link between the MTHFR C677T polymorphisms and LOAD susceptibility; nevertheless, the findings have continued to be not only controversial, but also indecisive. Accordingly, we carried out the present meta-analysis for the assessment of the potential link that exists between the MTHFR C677T polymorphism and the susceptibility to LOAD. Furthermore, we carried out a literature search of the PubMed, EMBASE, Cochrane Library, and WanFang database up to August 10, 2018. The odds ratios (ORs) with the respective 95% confidence interval (95%CI) were put to use for the evaluation of the robustness of the link of the MTHFR C677T polymorphism with the vulnerability to LOAD. All statistical analyses were carried out using STATA 15.0. An aggregate of 14 case-control research works was retrieved, involving 2,467 LOAD patients as well as 2,877 controls. We found that a substantial link exists between C677T polymorphism and LOAD risk in a codominant framework (TC vs. CC: OR=1.22, 95%CI=1.00-1.49, P=0.049). In addition to the stratified analysis based on ethnicity, which suggested that C677T polymorphism was likely linked only to an augmented threat of LOAD in Asians, it did not exist among Caucasians. Furthermore, in the subgroup analysis carried out using APOE ɛ4 status, a substantial increase in the susceptibility to LOAD was detected in APOE ɛ4 carriers as well as non-APOE ɛ4 carriers. In sum, the current meta-analysis revealed that MTHFR C677T polymorphism was associated with susceptibility to LOAD. Further extensive case-control studies are required.
Collapse
Affiliation(s)
- Jian Yi
- Key Laboratory of Internal Medicine, The Frist Hospital Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, P.R. China
| | - Lan Xiao
- Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan Province, P.R. China
| | - Sheng-Qiang Zhou
- Hunan University of Traditional Chinese Medicine, Changsha 410208, Hunan Province, P.R. China
| | - Wen-Jiang Zhang
- Yiyang Medicine College, Yiyang 413000, Hunan Province, P.R. China
| | - Bai-Yan Liu
- Key Laboratory of Internal Medicine, The Frist Hospital Hunan University of Traditional Chinese Medicine, Changsha 410007, Hunan Province, P.R. China.,Yiyang Medicine College, Yiyang 413000, Hunan Province, P.R. China
| |
Collapse
|