1
|
Scortegagna M, Du Y, Bradley LM, Wang K, Molinolo A, Ruppin E, Murad R, Ronai ZA. Ubiquitin Ligases Siah1a/2 Control Alveolar Macrophage Functions to Limit Carcinogen-Induced Lung Adenocarcinoma. Cancer Res 2023; 83:2016-2033. [PMID: 37078793 PMCID: PMC10330299 DOI: 10.1158/0008-5472.can-23-0258] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
Cellular components of the tumor microenvironment, including myeloid cells, play important roles in the progression of lung adenocarcinoma (LUAD) and its response to therapy. Here, we characterize the function of the ubiquitin ligases Siah1a/2 in regulating the differentiation and activity of alveolar macrophages (AM) and assess the implication of Siah1a/2 control of AMs for carcinogen-induced LUAD. Macrophage-specific genetic ablation of Siah1a/2 promoted accumulation of AMs with an immature phenotype and increased expression of protumorigenic and pro-inflammatory Stat3 and β-catenin gene signatures. Administration of urethane to wild-type mice promoted enrichment of immature-like AMs and lung tumor development, which was enhanced by macrophage-specific Siah1a/2 ablation. The profibrotic gene signature seen in Siah1a/2-ablated immature-like macrophages was associated with increased tumor infiltration of CD14+ myeloid cells and poorer survival of patients with LUAD. Single-cell RNA-seq confirmed the presence of a cluster of immature-like AMs expressing a profibrotic signature in lungs of patients with LUAD, a signature enhanced in smokers. These findings identify Siah1a/2 in AMs as gatekeepers of lung cancer development. SIGNIFICANCE The ubiquitin ligases Siah1a/2 control proinflammatory signaling, differentiation, and profibrotic phenotypes of alveolar macrophages to suppress lung carcinogenesis.
Collapse
Affiliation(s)
- Marzia Scortegagna
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA
| | - Yuanning Du
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA
| | - Linda M. Bradley
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA
| | - Kun Wang
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Eytan Ruppin
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rabi Murad
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA
| | - Ze’ev A. Ronai
- NCI-designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla CA
| |
Collapse
|
2
|
Xu Z, Wu Y, Yang M, Wei H, Pu J. CBX2-mediated suppression of SIAH2 triggers WNK1 accumulations to promote glycolysis in hepatocellular carcinoma. Exp Cell Res 2023; 426:113513. [PMID: 36780970 DOI: 10.1016/j.yexcr.2023.113513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/19/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023]
Abstract
Previous studies have highlighted the poor prognosis of liver cancer, and treatment effects are overall limited. We aimed to confirm the biological roles of SIAH2 in liver cancer and provide potential therapeutic targets. Differential analysis was conducted based on public datasets and found that SIAH2 expressed lowly in HCC samples relative to normal tissues, which was demonstrated in tumor samples via immunohistochemistry (IHC). Besides, SIAH2 overexpression could significantly suppress HCC proliferation. SIAH2 deficiency induced cell proliferation, migration and self-renewal abilities in vitro and in vivo. Mechanistically, SIAH2 could interact with WNK1, and trigger the ubiquitination and degradation of WNK1 proteins. In addition, low SIAH2 depended on elevated WNK1 proteins to drive HCC malignant features, including proliferation, migration and stemness. Meanwhile, we further found that CBX2 could regulate SIAH2 expressions. CBX2 cooperated with EZH2 to mediate the H3K27me3 enrichment on the promoter region of SIAH2 to suppress its transcriptional levels. High CBX2/EZH2 levels in HCC correlated with poor prognosis of patients. Gene set enrichment analysis (GSEA) further implicated that WNK1 correlates tightly with glycolytic process in HCC samples. WNK1 overexpression was found to notably enhance glycolytic activity, whereas WNK1 deficiency could significantly suppress the HCC glycolysis activity. Lastly, the subcutaneous tumor model further demonstrated that targeting WNK1 was effective to inhibit the in vivo tumor growth of SIAH2low HCC. Collectively, down-regulated SIAH2 expressions induced by CBX2/EZH2 could drive progression and glycolysis via accumulating WNK1 proteins, indicating that CBX2/SIAH2/WNK1 axis is a potential prognostic biomarker and therapeutic vulnerability for human HCC.
Collapse
Affiliation(s)
- Zuoming Xu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, China
| | - Yinghong Wu
- Graduate College of Youjiang Medical University for Nationalities, 533000, China
| | - Meng Yang
- Graduate College of Youjiang Medical University for Nationalities, 533000, China
| | - Huamei Wei
- Department of Pathology, Affiliated Hospital of Youjiang Medical University for Nationalitie, 533000, China
| | - Jian Pu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, 533000, China.
| |
Collapse
|
3
|
Mustafa AHM, Krämer OH. Pharmacological Modulation of the Crosstalk between Aberrant Janus Kinase Signaling and Epigenetic Modifiers of the Histone Deacetylase Family to Treat Cancer. Pharmacol Rev 2023; 75:35-61. [PMID: 36752816 DOI: 10.1124/pharmrev.122.000612] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 12/13/2022] Open
Abstract
Hyperactivated Janus kinase (JAK) signaling is an appreciated drug target in human cancers. Numerous mutant JAK molecules as well as inherent and acquired drug resistance mechanisms limit the efficacy of JAK inhibitors (JAKi). There is accumulating evidence that epigenetic mechanisms control JAK-dependent signaling cascades. Like JAKs, epigenetic modifiers of the histone deacetylase (HDAC) family regulate the growth and development of cells and are often dysregulated in cancer cells. The notion that inhibitors of histone deacetylases (HDACi) abrogate oncogenic JAK-dependent signaling cascades illustrates an intricate crosstalk between JAKs and HDACs. Here, we summarize how structurally divergent, broad-acting as well as isoenzyme-specific HDACi, hybrid fusion pharmacophores containing JAKi and HDACi, and proteolysis targeting chimeras for JAKs inactivate the four JAK proteins JAK1, JAK2, JAK3, and tyrosine kinase-2. These agents suppress aberrant JAK activity through specific transcription-dependent processes and mechanisms that alter the phosphorylation and stability of JAKs. Pharmacological inhibition of HDACs abrogates allosteric activation of JAKs, overcomes limitations of ATP-competitive type 1 and type 2 JAKi, and interacts favorably with JAKi. Since such findings were collected in cultured cells, experimental animals, and cancer patients, we condense preclinical and translational relevance. We also discuss how future research on acetylation-dependent mechanisms that regulate JAKs might allow the rational design of improved treatments for cancer patients. SIGNIFICANCE STATEMENT: Reversible lysine-ɛ-N acetylation and deacetylation cycles control phosphorylation-dependent Janus kinase-signal transducer and activator of transcription signaling. The intricate crosstalk between these fundamental molecular mechanisms provides opportunities for pharmacological intervention strategies with modern small molecule inhibitors. This could help patients suffering from cancer.
Collapse
Affiliation(s)
- Al-Hassan M Mustafa
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, Mainz, Germany (A.-H.M.M., O.H.K.) and Department of Zoology, Faculty of Science, Aswan University, Aswan, Egypt (A.-H.M.M.)
| |
Collapse
|
4
|
Jeong SY, Hariharasudhan G, Kim MJ, Lim JY, Jung SM, Choi EJ, Chang IY, Kee Y, You HJ, Lee JH. SIAH2 regulates DNA end resection and replication fork recovery by promoting CtIP ubiquitination. Nucleic Acids Res 2022; 50:10469-10486. [PMID: 36155803 PMCID: PMC9561274 DOI: 10.1093/nar/gkac808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/19/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Human CtIP maintains genomic integrity primarily by promoting 5′ DNA end resection, an initial step of the homologous recombination (HR). A few mechanisms have been suggested as to how CtIP recruitment to damage sites is controlled, but it is likely that we do not yet have full understanding of the process. Here, we provide evidence that CtIP recruitment and functioning are controlled by the SIAH2 E3 ubiquitin ligase. We found that SIAH2 interacts and ubiquitinates CtIP at its N-terminal lysine residues. Mutating the key CtIP lysine residues impaired CtIP recruitment to DSBs and stalled replication forks, DSB end resection, overall HR repair capacity of cells, and recovery of stalled replication forks, suggesting that the SIAH2-induced ubiquitination is important for relocating CtIP to sites of damage. Depleting SIAH2 consistently phenocopied these results. Overall, our work suggests that SIAH2 is a new regulator of CtIP and HR repair, and emphasizes that SIAH2-mediated recruitment of the CtIP is an important step for CtIP’s function during HR repair.
Collapse
Affiliation(s)
- Seo-Yeon Jeong
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Gurusamy Hariharasudhan
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Min-Ji Kim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Ji-Yeon Lim
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Sung Mi Jung
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Eun-Ji Choi
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - In-Youb Chang
- Department of Anatomy, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Younghoon Kee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno-Joongang-daero, Dalseong-gun, Daegu 42988, Republic of Korea
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Pharmacology, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer therapeutics, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea.,Department of Cellular and Molecular Medicine, Chosun University School of Medicine, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea
| |
Collapse
|
5
|
Liu Q, Luo Q, Feng J, Zhao Y, Ma B, Cheng H, Zhao T, Lei H, Mu C, Chen L, Meng Y, Zhang J, Long Y, Su J, Chen G, Li Y, Hu G, Liao X, Chen Q, Zhu Y. Hypoxia-induced proteasomal degradation of DBC1 by SIAH2 in breast cancer progression. eLife 2022; 11:81247. [PMID: 35913115 PMCID: PMC9377797 DOI: 10.7554/elife.81247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
DBC1 has been characterized as a key regulator of physiological and pathophysiological activities, such as DNA damage, senescence, and tumorigenesis. However, the mechanism by which the functional stability of DBC1 is regulated has yet to be elucidated. Here, we report that the ubiquitination-mediated degradation of DBC1 is regulated by the E3 ubiquitin ligase SIAH2 and deubiquitinase OTUD5 under hypoxic stress. Mechanistically, hypoxia promoted DBC1 to interact with SIAH2 but not OTUD5, resulting in the ubiquitination and subsequent degradation of DBC1 through the ubiquitin–proteasome pathway. SIAH2 knockout inhibited tumor cell proliferation and migration, which could be rescued by double knockout of SIAH2/CCAR2. Human tissue microarray analysis further revealed that the SIAH2/DBC1 axis was responsible for tumor progression under hypoxic stress. These findings define a key role of the hypoxia-mediated SIAH2-DBC1 pathway in the progression of human breast cancer and provide novel insights into the metastatic mechanism of breast cancer.
Collapse
Affiliation(s)
- Qiangqiang Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Qian Luo
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jianyu Feng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yanping Zhao
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Biao Ma
- College of Life Sciences, Nankai University, Tianjin, China
| | | | - Tian Zhao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hong Lei
- College of Life Sciences, Nankai University, Tianjin, China
| | - Chenglong Mu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Linbo Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yuanyuan Meng
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jiaojiao Zhang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yijia Long
- College of Life Sciences, Nankai University, Tianjin, China
| | - Jingyi Su
- College of Life Sciences, Nankai University, Tianjin, China
| | - Guo Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yanjun Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Gang Hu
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Xudong Liao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yushan Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Qu H, Wang M, Wang M, Liu Y, Quan C. The expression and the tumor suppressor role of CLDN6 in colon cancer. Mol Cell Biochem 2022; 477:2883-2893. [PMID: 35701678 DOI: 10.1007/s11010-022-04450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/24/2022] [Indexed: 11/29/2022]
Abstract
As a member of the tight junction family, CLDN6 is a tumor suppressor in breast cancer, but its role in colon cancer is unknown. In this research, we aimed at revealing the function of CLDN6 in colon cancer. We found that colon cancer tissues lowly expressed CLDN6, and the expression of CLDN6 was negatively correlated with lymph node metastasis. Similarly, CLDN6 was lowly expressed in the colon cancer cell line SW1116, and overexpression of CLDN6 inhibited cell proliferation in vitro and in vivo. Consistently, the migration and invasion abilities of cells were significantly inhibited after CLDN6 overexpression. In addition, we demonstrated that CLDN6 may inhibit the migration and invasion abilities by activating the TYK2/STAT3 pathway. Therefore, our data indicated that CLDN6 acted as a tumor suppressor and had the potential to be regarded as a biomarker for the progression of colon cancer.
Collapse
Affiliation(s)
- Huinan Qu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Min Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Yuanyuan Liu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Avenue, Changchun, 130021, Jilin, People's Republic of China.
| |
Collapse
|
7
|
Cannabinoids Alleviate the LPS-Induced Cytokine Storm via Attenuating NLRP3 Inflammasome Signaling and TYK2-Mediated STAT3 Signaling Pathways In Vitro. Cells 2022; 11:cells11091391. [PMID: 35563697 PMCID: PMC9103143 DOI: 10.3390/cells11091391] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cannabinoids, mainly cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC), are the most studied group of compounds obtained from Cannabis sativa because of their several pharmaceutical properties. Current evidence suggests a crucial role of cannabinoids as potent anti-inflammatory agents for the treatment of chronic inflammatory diseases; however, the mechanisms remain largely unclear. Cytokine storm, a dysregulated severe inflammatory response by our immune system, is involved in the pathogenesis of numerous chronic inflammatory disorders, including coronavirus disease 2019 (COVID-19), which results in the accumulation of pro-inflammatory cytokines. Therefore, we hypothesized that CBD and THC reduce the levels of pro-inflammatory cytokines by inhibiting key inflammatory signaling pathways. The nucleotide-binding and oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome signaling has been implicated in a variety of chronic inflammatory diseases, which results in the release of pyroptotic cytokines, interleukin-1β (IL-1β) and IL-18. Likewise, the activation of the signal transducer and activator of transcription-3 (STAT3) causes increased expression of pro-inflammatory cytokines. We studied the effects of CBD and THC on lipopolysaccharide (LPS)-induced inflammatory response in human THP-1 macrophages and primary human bronchial epithelial cells (HBECs). Our results revealed that CBD and, for the first time, THC significantly inhibited NLRP3 inflammasome activation following LPS + ATP stimulation, leading to a reduction in the levels of IL-1β in THP-1 macrophages and HBECs. CBD attenuated the phosphorylation of nuclear factor-κB (NF-κB), and both cannabinoids inhibited the generation of oxidative stress post-LPS. Our multiplex ELISA data revealed that CBD and THC significantly diminished the levels of IL-6, IL-8, and tumor necrosis factor-α (TNF-α) after LPS treatment in THP-1 macrophages and HBECs. In addition, the phosphorylation of STAT3 was significantly downregulated by CBD and THC in THP-1 macrophages and HBECs, which was in turn attributed to the reduced phosphorylation of tyrosine kinase-2 (TYK2) by CBD and THC after LPS stimulation in these cells. Overall, CBD and THC were found to be effective in alleviating the LPS-induced cytokine storm in human macrophages and primary HBECs, at least via modulation of NLRP3 inflammasome and STAT3 signaling pathways. The encouraging results from this study warrant further investigation of these cannabinoids in vivo.
Collapse
|
8
|
Li K, Li J, Ye M, Jin X. The role of Siah2 in tumorigenesis and cancer therapy. Gene 2022; 809:146028. [PMID: 34687788 DOI: 10.1016/j.gene.2021.146028] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022]
Abstract
Seven in absentia homolog 2 (Siah2), an RING E3 ubiquitin ligases, has been characterized to play the vital role in tumorigenesis and cancer progression. Numerous studies have determined that Siah2 promotes tumorigenesis in a variety of human malignancies such as prostate, lung, gastric, and liver cancers. However, several studies revealed that Siah2 exhibited tumor suppressor function by promoting the proteasome-mediated degradation of several oncoproteins, suggesting that Siah2 could exert its biological function according to different stages of tumor development. Moreover, Siah2 is subject to complex regulation, especially the phosphorylation of Siah2 by a variety of protein kinases to regulate its stability and activity. In this review, we describe the structure and regulation of Siah2 in human cancer. Moreover, we highlight the critical role of Siah2 in tumorigenesis. Furthermore, we note that the potential clinical applications of targeting Siah2 in cancer therapy.
Collapse
Affiliation(s)
- Kailang Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Jinyun Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China
| | - Meng Ye
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| | - Xiaofeng Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China; Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo 315211, China.
| |
Collapse
|
9
|
Simundza I, Krnic D, Juricic J, Benzon B, Simundza R, Stanicic IM, Capkun V, Vukojevic K, Glavina Durdov M. Expression of PD-L1 Is Associated with Inflammatory Microenvironment in Surgical Specimens of Non-Small Cell Lung Cancer. J Pers Med 2021; 11:jpm11080767. [PMID: 34442411 PMCID: PMC8398962 DOI: 10.3390/jpm11080767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/01/2021] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to analyse the expression of PD-L1 in non-small cell lung cancer (NSCLC) and its correlation with immune microenvironment response (IMR), clinic-pathological parameters, and outcome. The sample included 76 male and 32 female patients who underwent surgical resection. The mean age of the males was 66 years, and that of the females was 64 years. Adenocarcinoma (ADC) was diagnosed in 68 (63%) cases, squamous cell carcinoma in 35 (32%) cases, and NSCLC (not otherwise specified) in 5 (5%) cases. Metastatic lymph nodes were found in 38 (36%) patients, 18 with N1 nodes and 20 with N2 nodes. PD-L1 expression was valuated as the percentage of positive cancer cells among all cancer cells. Gender, age, and histologic type were not associated with PD-L1 expression (all p > 0.05). The subtypes of ADC were associated with PD-L1 expression (p = 0.050). The papillary subtype was 4.3 times more common among PD-L1 negative than PD-L1 positive ADC; the solid subtype was 1.9 times more common among PD-L1 positive than PD-L1 negative ADC. IMR was predominantly strong in 19 cases, weak in 36, and absent in 53 cases. The median value of PD-L1 expression in cancer cells was positively correlated with IMR (p = 0.039). PD-L1 expression was not correlated with overall survival (p = 0.643). The patients with strong, inflammatory-like IMR had an average survival time that was 12 months longer than patients with absent/low IMR (LR = 2.8; p = 0.132). In conclusion, the papillary subtype was more commonly PD-L1 negative in comparison with other subtypes of ADC. Positive PD-L1 expression in tumour cells was connected with strong, inflammatory-like IMR. Patients with strong IMR tended to experience better outcomes. Further investigations are needed on larger-scale cohorts to elucidate the insights of this descriptive study.
Collapse
Affiliation(s)
- Ivan Simundza
- Department of Surgery, University Hospital of Split, 21000 Split, Croatia; (I.S.); (D.K.); (J.J.)
| | - Dragan Krnic
- Department of Surgery, University Hospital of Split, 21000 Split, Croatia; (I.S.); (D.K.); (J.J.)
| | - Josko Juricic
- Department of Surgery, University Hospital of Split, 21000 Split, Croatia; (I.S.); (D.K.); (J.J.)
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (B.B.); (V.C.)
| | - Rina Simundza
- Department of Gynaecology, University Hospital of Split, 21000 Split, Croatia;
| | - Ivan Mario Stanicic
- Department of Pathology, University Hospital of Split, 21000 Split, Croatia;
| | - Vesna Capkun
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (B.B.); (V.C.)
| | - Katarina Vukojevic
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (B.B.); (V.C.)
- Correspondence: (K.V.); (M.G.D.)
| | - Merica Glavina Durdov
- Department of Pathology, University Hospital of Split, 21000 Split, Croatia;
- Correspondence: (K.V.); (M.G.D.)
| |
Collapse
|
10
|
Meng Y, Qiu L, Zhang S, Han J. The emerging roles of E3 ubiquitin ligases in ovarian cancer chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:365-381. [PMID: 35582023 PMCID: PMC9019267 DOI: 10.20517/cdr.2020.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/24/2022]
Abstract
Epithelial cancer of the ovary exhibits the highest mortality rate of all gynecological malignancies in women today, since the disease is often diagnosed in advanced stages. While the treatment of cancer with specific chemical agents or drugs is the favored treatment regimen, chemotherapy resistance greatly impedes successful ovarian cancer chemotherapy. Thus, chemoresistance becomes one of the most critical clinical issues confronted when treating patients with ovarian cancer. Convincing evidence hints that dysregulation of E3 ubiquitin ligases is a key factor in the development and maintenance of ovarian cancer chemoresistance. This review outlines recent advancement in our understanding of the emerging roles of E3 ubiquitin ligases in ovarian cancer chemoresistance. We also highlight currently available inhibitors targeting E3 ligase activities and discuss their potential for clinical applications in treating chemoresistant ovarian cancer patients.
Collapse
Affiliation(s)
- Yang Meng
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Yang Meng and Lei Qiu equally contributed to this manuscript
| | - Lei Qiu
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
- Yang Meng and Lei Qiu equally contributed to this manuscript
| | - Su Zhang
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- Research Laboratory of Cancer Epigenetics and Genomics, Department of General Surgery, Frontiers Science Center for Disease-related Molecular Network, Cancer Center and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
11
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
12
|
Alvandi Z, Opas M. c-Src kinase inhibits osteogenic differentiation via enhancing STAT1 stability. PLoS One 2020; 15:e0241646. [PMID: 33180789 PMCID: PMC7660501 DOI: 10.1371/journal.pone.0241646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/16/2020] [Indexed: 01/09/2023] Open
Abstract
The proto-oncogene Src is ubiquitously expressed and is involved in cellular differentiation. However, the role of Src in embryonic stem (ES) cell osteogenic differentiation is largely unknown. Using the small molecule inhibitor PP2, c-Src specific siRNAs, and tet-inducible lentiviral vectors overexpressing active c-Src, we delineated an inhibitory role of c-Src in osteogenic differentiation of mouse embryonic stem cells (mESCs) and mouse MC3T3-E1s preosteoblasts. Active c-Src was shown to restrict the nuclear residency of Runt-related transcription factor 2 (Runx2) and its transcriptional activity with no detectable effect on Runx2 expression level. Furthermore, we showed Signal Transducer and Activator of Transcription 1 (STAT1) was indispensable to the inhibitory role of c-Src on Runx2 nuclear localization. Specifically, higher levels of active c-Src increased STAT1 half-life by inhibiting its proteasomal degradation, thereby increasing the cytoplasmic abundance of STAT1. More abundant cytoplasmic STAT1 bound and anchored Runx2, which restricted its nucleocytoplasmic shuttling and ultimately reduced Runx2 transcriptional activity. Collectively, this study has defined a new mechanism by which c-Src inhibits the transcriptional regulation of osteogenesis from mESCs in vitro.
Collapse
Affiliation(s)
- Zahra Alvandi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Vascular Biology, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Surgery, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| | - Michal Opas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Wöss K, Simonović N, Strobl B, Macho-Maschler S, Müller M. TYK2: An Upstream Kinase of STATs in Cancer. Cancers (Basel) 2019; 11:E1728. [PMID: 31694222 PMCID: PMC6896190 DOI: 10.3390/cancers11111728] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/28/2019] [Accepted: 11/02/2019] [Indexed: 02/07/2023] Open
Abstract
In this review we concentrate on the recent findings describing the oncogenic potential of the protein tyrosine kinase 2 (TYK2). The overview on the current understanding of TYK2 functions in cytokine responses and carcinogenesis focusses on the activation of the signal transducers and activators of transcription (STAT) 3 and 5. Insight gained from loss-of-function (LOF) gene-modified mice and human patients homozygous for Tyk2/TYK2-mutated alleles established the central role in immunological and inflammatory responses. For the description of physiological TYK2 structure/function relationships in cytokine signaling and of overarching molecular and pathologic properties in carcinogenesis, we mainly refer to the most recent reviews. Dysregulated TYK2 activation, aberrant TYK2 protein levels, and gain-of-function (GOF) TYK2 mutations are found in various cancers. We discuss the molecular consequences thereof and briefly describe the molecular means to counteract TYK2 activity under (patho-)physiological conditions by cellular effectors and by pharmacological intervention. For the role of TYK2 in tumor immune-surveillance we refer to the recent Special Issue of Cancers "JAK-STAT Signaling Pathway in Cancer".
Collapse
Affiliation(s)
| | | | | | | | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, A-1210 Vienna, Austria; (K.W.); (N.S.); (B.S.); (S.M.-M.)
| |
Collapse
|
14
|
Kokate SB, Dixit P, Das L, Rath S, Roy AD, Poirah I, Chakraborty D, Rout N, Singh SP, Bhattacharyya A. Acetylation-mediated Siah2 stabilization enhances PHD3 degradation in Helicobacter pylori-infected gastric epithelial cancer cells. FASEB J 2018; 32:5378-5389. [PMID: 29688807 DOI: 10.1096/fj.201701344rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gastric epithelial cells infected with Helicobacter pylori acquire highly invasive and metastatic characteristics. The seven in absentia homolog (Siah)2, an E3 ubiquitin ligase, is one of the major proteins that induces invasiveness of infected gastric epithelial cells. We find that p300-driven acetylation of Siah2 at lysine 139 residue stabilizes the molecule in infected cells, thereby substantially increasing its efficiency to degrade prolyl hydroxylase (PHD)3 in the gastric epithelium. This enhances the accumulation of an oncogenic transcription factor hypoxia-inducible factor 1α (Hif1α) in H. pylori-infected gastric cancer cells in normoxic condition and promotes invasiveness of infected cells. Increased acetylation of Siah2, Hif1α accumulation, and the absence of PHD3 in the infected human gastric metastatic cancer biopsy samples and in invasive murine gastric cancer tissues further confirm that the acetylated Siah2 (ac-Siah2)-Hif1α axis is crucial in promoting gastric cancer invasiveness. This study establishes the importance of a previously unrecognized function of ac-Siah2 in regulating invasiveness of H. pylori-infected gastric epithelial cells.-Kokate, S. B., Dixit, P., Das, L., Rath, S., Roy, A. D., Poirah, I., Chakraborty, D., Rout, N., Singh, S. P., Bhattacharyya, A. Acetylation-mediated Siah2 stabilization enhances PHD3 degradation in Helicobacter pylori-infected gastric epithelial cancer cells.
Collapse
Affiliation(s)
- Shrikant Babanrao Kokate
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Pragyesh Dixit
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Lopamudra Das
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Suvasmita Rath
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Arjama Dhar Roy
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Indrajit Poirah
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Debashish Chakraborty
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| | - Niranjan Rout
- Department of Oncopathology, Acharya Harihar Regional Cancer Centre, Odisha, India
| | - Shivaram Prasad Singh
- Department of Gastroenterology, Srirama Chandra Bhanja (SCB) Medical College, Odisha, India
| | - Asima Bhattacharyya
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, Homi Bhabha National Institute (HBNI), Odisha, India
| |
Collapse
|
15
|
Huang J, Lu Z, Xiao Y, He B, Pan C, Zhou X, Xu N, Liu X. Inhibition of Siah2 Ubiquitin Ligase by Vitamin K3 Attenuates Chronic Myeloid Leukemia Chemo-Resistance in Hypoxic Microenvironment. Med Sci Monit 2018; 24:727-735. [PMID: 29400343 PMCID: PMC5810368 DOI: 10.12659/msm.908553] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND A hypoxic microenvironment is associated with resistance to tyrosine kinase inhibitors (TKIs) and a poor prognosis in chronic myeloid leukemia (CML). The E3 ubiquitin ligase Siah2 plays a vital role in the regulation of hypoxia response, as well as in leukemogenesis. However, the role of Siah2 in CML resistance is unclear, and it is unknown whether vitaminK3 (a Siah2 inhibitor) can improve the chemo-sensitivity of CML cells in a hypoxic microenvironment. MATERIAL AND METHODS The expression of Siah2 was detected in CML patients (CML-CP and CML-BC), K562 cells, and K562-imatinib-resistant cells (K562-R cells). We measured the expression of PHD3, HIF-1α, and VEGF in both cell lines under normoxia and hypoxic conditions, and the degree of leukemic sensitivity to imatinib and VitaminK3 were evaluated. RESULTS Siah2 was overexpressed in CML-BC patients (n=9) as compared to CML-CP patients (n=13). Similarly, K562-imatinib-resistant cells (K562-R cells) showed a significantly higher expression of Siah2 as compared to K562 cells in a hypoxic microenvironment. Compared to normoxia, under hypoxic conditions, both cell lines had lower PHD3, higher HIF-1α, and higher VEGF expression. Additionally, Vitamin K3 (an inhibitor of Siah2) reversed these changes and promoted a higher degree of leukemic sensitivity to imatinib. CONCLUSIONS Our findings indicate that the Siah2-PHD3- HIF-1α-VEGF axis is an important hypoxic signaling pathway in a leukemic microenvironment. An inhibitor of Siah2, combined with TKIs, might be a promising therapy for relapsing and refractory CML patients.
Collapse
Affiliation(s)
- Jixian Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland).,Department of Hematology, Yuebei People's Hospital, Shantou University, Shaoguan, Guangdong, China (mainland)
| | - Ziyuan Lu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yajuan Xiao
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Bolin He
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Chengyun Pan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Xuan Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Xiaoli Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
16
|
Mahendrarajah N, Borisova ME, Reichardt S, Godmann M, Sellmer A, Mahboobi S, Haitel A, Schmid K, Kenner L, Heinzel T, Beli P, Krämer OH. HSP90 is necessary for the ACK1-dependent phosphorylation of STAT1 and STAT3. Cell Signal 2017; 39:9-17. [DOI: 10.1016/j.cellsig.2017.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/07/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022]
|
17
|
Ishibashi K, Haber T, Breuksch I, Gebhard S, Sugino T, Kubo H, Hata J, Koguchi T, Yabe M, Kataoka M, Ogawa S, Hiraki H, Yanagida T, Haga N, Thüroff JW, Prawitt D, Brenner W, Kojima Y. Overriding TKI resistance of renal cell carcinoma by combination therapy with IL-6 receptor blockade. Oncotarget 2017; 8:55230-55245. [PMID: 28903416 PMCID: PMC5589655 DOI: 10.18632/oncotarget.19420] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023] Open
Abstract
Metastatic renal cell carcinoma (RCC) is a tumor entity with poor prognosis due to limited therapy options. Tyrosine kinase inhibitors (TKI) represent the standard of care for RCCs, however a significant proportion of RCC patients develop resistance to this therapy. Interleukin-6 (IL-6) is considered to be associated with poor prognosis in RCCs. We therefore hypothesized that TKI resistance and IL-6 secretion are causally connected. We first analyzed IL-6 expression after TKI treatment in RCC cells and RCC tumor specimens. Cell proliferation and signal transduction activity were then quantified after co-treatment with tocilizumab, an IL-6R inhibitor, in vitro and in vivo. 786-O RCC cells secrete high IL-6 levels after low dose stimulation with the TKIs sorafenib, sunitinib and pazopanib, inducing activation of AKT-mTOR pathway, NFκB, HIF-2α and VEGF expression. Tocilizumab neutralizes the AKT-mTOR pathway activation and results in reduced proliferation. Using a mouse xenograft model we can show that a combination therapy with tocilizumab and low dosage of sorafenib suppresses 786-O tumor growth, reduces AKT-mTOR pathway and inhibits angiogenesis in vivo more efficient than sorafenib alone. Furthermore FDG-PET imaging detected early decrease of maximum standardized uptake values prior to extended central necrosis. Our findings suggest that a combination therapy of IL-6R inhibitors and TKIs may represent a novel therapeutic approach for RCC treatment.
Collapse
Affiliation(s)
- Kei Ishibashi
- Department of Urology, Fukushima Medical University, Fukushima, Japan.,Department of Urology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Tobias Haber
- Department of Urology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Ines Breuksch
- Department of Gynecology and Obstetrics, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Susanne Gebhard
- Department of Gynecology and Obstetrics, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Takashi Sugino
- Department of Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Hitoshi Kubo
- Advanced Clinical Research Center, Fukushima Medical University, Fukushima, Japan
| | - Junya Hata
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| | - Tomoyuki Koguchi
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| | - Michihiro Yabe
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| | - Masao Kataoka
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| | - Soichiro Ogawa
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| | - Hiroyuki Hiraki
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| | - Tomohiko Yanagida
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| | - Nobuhiro Haga
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| | - Joachim W Thüroff
- Department of Urology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Dirk Prawitt
- Center for Pediatrics and Adolescent Medicine, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Walburgis Brenner
- Department of Urology, Johannes Gutenberg University Medical Center, Mainz, Germany.,Department of Gynecology and Obstetrics, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Yoshiyuki Kojima
- Department of Urology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
18
|
Hirbe AC, Kaushal M, Sharma MK, Dahiya S, Pekmezci M, Perry A, Gutmann DH. Clinical genomic profiling identifies TYK2 mutation and overexpression in patients with neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Cancer 2016; 123:1194-1201. [PMID: 27875628 DOI: 10.1002/cncr.30455] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/22/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas that arise at an estimated frequency of 8% to 13% in individuals with neurofibromatosis type 1 (NF1). Compared with their sporadic counterparts, NF1-associated MPNSTs (NF1-MPNSTs) develop in young adults, frequently recur (approximately 50% of cases), and carry a dismal prognosis. As such, most individuals affected with NF1-MPNSTs die within 5 years of diagnosis, despite surgical resection combined with radiotherapy and chemotherapy. METHODS Clinical genomic profiling was performed using 1000 ng of DNA from 7 cases of NF1-MPNST, and bioinformatic analyses were conducted to identify genes with actionable mutations. RESULTS A total of 3 women and 4 men with NF1-MPNST were identified (median age, 38 years). Nonsynonymous mutations were discovered in 4 genes (neurofibromatosis type 1 [NF1], ROS proto-oncogene 1 [ROS1], tumor protein p53 [TP53], and tyrosine kinase 2 [TYK2]), which in addition were mutated in other MPNST cases in this sample set. Consistent with their occurrence in individuals with NF1, all tumors had at least 1 mutation in the NF1 gene. Whereas TP53 gene mutations are frequently observed in other cancers, ROS1 mutations are common in melanoma (15%-35%), another neural crest-derived malignancy. In contrast, TYK2 mutations are uncommon in other malignancies (<7%). In the current series, recurrent TYK2 mutations were identified in 2 cases of NF1-MPNST (30% of cases), whereas TYK2 protein overexpression was observed in 60% of MPNST cases using an independently generated tissue microarray, regardless of NF1 status. CONCLUSIONS Clinical genomic analysis of the current series of NF1-MPNST cases found that TYK2 is a new gene mutated in MPNST. Future work will focus on examining the utility of TYK2 expression as a biomarker and therapeutic target for these cancers. Cancer 2017;123:1194-1201. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Angela C Hirbe
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Madhurima Kaushal
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Mukesh Kumar Sharma
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Melike Pekmezci
- Department of Pathology, University of California at San Francisco School of Medicine, San Francisco, California
| | - Arie Perry
- Department of Pathology, University of California at San Francisco School of Medicine, San Francisco, California.,Department of Neurological Surgery, University of California at San Francisco School of Medicine, San Francisco, California
| | - David H Gutmann
- Department of Neurology, Washington University, St. Louis, Missouri
| |
Collapse
|
19
|
Nair S, Bist P, Dikshit N, Krishnan MN. Global functional profiling of human ubiquitome identifies E3 ubiquitin ligase DCST1 as a novel negative regulator of Type-I interferon signaling. Sci Rep 2016; 6:36179. [PMID: 27782195 PMCID: PMC5080589 DOI: 10.1038/srep36179] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 10/12/2016] [Indexed: 12/28/2022] Open
Abstract
Type I interferon (IFN-I) mediated innate immune response controls virus infections by inducing the expression of interferon stimulated genes (ISGs). Although ubiquitination plays key roles in immune signaling regulation, a human genome-wide understanding of the role of E3 ubiquitin ligases in interferon mediated ISG induction is lacking. Here, we report a genome-wide profiling of the effect of ectopic expression of 521 E3 ubiquitin ligases and substrate recognition subunits encoded in the human genome (which constitutes 84.4% of all ubiquitination related genes encoded in the human genome, hereafter termed Human Ubiquitome) on IFNβ mediated induction of interferon stimulated DNA response element (ISRE) driven reporter activity. We identified 96 and 42 genes of the human ubiquitome as novel negative and positive regulators of interferon signaling respectively. Furthermore, we characterized DCST1 as a novel E3 ubiquitin ligase negatively regulating interferon response. Ectopic expression and gene silencing of DCST1 respectively attenuated and increased ISRE reporter activity. DCST1 regulated Type I interferon signaling by interacting with and promoting ubiquitination-mediated degradation of STAT2, an essential component of antiviral gene induction. In summary, this study provided a systems level view on the role of human ubiquitination associated genes in Type I interferon response.
Collapse
Affiliation(s)
- Sajith Nair
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Pradeep Bist
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Neha Dikshit
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| | - Manoj N Krishnan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, 169857, Singapore
| |
Collapse
|
20
|
Zhang Q, Wang Z, Hou F, Harding R, Huang X, Dong A, Walker JR, Tong Y. The substrate binding domains of human SIAH E3 ubiquitin ligases are now crystal clear. Biochim Biophys Acta Gen Subj 2016; 1861:3095-3105. [PMID: 27776223 DOI: 10.1016/j.bbagen.2016.10.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Seven in absentia homologs (SIAHs) comprise a family of highly conserved E3 ubiquitin ligases that play an important role in regulating signalling pathways in tumorigenesis, including the DNA damage repair and hypoxia response pathways. SIAH1 and SIAH2 have been found to function as a tumour repressor and a proto-oncogene, respectively, despite the high sequence identity of their substrate binding domains (SBDs). Ubiquitin-specific protease USP19 is a deubiquitinase that forms a complex with SIAHs and counteracts the ligase function. Much effort has been made to find selective inhibitors of the SIAHs E3 ligases. Menadione was reported to inhibit SIAH2 specifically. METHODS We used X-ray crystallography, peptide array, bioinformatic analysis, and biophysical techniques to characterize the structure and interaction of SIAHs with deubiquitinases and literature reported compounds. RESULTS We solved the crystal structures of SIAH1 in complex with a USP19 peptide and of the apo form SIAH2. Phylogenetic analysis revealed the SIAH/USP19 complex is conserved in evolution. We demonstrated that menadione destabilizes both SIAH1 and SIAH2 non-specifically through covalent modification. CONCLUSIONS The SBDs of SIAH E3 ligases are structurally similar with a subtle stability difference. USP19 is the only deubiquitinase that directly binds to SIAHs through the substrate binding pocket. Menadione is not a specific inhibitor for SIAH2. GENERAL SIGNIFICANCE The crystallographic models provide structural insights into the substrate binding of the SIAH family E3 ubiquitin ligases that are critically involved in regulating cancer-related pathways. Our results suggest caution should be taken when using menadione as a specific SIAH2 inhibitor.
Collapse
Affiliation(s)
- Qi Zhang
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Zhongduo Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong 524025, China
| | - Feng Hou
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Rachel Harding
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Xinyi Huang
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - John R Walker
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yufeng Tong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
21
|
Abstract
Many food-derived phytochemical compounds and their derivatives represent a cornucopia of new anticancer compounds. Despite extensive study of luteolin, the literature has no information on the exact mechanisms or molecular targets through which it deters cancer progression. This review discusses existing data on luteolin's anticancer activities and then offers possible explanations for and molecular targets of its cancer-preventive action. Luteolin prevents tumor development largely by inactivating several signals and transcription pathways essential for cancer cells. This review also offers insights into the molecular mechanisms and targets through which luteolin either prevents cancer or mediates cancer cell death.
Collapse
|
22
|
Chen H, Wang N, Yang G, Guo Y, Shen Y, Wang X, Zhang P, Xu Y. The expression and function of E3 ligase SIAH2 in acute T lymphoblastic leukemia. Leuk Res 2016; 42:28-36. [PMID: 26859780 DOI: 10.1016/j.leukres.2016.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/10/2016] [Accepted: 01/24/2016] [Indexed: 11/17/2022]
Abstract
INTRODUCTION The seven in absentia homolog 2 (SIAH2) protein plays a significant role in human cancer by regulating hypoxia-inducible factor-a (HIF-1α); however, its role in T-cell acute lymphoblastic leukemia (T-ALL) is less clear. METHODS Immunofluorescence evaluation of SIAH2 protein expression and location were conducted in Jurkat cell (a T-ALL cell line) as well as in bone marrow mononuclear cells (BMMNCs) from T-ALL and idiopathic thrombocytopenic purpura (ITP) patients. The expression of SIAH2 mRNA was also examined by quantitative real-time PCR (qRT-PCR) in these cells. Lentivirus-packed shRNA targeting on SIAH2 (Lv-shSIAH2) was used to knock down SIAH2 expression in Jurkat cells. Cell proliferation, apoptosis, invasion and protein levels were then determined by CCK-8 assay, annexin V-PI assay, transwell and Western blotting, respectively. RESULTS The mRNA expression of SIAH2 in BMMNCs from primary T-ALL patients was significantly higher than cells from ITP patients (P=0.0312); There were significant positive associations between SIAH2 expression and the extramedullary infiltration (EMI) (P=0.0003), especially with the mediastinal lymph node metastasis (P=0.0168) and the pleural effusion (P=0.014). However, SIAH2 expression in T-ALL BMMNCs was not correlated with age, gender, white cell count or the clinical risk classification. SIAH2 knockdown by shRNA led to increased apoptosis and decreased proliferation, migration and invasion of Jurkat cells. Moreover, Prolyl Hydroxylase (PHD), P27 and Caspase3 were upregulated and HIF-1α, VEGF, VEGF Receptor 2, MMP-13, CyclinE1, C-myc and BCL2 were downregulated in SIAH2 knockdown Jurkat cells. CONCLUSIONS Our results suggest that SIAH2 regulates multi processes in T-ALL and may be an attractive therapeutic target.
Collapse
Affiliation(s)
- Hongxia Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China
| | - Ning Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China
| | - Guicun Yang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China
| | - Yuxia Guo
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China
| | - Yali Shen
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China
| | - Xiaojing Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China
| | - Ping Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China
| | - Youhua Xu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Department of Hematology and Oncology, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; Key Laboratory of Pediatrics in Chongqing, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China; China International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Yuzhong, Chongqing 400014, PR China.
| |
Collapse
|
23
|
Overexpression of Siah2 Is Associated With Poor Prognosis in Patients With Epithelial Ovarian Carcinoma. Int J Gynecol Cancer 2016; 26:114-9. [DOI: 10.1097/igc.0000000000000574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
ObjectivesSeven in absentia homolog 2 (Siah2) is an E3 ubiquitin ligase that is expressed in mammals and is homologous to seven in absentia in Drosophila. Siah2 is involved in the progression of many malignancies. However, the role of Siah2 in ovarian cancer remains unclear. This study aims to evaluate the prognostic value of Siah2 expression for epithelial ovarian carcinoma (EOC) patients.Materials and MethodsImmunohistochemical analysis was conducted using 32 normal ovarian specimens and 122 ovarian carcinoma specimens, respectively. We analyzed the correlations of Siah2 expression with the clinicopathological factors and prognosis of ovarian cancer patients. χ2 Analysis, Kaplan-Meier method, and multivariate Cox proportional hazard analysis were conducted for statistical analyses.ResultsImmunohistochemical staining demonstrated that the expression of Siah2 was higher in the EOC tissues than in the normal tissues. High Siah2 expression positively correlated with histological grade and lymph node metastasis but not with age, histologic type, International Federation of Gynecology and Obstetrics staging, and CA125. Patients with positive Siah2 expression showed lower overall survival and disease-free survival rates than those with negative Siah2 expression (P < 0.05 for both). Multivariate Cox analysis indicated that Siah2 was an independent parameter for overall survival (hazards ratio, 2.166; 95% confidence interval, 1.182–3.970; P = 0.012) and disease-free survival (hazards ratio, 1.819; 95% confidence interval, 1.030–3.216; P = 0.039).ConclusionsSiah2 is possibly involved in tumor development and progression in EOC. Thus, Siah2 is a promising biomarker for predicting the prognosis of ovarian cancer patients and may serve as a novel target for treating ovarian carcinoma.
Collapse
|
24
|
Moreno P, Lara-Chica M, Soler-Torronteras R, Caro T, Medina M, Álvarez A, Salvatierra Á, Muñoz E, Calzado MA. The Expression of the Ubiquitin Ligase SIAH2 (Seven In Absentia Homolog 2) Is Increased in Human Lung Cancer. PLoS One 2015; 10:e0143376. [PMID: 26580787 PMCID: PMC4651316 DOI: 10.1371/journal.pone.0143376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/04/2015] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Lung cancer is the leading cause of cancer-related deaths worldwide. Overall 5-year survival has shown little improvement over the last decades. Seven in absentia homolog (SIAH) proteins are E3 ubiquitin ligases that mediate proteasomal protein degradation by poly-ubiquitination. Even though SIAH proteins play a key role in several biological processes, their role in human cancer remains controversial. The aim of the study was to document SIAH2 expression pattern at different levels (mRNA, protein level and immunohistochemistry) in human non-small cell lung cancer (NSCLC) samples compared to surrounding healthy tissue from the same patient, and to analyse the association with clinicopathological features. MATERIALS AND METHODS One hundred and fifty-two samples from a patient cohort treated surgically for primary lung cancer were obtained for the study. Genic and protein expression levels of SIAH2 were analysed and compared with clinic-pathologic variables. RESULTS The present study is the first to analyze the SIAH2 expression pattern at different levels (RNA, protein expression and immunohistochemistry) in non-small cell lung cancer (NSCLC). We found that SIAH2 protein expression is significantly enhanced in human lung adenocarcinoma (ADC) and squamous cell lung cancer (SCC). Paradoxically, non-significant changes at RNA level were found, suggesting a post-traductional regulatory mechanism. More importantly, an increased correlation between SIAH2 expression and tumor grade was detected, suggesting that this protein could be used as a prognostic biomarker to predict lung cancer progression. Likewise, SIAH2 protein expression showed a strong positive correlation with fluorodeoxyglucose (2-deoxy-2(18F)fluoro-D-glucose) uptake in primary NSCLC, which may assist clinicians in stratifying patients at increased overall risk of poor survival. Additionally, we described an inverse correlation between the expression of SIAH2 and the levels of one of its substrates, the serine/threonine kinase DYRK2. CONCLUSIONS Our results provide insight into the potential use of SIAH2 as a novel target for lung cancer treatment.
Collapse
Affiliation(s)
- Paula Moreno
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Thoracic Surgery and Lung Transplantation Unit, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Maribel Lara-Chica
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Rafael Soler-Torronteras
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Teresa Caro
- Department of Pathology, Hospital Universitario Reina Sofía, Spain, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ University of Córdoba, 14004 Córdoba, Spain
| | - Manuel Medina
- Department of Pathology, Hospital Universitario Reina Sofía, Spain, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ University of Córdoba, 14004 Córdoba, Spain
| | - Antonio Álvarez
- Thoracic Surgery and Lung Transplantation Unit, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Ángel Salvatierra
- Thoracic Surgery and Lung Transplantation Unit, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Eduardo Muñoz
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| | - Marco A. Calzado
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/ Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
| |
Collapse
|
25
|
Jo DH, Kim JH, Cho CS, Cho YL, Jun HO, Yu YS, Min JK, Kim JH. STAT3 inhibition suppresses proliferation of retinoblastoma through down-regulation of positive feedback loop of STAT3/miR-17-92 clusters. Oncotarget 2015; 5:11513-25. [PMID: 25359779 PMCID: PMC4294389 DOI: 10.18632/oncotarget.2546] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/30/2014] [Indexed: 12/29/2022] Open
Abstract
Retinoblastoma, the most common intraocular malignant tumor in children, is characterized by the loss of both functional alleles of RB1 gene, which however alone cannot maintain malignant characteristics of retinoblastoma cells. Nevertheless, the investigation of other molecular aberrations such as matrix metalloproteinases (MMPs) and miRNAs is still lacking. In this study, we demonstrate that STAT3 is activated in retinoblastoma cells, Ki67-positive areas of in vivo orthotopic tumors in BALB/c nude mice, and human retinoblastoma tissues of the advanced stage. Furthermore, target genes of STAT3 including BCL2, BCL2L1, BIRC5, and MMP9 are up-regulated in retinoblastoma cells compared to other retinal constituent cells. Interestingly, STAT3 inhibition by targeted siRNA suppresses the proliferation of retinoblastoma cells and the formation of in vivo orthotopic tumors. In line with these results, STAT3 siRNA effectively induces down-regulation of target genes of STAT3. In addition, miRNA microarray analysis and further real-time PCR experiments with STAT3 siRNA treatment show that STAT3 activation is related to the up-regulation of miR-17-92 clusters in retinoblastoma cells via positive feedback loop between them. In conclusion, we suggest that STAT3 inhibition could be a potential therapeutic approach in retinoblastoma through the suppression of tumor proliferation.
Collapse
Affiliation(s)
- Dong Hyun Jo
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea. Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, Republic of Korea. Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jin Hyoung Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea. Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, Republic of Korea
| | - Chang Sik Cho
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea. Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, Republic of Korea. Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Young-Lai Cho
- Center for Nanosafety Metrology, Korea Research Institute of Standards and Science Daejeon, Republic of Korea
| | - Hyoung Oh Jun
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea. Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, Republic of Korea
| | - Young Suk Yu
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea. Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jeong-Ki Min
- Research Center for Integrated Cellulomics, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jeong Hun Kim
- Fight against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea. Tumor Microenvironment Research Center, Global Core Research Center, Seoul National University, Seoul, Republic of Korea. Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea. Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Trung LQ, Espinoza JL, An DT, Viet NH, Shimoda K, Nakao S. Resveratrol selectively induces apoptosis in malignant cells with the JAK2V617F mutation by inhibiting the JAK2 pathway. Mol Nutr Food Res 2015; 59:2143-54. [DOI: 10.1002/mnfr.201500166] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/23/2015] [Accepted: 07/30/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Ly Quoc Trung
- Cellular Transplantation Biology; Graduate School of Medical Sciences; Kanazawa University; Kanazawa Japan
| | - J. Luis Espinoza
- Cellular Transplantation Biology; Graduate School of Medical Sciences; Kanazawa University; Kanazawa Japan
| | - Dao T. An
- Cellular Transplantation Biology; Graduate School of Medical Sciences; Kanazawa University; Kanazawa Japan
| | - Nguyen Hoang Viet
- Cellular Transplantation Biology; Graduate School of Medical Sciences; Kanazawa University; Kanazawa Japan
| | - Kazuya Shimoda
- Division of Gastroenterology and Hematology; Department of Internal Medicine; Faculty of Medicine; Miyazaki University; Miyazaki Japan
| | - Shinji Nakao
- Cellular Transplantation Biology; Graduate School of Medical Sciences; Kanazawa University; Kanazawa Japan
| |
Collapse
|
27
|
Knauer SK, Mahendrarajah N, Roos WP, Krämer OH. The inducible E3 ubiquitin ligases SIAH1 and SIAH2 perform critical roles in breast and prostate cancers. Cytokine Growth Factor Rev 2015; 26:405-13. [DOI: 10.1016/j.cytogfr.2015.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 04/27/2015] [Indexed: 12/15/2022]
|
28
|
Fan L, Peng G, Hussain A, Fazli L, Guns E, Gleave M, Qi J. The Steroidogenic Enzyme AKR1C3 Regulates Stability of the Ubiquitin Ligase Siah2 in Prostate Cancer Cells. J Biol Chem 2015; 290:20865-20879. [PMID: 26160177 DOI: 10.1074/jbc.m115.662155] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Indexed: 11/06/2022] Open
Abstract
Re-activation of androgen receptor (AR) activity is the main driver for development of castration-resistant prostate cancer. We previously reported that the ubiquitin ligase Siah2 enhanced AR transcriptional activity and prostate cancer cell growth. Among the genes we found to be regulated by Siah2 was AKR1C3, which encodes a key androgen biosynthetic enzyme implicated in castration-resistant prostate cancer development. Here, we found that Siah2 inhibition in CWR22Rv1 prostate cancer cells decreased AKR1C3 expression as well as intracellular androgen levels, concomitant with inhibition of cell growth in vitro and in orthotopic prostate tumors. Re-expression of either wild-type or catalytically inactive forms of AKR1C3 partially rescued AR activity and growth defects in Siah2 knockdown cells, suggesting a nonenzymatic role for AKR1C3 in these outcomes. Unexpectedly, AKR1C3 re-expression in Siah2 knockdown cells elevated Siah2 protein levels, whereas AKR1C3 knockdown had the opposite effect. We further found that AKR1C3 can bind Siah2 and inhibit its self-ubiquitination and degradation, thereby increasing Siah2 protein levels. We observed parallel expression of Siah2 and AKR1C3 in human prostate cancer tissues. Collectively, our findings identify a new role for AKR1C3 in regulating Siah2 stability and thus enhancing Siah2-dependent regulation of AR activity in prostate cancer cells.
Collapse
Affiliation(s)
- Lingling Fan
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Guihong Peng
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Arif Hussain
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201; Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201
| | - Ladan Fazli
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Emma Guns
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Martin Gleave
- Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Jianfei Qi
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201.
| |
Collapse
|
29
|
Knaack SA, Siahpirani AF, Roy S. A pan-cancer modular regulatory network analysis to identify common and cancer-specific network components. Cancer Inform 2014; 13:69-84. [PMID: 25374456 PMCID: PMC4213198 DOI: 10.4137/cin.s14058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/19/2022] Open
Abstract
Many human diseases including cancer are the result of perturbations to transcriptional regulatory networks that control context-specific expression of genes. A comparative approach across multiple cancer types is a powerful approach to illuminate the common and specific network features of this family of diseases. Recent efforts from The Cancer Genome Atlas (TCGA) have generated large collections of functional genomic data sets for multiple types of cancers. An emerging challenge is to devise computational approaches that systematically compare these genomic data sets across different cancer types that identify common and cancer-specific network components. We present a module- and network-based characterization of transcriptional patterns in six different cancers being studied in TCGA: breast, colon, rectal, kidney, ovarian, and endometrial. Our approach uses a recently developed regulatory network reconstruction algorithm, modular regulatory network learning with per gene information (MERLIN), within a stability selection framework to predict regulators for individual genes and gene modules. Our module-based analysis identifies a common theme of immune system processes in each cancer study, with modules statistically enriched for immune response processes as well as targets of key immune response regulators from the interferon regulatory factor (IRF) and signal transducer and activator of transcription (STAT) families. Comparison of the inferred regulatory networks from each cancer type identified a core regulatory network that included genes involved in chromatin remodeling, cell cycle, and immune response. Regulatory network hubs included genes with known roles in specific cancer types as well as genes with potentially novel roles in different cancer types. Overall, our integrated module and network analysis recapitulated known themes in cancer biology and additionally revealed novel regulatory hubs that suggest a complex interplay of immune response, cell cycle, and chromatin remodeling across multiple cancers.
Collapse
Affiliation(s)
- Sara A Knaack
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA
| | - Alireza Fotuhi Siahpirani
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA. ; Department of Computer Sciences, University of Wisconsin, Madison, WI, USA
| | - Sushmita Roy
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA. ; Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
30
|
Histone deacetylase 2 controls p53 and is a critical factor in tumorigenesis. Biochim Biophys Acta Rev Cancer 2014; 1846:524-38. [PMID: 25072962 DOI: 10.1016/j.bbcan.2014.07.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/05/2014] [Accepted: 07/22/2014] [Indexed: 12/21/2022]
Abstract
Histone deacetylase 2 (HDAC2) regulates biological processes by deacetylation of histones and non-histone proteins. HDAC2 is overexpressed in numerous cancer types, suggesting general cancer-relevant functions of HDAC2. In human tumors the TP53 gene encoding p53 is frequently mutated and wild-type p53 is often disarmed. Molecular pathways inactivating wild-type p53 often remain to be defined and understood. Remarkably, current data link HDAC2 to the regulation of the tumor suppressor p53 by deacetylation and to the maintenance of genomic stability. Here, we summarize recent findings on HDAC2 overexpression in solid and hematopoietic cancers with a focus on mechanisms connecting HDAC2 and p53 in vitro and in vivo. In addition, we present an evidence-based model that integrates molecular pathways and feedback loops by which p53 and further transcription factors govern the expression and the ubiquitin-dependent proteasomal degradation of HDAC2 and of p53 itself. Understanding the interactions between p53 and HDAC2 might aid in the development of new therapeutic approaches against cancer.
Collapse
|