1
|
El-Sayed HS, Saad AS, Tawfik WA, Adel A, Abdelmagid MA, Momenah MA, Azab DM, Omar SE, El-Habbaa AS, Bahshwan SMA, Alghamdi AM, El-Saadony MT, El-Tarabily KA, El-Mayet FS. The role of turmeric and black pepper oil nanoemulsion in attenuating cytokine storm triggered by duck hepatitis A virus type I (DHAV-I)-induced infection in ducklings. Poult Sci 2024; 103:103404. [PMID: 38242053 PMCID: PMC10831264 DOI: 10.1016/j.psj.2023.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/21/2024] Open
Abstract
The cytokine storm induced by duck hepatitis A virus type 1 (DHAV-1) infection significantly contributes to severe, rapid deaths and economic losses in the duck industry in Egypt. This study aimed to investigate the potential inhibitory effect of a nanoemulsion containing turmeric and black pepper oil on the immune response and pathogenesis of DHAV-1 in ducklings. A total of 105 ducklings from nonvaccinated breeders were divided into 5 experimental groups, each comprising 21 birds. The negative control group (G1) remained noninfected with DHAV-1 and nontreated with nanoemulsion, while the positive control group (G2) was infected with DHAV-1 but not treated with nanoemulsion. The other 2 groups (G3, the supplemented group which was noninfected with DHAV-1), and group 4 (the prophylactic group G4) which was infected with DHAV-1, both received nanoemulsion throughout the experiment. Group 5 (G5, the therapeutic group), on the other hand, which was infected with DHAV-1 received nanoemulsion only from the onset of clinical signs. At 5 days old, the ducklings in the positive control (G2), the prophylactic (G4), and the therapeutic group (G5) were infected with DHAV-1. All the ducklings in the infected groups exhibited depression, anorexia, and opisthotonos, and their livers displayed various degrees of ecchymotic hemorrhage, liver enlargement, and microscopic pathological lesions. Notably, the positive control group (G2) experienced the most severe and pronounced effects compared to the other infected groups treated with the nanoemulsion. Meanwhile, the viral RNA loads were lower in the liver tissues of the infected ducklings treated with the nanoemulsion (G4, and G5) compared to the positive control group G2. Additionally, the nanoemulsion effectively modulated proinflammatory cytokine expression, antioxidant enzymes, liver enzymes, and lipid profile of treated ducklings. In conclusion, the turmeric and black pepper oil nanoemulsion has the potential to be a therapeutic agent for regulating and modulating the immune response, decreasing DHAV-1-induced cytokine storms, and minimizing mortality and economic losses in the duck business. More research is needed to understand how turmeric and black pepper oil nanoemulsion alleviates DHVA-1-induced cytokine storms and lowers duckling mortality.
Collapse
Affiliation(s)
- Hemat S El-Sayed
- Department of Poultry Diseases, Animal Health Research Institute, Benha-Branch, Agriculture Research Center (ARC), Benha 12618, Egypt
| | - Aalaa S Saad
- Biotechnology Department, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Wesam A Tawfik
- Holding Company for Biological Products and Vaccines, Dokki, Giza 12311, Egypt; NaQaa Nanotechnology Network (NNN), Giza, Egypt
| | - Amany Adel
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Marwa A Abdelmagid
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center (ARC), Giza 12618, Egypt
| | - Maha Abdullah Momenah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Dalia M Azab
- Biochemistry Department (Pharmacology), Animal Health Research Institute, Benha-Branch, Agriculture Research Center (ARC), Benha 12618, Egypt
| | - Sabry E Omar
- Department of Poultry Diseases, Animal Health Research Institute, Benha-Branch, Agriculture Research Center (ARC), Benha 12618, Egypt
| | - Ayman S El-Habbaa
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Moshtohor 13736, Qalyubia, Egypt
| | - Safia M A Bahshwan
- Biological Sciences Department, College of Science and Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Amira M Alghamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates.
| | - Fouad S El-Mayet
- Department of Virology, Faculty of Veterinary Medicine, Benha University, Moshtohor 13736, Qalyubia, Egypt; Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
2
|
Li J, Wang M, Zhou S, Cheng A, Ou X, Sun D, Wu Y, Yang Q, Gao Q, Huang J, Tian B, Mao S, Zhang S, Zhao X, Jia R, Liu M, Zhu D, Chen S, Liu Y, Yu Y, Zhang L, Pan L. The DHAV-1 protein VP1 interacts with PI3KC3 to induce autophagy through the PI3KC3 complex. Vet Res 2022; 53:64. [PMID: 35978392 PMCID: PMC9387016 DOI: 10.1186/s13567-022-01081-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/02/2022] [Indexed: 01/18/2023] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is one of the main pathogens responsible for death in ducklings. Autophagy is a catabolic process that maintains cellular homeostasis, and the PI3KC3 protein plays an important role in the initiation of autophagy. DHAV-1 infection induces autophagy in duck embryo fibroblasts (DEFs) but the molecular mechanism between it and autophagy has not been reported. First, we determined that DHAV-1 infection induces autophagy in DEFs and that autophagy induction is dependent on the integrity of viral proteins by infecting DEFs with UV-inactivated or heat-inactivated DHAV-1. Then, in experiments using the pharmacological autophagy inducer rapamycin and the autophagy inhibitor chloroquine, autophagy inhibition was shown to reduce intracellular and extracellular DHAV-1 genome copies and viral titres. These results suggest that autophagy activated by DHAV-1 infection in DEFs affects DHAV-1 proliferation and extracellular release. Next, we screened the autophagy-inducing effects of the DHAV-1 structural proteins VP0, VP3, and VP1 and found that all DHAV-1 structural proteins could induce autophagy in DEFs but not the full autophagic flux. Finally, we found that VP1 promotes protein expression of PI3KC3 and Beclin1 by western blot experiments and that VP1 interacts with PI3KC3 by co-immunoprecipitation experiments; moreover, 3-MA-induced knockdown of PI3KC3 inhibited VP1 protein-induced autophagy in DEFs. In conclusion, the DHAV-1 structural protein VP1 regulates the PI3KC3 complex by interacting with PI3KC3 to induce autophagy in DEFs.
Collapse
Affiliation(s)
- Juan Li
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shan Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Xuming Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
3
|
Wu L, Quan W, Zhang Y, Wang M, Ou X, Mao S, Sun D, Yang Q, Wu Y, Wei Y, Jia R, Chen S, Zhu D, Liu M, Zhao X, Zhang S, Huang J, Gao Q, Tian B, Cheng A. Attenuated Duck Hepatitis A Virus Infection Is Associated With High mRNA Maintenance in Duckling Liver via m6A Modification. Front Immunol 2022; 13:839677. [PMID: 35757688 PMCID: PMC9218207 DOI: 10.3389/fimmu.2022.839677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/05/2022] [Indexed: 11/15/2022] Open
Abstract
Host translation is generally modulated by viral infection, including duck hepatitis A virus (DHAV) infection. Previously, we reported that cellular protein synthesis in a cell model of duck embryo fibroblasts is significantly inhibited by DHAV infection but not viral proteins, suggesting that an important viral-host interaction occurs at the translational level. In this study, we aim to further understand the impact of DHAV virulence on cellular N6-methyladenosine (m6A) modification, which is essential to a wide variety of RNA biological processes, such as mRNA stabilization and translation. Using m6A antibody-based immunoprecipitation, m6A-seq, and LC–MS/MS, we observed that m6A-modified mRNA exists in both virulent and attenuated DHAV-infected duckling livers. Importantly, m6A levels in mRNA were much higher in attenuated DHAV-infected livers compared with virulent DHAV-infected livers, suggesting virulence-dependent regulation of m6A modification. Analysis of modification motifs indicated that GAAGAAG is the most enriched motif. Combined m6A-seq and RNA-seq data analysis indicated a generally positive correlation between m6A and mRNA expression levels in DHAV-infected duckling livers. GO analysis of genes with decreased or increased m6A levels showed that these genes were enriched in various terms, including oxidation–reduction processes and antiviral immune responses. Collectively, our work reveals DHAV virulence-dependent coordination between m6A modification and mRNA expression in duckling livers.
Collapse
Affiliation(s)
- Liping Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weili Quan
- ABLife BioBigData Institute, Wuhan, China
| | - Yi Zhang
- ABLife BioBigData Institute, Wuhan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaxun Wei
- Center for Genome Analysis, ABLife, Inc., Wuhan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Liu Z, Ye Q, Cheng A, Ou X, Mao S, Sun D, Zhang S, Zhao X, Yang Q, Wu Y, Huang J, Gao Q, Tian B, Wang M. A viroporin-like 2B protein of duck hepatitis A virus 1 that induces incomplete autophagy in DEF cells. Poult Sci 2021; 100:101331. [PMID: 34403988 PMCID: PMC8368021 DOI: 10.1016/j.psj.2021.101331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022] Open
Abstract
Duck hepatitis A virus 1 (DHAV-1) can cause high morbidity and fatal acute infectious hepatitis in ducklings, which seriously endangers animal husbandry. Viroporin is a small molecular weight hydrophobic transmembrane protein encoded by the virus, that has been suggested to induce autophagy in host cells by increasing the membrane permeability through disturbing the ion balance. In this study, we aimed to investigate whether the DHAV-1 2B protein can induce autophagy in DEF cells with a viroporin-like function. Bioinformatics analysis has indicated that the 2B protein is characterized by a viroporin domain, which is consistent with the type IA viroporin transmembrane protein. We experimentally confirmed that the 2B protein disturbed the Ca2+ balance of infected cells by elevating the intracellular Ca2+ concentration. Eukaryotic expression of the 2B protein upregulates the expression of microtubule-associated protein 1 light chain 3 II (LC3-II) and the number of autophagosomes in the cell. Interestingly, the Western Blot (WB) results showed that 2B protein expression induced less protein degradation of the autophagic substrate sequestosome 1 (SQSTM1/p62) than the positive control, while microscopy observations showed that the autophagosomes did not colocalize with the lysosomes. In summary, 2B protein expression induced autophagy in host cells, but the autophagic flow was incomplete. The results of this experiment are expected to provide reference scientific data for elucidating the infective and pathogenic mechanism of DHAV-1.
Collapse
Affiliation(s)
- Zezheng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qian Ye
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, 611130, P.R. China.
| |
Collapse
|
5
|
Xie J, Wang M, Cheng A, Jia R, Zhu D, Liu M, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Luo Q, Wang Y, Xu Z, Chen Z, Zhu L, Liu Y, Yu Y, Zhang L, Chen X. The role of SOCS proteins in the development of virus- induced hepatocellular carcinoma. Virol J 2021; 18:74. [PMID: 33849568 PMCID: PMC8045357 DOI: 10.1186/s12985-021-01544-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/03/2021] [Indexed: 01/08/2023] Open
Abstract
Background Liver cancer has become one of the most common cancers and has a high mortality rate. Hepatocellular carcinoma is one of the most common liver cancers, and its occurrence and development process are associated with chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections. Main body The serious consequences of chronic hepatitis virus infections are related to the viral invasion strategy. Furthermore, the viral escape mechanism has evolved during long-term struggles with the host. Studies have increasingly shown that suppressor of cytokine signaling (SOCS) proteins participate in the viral escape process. SOCS proteins play an important role in regulating cytokine signaling, particularly the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway. Cytokines stimulate the expression of SOCS proteins, in turn, SOCS proteins inhibit cytokine signaling by blocking the JAK-STAT signaling pathway, thereby achieving homeostasis. By utilizing SOCS proteins, chronic hepatitis virus infection may destroy the host’s antiviral responses to achieve persistent infection. Conclusions This review provides recent knowledge regarding the role of SOCS proteins during chronic hepatitis virus infection and provides some new ideas for the future treatment of chronic hepatitis.
Collapse
Affiliation(s)
- Jinyan Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Qihui Luo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Yin Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Zhengli Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Ling Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, 611130, Sichuan, People's Republic of China
| |
Collapse
|
6
|
Mao S, Ou X, Wang M, Sun D, Yang Q, Wu Y, Jia R, Zhu D, Zhao X, Chen S, Liu M, Zhang S, Huang J, Gao Q, Liu Y, Yu Y, Zhang L, Tian B, Pan L, Chen X, Cheng A. Duck hepatitis A virus 1 has lymphoid tissue tropism altering the organic immune responses of mature ducks. Transbound Emerg Dis 2020; 68:3588-3600. [PMID: 33369177 DOI: 10.1111/tbed.13966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022]
Abstract
Duck hepatitis A virus 1 (DHAV-1) is a highly prevalent pathogen within adult ducks causing acute as well as chronic hepatitis which closely emulates the progression of human hepatitis. However, the underlying mechanisms of DHAV-1 persistence and the pathogenesis of chronic liver disease are not well defined. The association between hematopoietic reservoirs of virus and persistent infection is increasingly concerning. Here, we explored the ability of lymphoid replication of DHAV-1 and the effect on immunity. We found that DHAV-1 was able to infect and replicate productively in the lymphoid organs of model ducks, persisting over 6 months. Moreover, a significant correlation of viral loads between these organs and blood was found, documenting a major contribution of lymphoid replication to DHAV-1 viraemia. Along with viral replication, the mRNA of PRRs and immune-related cytokines was up-regulated in these organs during the early phase of infection, showing tissue-dependent expression patterns but all inclining towards Th2 responses due to the consistently higher level of IL-4 than IL-2 and IFN-γ. Additionally, the expression of CCL19, CCL21, MHC-I and MHC-II, which are involved in T cell homing to the periphery and priming, was dysmodulated. Our data indicate that DHAV-1 possesses lymphoid tissue tropism, contributing to persistent infection and chronic hepatitis via altering the early endogenous transcription of immune-related genes and thereby perturbing organic immunity. These results may be useful to develop novel strategies to treat chronic viral hepatitis based on stimulation of the early innate system and regulation of T-cell trafficking.
Collapse
Affiliation(s)
- Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
7
|
Xie J, Wang M, Cheng A, Zhao XX, Liu M, Zhu D, Chen S, Jia R, Yang Q, Wu Y, Zhang S, Liu Y, Yu Y, Zhang L, Sun K, Chen X. Author Correction: Cytokine storms are primarily responsible for the rapid death of ducklings infected with duck hepatitis A virus type 1. Sci Rep 2020; 10:5672. [PMID: 32205860 PMCID: PMC7090070 DOI: 10.1038/s41598-020-62439-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jinyan Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| |
Collapse
|
8
|
The VP3 protein of duck hepatitis A virus mediates host cell adsorption and apoptosis. Sci Rep 2019; 9:16783. [PMID: 31727985 PMCID: PMC6856352 DOI: 10.1038/s41598-019-53285-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023] Open
Abstract
Duck hepatitis A virus (DHAV) causes an infectious disease that mainly affects 1- to 4-week-old ducklings, resulting in considerable loss to the duck industry. Although there have been many studies on DHAV in recent years, the effects on host infection and pathogenesis of DHAV-1 remain largely unknown. This study investigated the effects of the DHAV-1 structural protein VP3 on DHAV-1 virus adsorption and apoptosis to explore the role of VP3 in the viral life cycle. The effects of DHAV-1 VP3 and an antibody against the protein on virion adsorption was analyzed by qRT-PCR. The results showed that the virus copy number for the rabbit anti-VP3 IgG-treated group was significantly lower than that for the negative control group but higher than that for the rabbit anti-DHAV-1 IgG-treated group. This result indicates that VP3 mediates DHAV-1 virus adsorption but that it is not the only protein that involved in this process. In addition, a eukaryotic recombinant plasmid, pCAGGS/VP3, was transfected into duck embryo fibroblasts (DEFs), and the apoptotic rate was determined by DAPI staining, the TUNEL assay and flow cytometry. DAPI staining showed nucleus fragmentation and nuclear edge shifting. TUNEL assay results revealed yellow nuclei, and flow cytometry indicated a significant increase in the apoptotic rate. In addition, qRT-PCR revealed increased in the transcriptional levels of the apoptotic caspase-3, −8 and −9, with the largest increase for caspase-3, followed by caspase-9 and caspase-8. Enzyme activity analysis confirmed these results. Furthermore, the VP3 protein decreased the mitochondrial membrane potential, and the transcriptional levels of the proapoptotic factors Bak, Cyt c and Apaf-1 in the mitochondrial apoptotic pathway were significantly upregulated. These data suggest that expression of VP3 in DEFs induces apoptosis and may primarily activate caspase-3-induced apoptosis through mitochondrion-mediated intrinsic pathways. The findings provide scientific data to clarify DHAV-1 infection and pathogenesis.
Collapse
|
9
|
Wen X, Guo J, Sun D, Wang M, Cao D, Cheng A, Zhu D, Liu M, Zhao X, Yang Q, Chen S, Jia R, Wu Y, Zhang S, Mao S, Ou X, Chen X, Yu Y, Zhang L, Liu Y, Tian B, Pan L, Rehman MU. Mutations in VP0 and 2C Proteins of Duck Hepatitis A Virus Type 3 Attenuate Viral Infection and Virulence. Vaccines (Basel) 2019; 7:vaccines7030111. [PMID: 31514454 PMCID: PMC6789628 DOI: 10.3390/vaccines7030111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Duck hepatitis A virus (DHAV) is prevalent worldwide and has caused significant economic losses. As the predominant serotype in China, DHAV-3 has become a major challenge to the local duck industry. Here the genetics and pathogenesis of a virulent DHAV-3 strain and its embryo-passaged strain were assessed. There were only two amino acid substitutions (Y164N in VP0 protein and L71I in 2C protein) introduced during the adaptation process. The pathogenicity of these strains was further evaluated in vivo. Clinical signs, gross pathology, and histopathological analysis showed that the embryo-passaged strain was attenuated. Meanwhile, the viral RNA loads were significantly lower in the liver tissues of the ducklings infected with the attenuated strain. As expected, infection with the virulent and attenuated strains led to the activation of different innate immune genes. We suspected that the loss of replication efficiency in ducklings was responsible for the attenuation phenotype of the embryo-passaged strain. In addition, different innate immune responses in the liver of ducklings were at least partly responsible for the differential infectivity phenotype. These findings provide new insights into the genetics and pathogenesis of DHAV-3, which may aid the development of new vaccines and the implementation of immunization strategies.
Collapse
Affiliation(s)
- Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Jinlong Guo
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Dian Cao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
10
|
Sun D, Wang M, Wen X, Mao S, Cheng A, Jia R, Yang Q, Wu Y, Zhu D, Chen S, Liu M, Zhao X, Zhang S, Chen X, Liu Y, Yu Y, Zhang L. Biochemical characterization of recombinant Avihepatovirus 3C protease and its localization. Virol J 2019; 16:54. [PMID: 31036013 PMCID: PMC6489322 DOI: 10.1186/s12985-019-1155-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/28/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The picornaviral 3C protease mediates viral polyprotein maturation and multiple cleavages of host proteins to modulate viral translation and transcription. The 3C protease has been regarded as a valid target due to its structural similarity among different picornaviruses and minimal sequence similarity with host proteins; therefore, the development of potent inhibitors against the 3C protease as an antiviral drug is ongoing. Duck hepatitis A virus (DHAV) belongs to the Picornavidea family and is a major threat to the poultry industry. To date, little is known about the roles of the DHAV 3C protease plays during infection. METHODS In this study, we compared the full-length DHAV 3C protein sequence with other 3C sequences to obtain an alignment for the construction of a phylogenetic tree. Then, we expressed and purified recombinant DHAV 3C protease in the BL21 expression system using nickel-NTA affinity chromatography. The optimization of the cleavage assay conditions and the kinetic analysis for DHAV 3C protease were done by in vitro cleavage assays with a fluorogenic peptide respectively. The inhibitory activity of rupintrivir against the DHAV 3C protease was further evaluated. The localization of the 3C protease in infected and transfected cells was determined using immunofluorescence and confocal microscopy. RESULTS Under different expression conditions, the 3C protease was found to be highly expressed after induction with 1 mM IPTG at 16 °C for 10 h. We synthesized a fluorogenic peptide derived from the cleavage site of the DHAV polyprotein and evaluated the protease activity of the DHAV 3C protease for the first time. We used fluorimetric based kinetic analysis to determine kinetic parameters, and Vmax and Km values were determined to be 16.52 nmol/min and 50.78 μM, respectively. Rupintrivir was found to exhibit inhibitory activity against the DHAV 3C protease. Using polyclonal antibody and an indirect immunofluorescence microscopy assay (IFA), it was determined that the DHAV 3C protease was found in the nucleus during infection. In addition, the DHAV 3C protease can enter into the nucleus without the cooperation of viral proteins. CONCLUSIONS This is the first study to examine the activity of the DHAV 3C protease, and the activity of the DHAV 3C protease is temperature-, pH- and NaCl concentration- dependent. The DHAV 3C protease localizes throughout DHAV-infected cells and can enter into the nucleus in the absence of other viral proteins. The kinetic analysis was calculated, and the Vmax and Km values were 16.52 nmol/min and 50.78 μM, respectively, using the Lineweaver-Burk plot.
Collapse
Affiliation(s)
- Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130 People’s Republic of China
| |
Collapse
|
11
|
Xie J, Wang M, Cheng A, Zhao XX, Liu M, Zhu D, Chen S, Jia R, Yang Q, Wu Y, Zhang S, Liu Y, Yu Y, Zhang L, Chen X. DHAV-1 Inhibits Type I Interferon Signaling to Assist Viral Adaption by Increasing the Expression of SOCS3. Front Immunol 2019; 10:731. [PMID: 31024559 PMCID: PMC6465609 DOI: 10.3389/fimmu.2019.00731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/19/2019] [Indexed: 12/17/2022] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is one of the most lethal pathogens in the duck industry. The attenuated vaccine (the CH60 strain) is cultivated through serial passage in chicken embryos and is widely used for the prevention and control of the disease. However, the specific mechanism underlying its adaptation in chicken embryos has not been fully elucidated. In this study, we first infected chicken embryo fibroblasts (CEFs) with the DHAV-1 CH60 strain. The peak of viral proliferation occurred within 36–48 h post-infection. The different DHAV-1 strains significantly induced the expression of IFNα, IFNγ, and Suppressor of cytokine signaling 3 (SOCS3) in CEFs, and we found that SOCS3 overexpression significantly promoted viral replication. Furthermore, SOCS3 overexpression significantly inhibited the expression of IFNα but promoted the expression of IFNγ. In addition, SOCS3 overexpression clearly decreased the mRNA levels of STAT1 and STAT3 in the Janus kinase (JAK)-STAT signaling pathway and inhibited the expression of the antiviral proteins MX1 and OASL. Immune-precipitation assays indicated that SOCS3 and IFNα do not physically interact. Subcellular localization of SOCS3 and IFNα revealed that SOCS3 was mainly located in the nucleus and cytoplasm, while IFNα was located only in the cytoplasm. Co-localization of these two proteins was not observed in the cytoplasm. In conclusion, the DHAV-1 CH60 strain may inhibit the expression of IFNα by increasing the SOCS3 protein and SOCS3 can in turn decrease STAT1 and STAT3 mRNA levels, thereby inhibiting the antiviral protein MX1 and ultimately promoting viral proliferation, indirectly assisting in viral adaptation in chicken embryos.
Collapse
Affiliation(s)
- Jinyan Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Zhou S, Zhang S, Wang M, Cheng A, Zhu D, Chen S, Liu M, Zhao X, Jia R, Yang Q, Wu Y, Zhang S, Liu Y, Yu Y, Zhang L, Chen X. Development and evaluation of an indirect ELISA based on recombinant nonstructural protein 3A to detect antibodies to duck hepatitis A virus type 1. J Virol Methods 2019; 268:56-61. [PMID: 30905595 DOI: 10.1016/j.jviromet.2019.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 01/08/2023]
Abstract
To develop an indirect enzyme-linked immunosorbent assay(I-ELISA) method based on 3A protein of duck hepatitis A virus type 1(DHAV-1) for detection of DHAV-1 antibody, the recombinant protein 3A of DHAV-1 was expressed in E.coli and detected by Western blotting with DHAV-1 infected duck serum. A 3A-ELISA method using the expressed 3A protein as coating antigen for the detection of antibodies to DHAV-1 was developed. The optimal antigen, serum and enzyme-labeled antibody dilutions were 1:200(6.185 μg/ml), 1:20 and 1:2000, respectively. The optimal blocking buffer was 5% BSA. The cutoff value was determined to be 0.274, and the analytical sensitivity was 1:1280. There was no cross reaction between DHAV-1 infected duck serum and other common pathogenic duck serum, indicating that I-ELISA could be used to detect DHAV-1 infected duck serum. The coefficients of variation(CVs) were lower than 10%. The concordance between the I-ELISA based on the 3A subunit of DHAV-1 and that based on the whole DHAV-1 particle was 92.7%. Taken together, the 3A-ELISA method is a highly sensitive and specific test that could be used for screening for DHAV-1 infection and monitoring DHAV-1 antibody.
Collapse
Affiliation(s)
- Shan Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Shengyong Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China; Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
13
|
Yang X, Zeng Q, Wang M, Cheng A, Pan K, Zhu D, Liu M, Jia R, Yang Q, Wu Y, Chen S, Zhao X, Zhang S, Liu Y, Yu Y, Zhang L. DHAV-1 2A1 Peptide - A Newly Discovered Co-expression Tool That Mediates the Ribosomal "Skipping" Function. Front Microbiol 2018; 9:2727. [PMID: 30498481 PMCID: PMC6249498 DOI: 10.3389/fmicb.2018.02727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/24/2018] [Indexed: 01/27/2023] Open
Abstract
Duck hepatitis A virus 1 (DHAV-1) belongs to the genus Avihepatovirus in the family Picornaviridae. Little research has been carried out on the non-structural proteins of this virus. This study reports that 2A1 protein, the first non-structural protein on the DHAV-1 genome, has a ribosomal “skipping” function mediated by a “-GxExNPGP-” motif. In addition, we prove that when the sequence is extended 10aa to VP1 from the N-terminal of 2A1, the ribosome “skips” completely. However, as the N-terminus of 2A is shortened, the efficiency of ribosomal “skipping” reduces. When 2A1 is shortened to 10aa, it does not function. In addition, we demonstrate that N18, P19 G20, and P21 have vital roles in this function. We find that the expression of upstream and downstream proteins linked by 2A1 is different, and the expression of the upstream protein is much greater than that of the downstream protein. In addition, we demonstrate that it is the nature of 2A1 that is responsible for the expression imbalance. We also shows that the protein “cleavage” is not due to RNA “cleavage” or RNA transcription abnormalities, and the expressed protein level is independent of RNA transcriptional level. This study provides a systematic analysis of the activity of the DHAV-1 2A1 sequence and, therefore, adds to the “tool-box” that can be deployed for the co-expression applications. It provides a reference for how to apply 2A1 as a co-expression tool.
Collapse
Affiliation(s)
- Xiaoyao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiurui Zeng
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kangcheng Pan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Xie J, Zeng Q, Wang M, Ou X, Ma Y, Cheng A, Zhao XX, Liu M, Zhu D, Chen S, Jia R, Yang Q, Wu Y, Zhang S, Liu Y, Yu Y, Zhang L, Chen X. Transcriptomic Characterization of a Chicken Embryo Model Infected With Duck Hepatitis A Virus Type 1. Front Immunol 2018; 9:1845. [PMID: 30197639 PMCID: PMC6117380 DOI: 10.3389/fimmu.2018.01845] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is one of the most common and lethal pathogens in young ducklings. Live-attenuated DHAV vaccine (CH60 strain) developed by passaging in chicken embryos provided effective immune protection for ducklings. However, the accurate mechanism for such adaption in chicken embryos is not fully revealed. Here, we utilize RNA-sequencing to perform global transcriptional analysis of DHAV-1-innoculated embryonated livers along with histopathological and ultrastructural analysis. This study revealed that infection with DHAV-1 strain CH60 is associated with enhanced type I and II interferon responses, activated innate immune responses, elevated levels of suppressor of cytokine signaling 1 and 3 (SOCS1 and SOCS3) accompanied with abnormalities in multiple metabolic pathways. Excessive inflammatory and innate immune responses induced by the CH60 strain are related to severe liver damage. Our study presents a comprehensive characterization of the transcriptome of chicken embryos infected with DHAV-CH60 and provides insight for in-depth exploration of viral adaption and virus–host interactions.
Collapse
Affiliation(s)
- Jinyan Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
| | - Qiurui Zeng
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
| | - Yunchao Ma
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xiaoyue Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
15
|
Ou X, Wang M, Mao S, Cao J, Cheng A, Zhu D, Chen S, Jia R, Liu M, Yang Q, Wu Y, Zhao X, Zhang S, Liu Y, Yu Y, Zhang L, Chen X, Peppelenbosch MP, Pan Q. Incompatible Translation Drives a Convergent Evolution and Viral Attenuation During the Development of Live Attenuated Vaccine. Front Cell Infect Microbiol 2018; 8:249. [PMID: 30073153 PMCID: PMC6058041 DOI: 10.3389/fcimb.2018.00249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 07/02/2018] [Indexed: 11/13/2022] Open
Abstract
Live attenuated vaccines are widely used to protect humans or animals from pathogen infections. We have previously developed a chicken embryo-attenuated Duck Hepatitis A Virus genotype 1 (DHAV-1) vaccine (CH60 strain). This study aims to understand the mechanisms that drive a virulent strain to an attenuated virus. Here, we systematically compared five DHAV-1 chicken embryo attenuated strains and 68 virulent strains. Phylogenetic analysis indicated that duck virulent strains isolated from different geographic regions of China undergo a convergent evolution in the chicken embryos. Comparative analysis indicated that the codon usage bias of the attenuated strains were shaped by chicken codons usage bias, which essentially contributed to viral adaption in the unsuitable host driven by incompatible translation. Of note, the missense mutations in coding region and mutations in untranslated regions may also contribute to viral attenuation of DHAV-1 to some extent. Importantly, we have experimentally confirmed that the expression levels of four viral proteins (2A3pro, 2A3pro, 3Cpro, and 3Dpro) in the liver and kidney of ducks infected with an attenuated strain are significantly lower than that infected with a virulent strain, despite with similar virus load. Thus, the key mechanisms of viral attenuation revealed by this study may lead to innovative and easy approaches in designing live attenuated vaccines.
Collapse
Affiliation(s)
- Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Jingyu Cao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| | - Qiuwei Pan
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
16
|
Xie J, Wang M, Cheng A, Zhao XX, Liu M, Zhu D, Chen S, Jia R, Yang Q, Wu Y, Zhang S, Liu Y, Yu Y, Zhang L, Sun K, Chen X. Cytokine storms are primarily responsible for the rapid death of ducklings infected with duck hepatitis A virus type 1. Sci Rep 2018; 8:6596. [PMID: 29700351 PMCID: PMC5920089 DOI: 10.1038/s41598-018-24729-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 04/05/2018] [Indexed: 12/19/2022] Open
Abstract
Duck hepatitis A virus type 1 (DHAV-1) is one of the most harmful pathogens in the duck industry. The infection of adult ducks with DHAV-1 was previously shown to result in transient cytokine storms in their kidneys. To understand how DHAV-1 infection impacts the host liver, we conducted animal experiments with the virulent CH DHAV-1 strain and the attenuated CH60 commercial vaccine strain. Visual observation and standard hematoxylin and eosin staining were performed to detect pathological damage in the liver, and viral copy numbers and cytokine expression in the liver were evaluated by quantitative PCR. The CH strain (108.4 copies/mg) had higher viral titers than the CH60 strain (104.9 copies/mg) in the liver and caused ecchymotic hemorrhaging on the liver surface. Additionally, livers from ducklings inoculated with the CH strain were significantly infiltrated by numerous red blood cells, accompanied by severe cytokine storms, but similar signs were not observed in the livers of ducklings inoculated with the CH60 strain. In conclusion, the severe cytokine storm caused by the CH strain apparently induces hemorrhagic lesions in the liver, which might be a key factor in the rapid death of ducklings.
Collapse
Affiliation(s)
- Jinyan Xie
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China. .,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China. .,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, People's Republic of China
| |
Collapse
|
17
|
Sun D, Wang M, Wen X, Cheng A, Jia R, Sun K, Yang Q, Wu Y, Zhu D, Chen S, Liu M, Zhao X, Chen X. Cleavage of poly(A)-binding protein by duck hepatitis A virus 3C protease. Sci Rep 2017; 7:16261. [PMID: 29176600 PMCID: PMC5701138 DOI: 10.1038/s41598-017-16484-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 11/14/2017] [Indexed: 01/13/2023] Open
Abstract
During viral infections, some viruses subvert the host proteins to promote the translation or RNA replication with their protease-mediated cleavage. Poly (A)-binding protein (PABP) is a target for several RNA viruses; however, the impact of duck hepatitis A virus (DHAV) on PABP remains unknown. In this study, we demonstrated for the first time that DHAV infection stimulates a decrease in endogenous PABP and generates two cleavage fragments. On the basis of in vitro cleavage assays, an accumulation of PABP cleavage fragments was detected in duck embryo fibroblast (DEF) cell extracts incubated with functional DHAV 3C protease. In addition, DHAV 3C protease was sufficient for the cleavage of recombinant PABP without the assistance of other eukaryotic cellular cofactors. Furthermore, using site-directed mutagenesis, our data demonstrated a 3C protease cleavage site located between Q367 and G368 in duck PABP. Moreover, the knockdown of PABP inhibited the production of viral RNA, and the C-terminal domain of PABP caused a reduction in viral replication compared to the N-terminal domain. Taken together, these findings suggested that DHAV 3C protease mediates the cleavage of PABP, which may be a strategy to manipulate viral replication.
Collapse
Affiliation(s)
- Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Xingjian Wen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China.
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P.R. China
| |
Collapse
|
18
|
Mao S, Wang M, Ou X, Sun D, Cheng A, Zhu D, Chen S, Jia R, Liu M, Sun K, Yang Q, Wu Y, Zhao X, Chen X. Virologic and Immunologic Characteristics in Mature Ducks with Acute Duck Hepatitis A Virus 1 Infection. Front Immunol 2017; 8:1574. [PMID: 29201029 PMCID: PMC5696325 DOI: 10.3389/fimmu.2017.01574] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/02/2017] [Indexed: 12/16/2022] Open
Abstract
Duck hepatitis A virus 1 (DHAV-1) infection in mature ducks has previously been proposed as a small-animal model for human hepatitis A. However, basic research on the outcome of DHAV-1 infection in mature ducks is limited. Here, we examined the course of viremia, the characteristics of antibody responses, and the profiles of plasma cytokines in mature ducks infected with DHAV-1. During the course of infection, the viremia was detectable soon after infection and persisted for 196 days, however, the ducks presented as clinically asymptomatic. Specific and timely immunoglobulin G (IgG), IgM, and IgA1 responses were elicited. At the same time, extensive inhibition of viral replication was observed with increasing IgG concentration. With respect to pattern-recognition receptors, TLR-7 was mainly involved in triggering the innate defense against the DHAV-1 infection. In addition, plasma immune analytes were measured and were determined to have bidirectional roles in virus clearance. It was concluded that DHAV-1 spreads quickly in blood. The spontaneous clearance of DHAV-1 during asymptomatic infection in mature ducks depends on the cooperation of timely antibody responses and alert innate immune responses. Moreover, the delayed clearance may be associated with a weak interferon-γ-producing CD8+ T cell response. This study allows us to reveal the mechanism of clearance and persistence of DHAV-1 infection in mature ducks. We anticipate that it will provide a basis for future studies focused on defining the nature mechanisms involved in the clearance and persistence of human hepatitis virus.
Collapse
Affiliation(s)
- Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kunfeng Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|