1
|
Sehrawat A, Mishra J, Mastana SS, Navik U, Bhatti GK, Reddy PH, Bhatti JS. Dysregulated autophagy: A key player in the pathophysiology of type 2 diabetes and its complications. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166666. [PMID: 36791919 DOI: 10.1016/j.bbadis.2023.166666] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/27/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
Autophagy is essential in regulating the turnover of macromolecules via removing damaged organelles, misfolded proteins in various tissues, including liver, skeletal muscles, and adipose tissue to maintain the cellular homeostasis. In these tissues, a specific type of autophagy maintains the accumulation of lipid droplets which is directly related to obesity and the development of insulin resistance. It appears to play a protective role in a normal physiological environment by eliminating the invading pathogens, protein aggregates, and damaged organelles and generating energy and new building blocks by recycling the cellular components. Ageing is also a crucial modulator of autophagy process. During stress conditions involving nutrient deficiency, lipids excess, hypoxia etc., autophagy serves as a pro-survival mechanism by recycling the free amino acids to maintain the synthesis of proteins. The dysregulated autophagy has been found in several ageing associated diseases including type 2 diabetes (T2DM), cancer, and neurodegenerative disorders. So, targeting autophagy can be a promising therapeutic strategy against the progression to diabetes related complications. Our article provides a comprehensive outline of understanding of the autophagy process, including its types, mechanisms, regulation, and role in the pathophysiology of T2DM and related complications. We also explored the significance of autophagy in the homeostasis of β-cells, insulin resistance (IR), clearance of protein aggregates such as islet amyloid polypeptide, and various insulin-sensitive tissues. This will further pave the way for developing novel therapeutic strategies for diabetes-related complications.
Collapse
Affiliation(s)
- Abhishek Sehrawat
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Jayapriya Mishra
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK.
| | - Umashanker Navik
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India.
| |
Collapse
|
2
|
Hassani SS, Karamali N, Rajabinejad M, Ashjari D, Afshar Hezarkhani L, Gorgin Karaji A, Salari F, Rezaiemanesh A. Dysregulation of Long Noncoding RNA NEAT1/miR-199a-5/BiP Axis in Patients with Diabetic Neuropathy. Lab Med 2023; 54:160-165. [PMID: 36166353 DOI: 10.1093/labmed/lmac082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE Diabetic neuropathy (DN) is a type of nerve damage and the most common complication of diabetes. Regarding the association between endoplasmic reticulum (ER) stress with the pathogenesis of neuropathy, this study aims to examine binding immunoglobulin protein (BiP) gene expression and long noncoding RNA nuclear enriched abundant transcript 1 (NEAT1), miR-199a-5 as its regulator in the peripheral blood of DN patients compared to diabetic patients without neuropathy. METHODS Peripheral blood samples were obtained from DN (n = 20) patients and diabetic patients without neuropathy (non-DN) (n = 20). After RNA extraction from peripheral blood mononuclear cells, reverse transcription-quantitative polymerase chain reaction was performed to evaluate RNA expression. RESULTS The results showed that the expression level of NEAT1 and BiP genes in the DN group increased significantly compared to the non-DN group. Also, the expression level of miR-199a-5p in the DN group was significantly downregulated. CONCLUSION As a result, the axis of NEAT1, miR-199a-5p, and BiP may have a role in the DN pathogenesis.
Collapse
Affiliation(s)
- Seyedeh Sara Hassani
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Karamali
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Misagh Rajabinejad
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Donya Ashjari
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Afshar Hezarkhani
- Department of Neurology, School of Medicine, Farabi Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Gorgin Karaji
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Salari
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Kansakar U, Varzideh F, Mone P, Jankauskas SS, Santulli G. Functional Role of microRNAs in Regulating Cardiomyocyte Death. Cells 2022; 11:983. [PMID: 35326433 PMCID: PMC8946783 DOI: 10.3390/cells11060983] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
microRNAs (miRNA, miRs) play crucial roles in cardiovascular disease regulating numerous processes, including inflammation, cell proliferation, angiogenesis, and cell death. Herein, we present an updated and comprehensive overview of the functional involvement of miRs in the regulation of cardiomyocyte death, a central event in acute myocardial infarction, ischemia/reperfusion, and heart failure. Specifically, in this systematic review we are focusing on necrosis, apoptosis, and autophagy.
Collapse
Affiliation(s)
- Urna Kansakar
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
| | - Fahimeh Varzideh
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
| | - Pasquale Mone
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
| | - Stanislovas S. Jankauskas
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Gaetano Santulli
- Department of Medicine (Cardiology), Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Institute for Neuroimmunology and Inflammation (INI), Albert Einstein College of Medicine, New York, NY 10461, USA; (U.K.); (F.V.); (P.M.); (S.S.J.)
- Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
4
|
He YF, Huang J, Qian Y, Liu DB, Liu QF. Lipopolysaccharide induces pyroptosis through regulation of autophagy in cardiomyocytes. Cardiovasc Diagn Ther 2021; 11:1025-1035. [PMID: 34815953 DOI: 10.21037/cdt-21-293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/30/2021] [Indexed: 11/06/2022]
Abstract
Background Autophagy, a stress response in eukaryotic cells, is closely related to cardiogenic diseases. Pyroptosis, a newly discovered way of programmed cell death, also plays an important role in cardiovascular disease. However, the role and relationship of autophagy and pyroptosis in lipopolysaccharide (LPS)-induced inflammatory response of cardiomyocytes were still unclear. Methods Western blot was performed to determine the expression of poly ADP-ribosepolmesera-1 (PARP-1), LC3B, NLRP3 and GSDMD in cardiomyocytes after the treatment of LPS. Transfection of si-LC3B, western blot and immunofluorescence (IF) staining were performed to investigate the role of autophagy in LPS-induced pyroptosis. Co-immunoprecipitation (Co-IP) assays and quantitative real-time PCR (qRT-PCR) were conducted to explore whether PARP-1 binding to LC3B and modulating its expression. Transfections of si-PARP-1, western blot and IF were carried out to confirm the role of PARP-1 in the regulation of LPS-induced pyroptosis by autophagy. Results LPS induces autophagy and pyroptosis in cardiomyocytes, enhanced the level of autophagy and inhibited the level of pyroptosis in the concentration of 4 µg/mL. We further proved that autophagy inhibits LPS-induced pyroptosis in cardiomyocytes. In addition, PARP-1 binding to LC3B and regulate the expression of LC3B. Finally, we proved that knockdown of PARP-1 rescued the inhibition of autophagy on LPS-induced pyroptosis of cardiomyocytes. Conclusions LPS induces pyroptosis through regulation of autophagy via PARP-1 at a specific concentration, above which it causes deposition of autophagy flow to promote pyroptosis. Inhibiting LPS-induced pyroptosis could be a promising therapeutic target in treating cardiovascular diseases.
Collapse
Affiliation(s)
- You-Fu He
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Guizhou Provincial Cardiovascular Disease Clinical Medicine Research Center, Guiyang, China.,Medical College, Guizhou University, Guiyang, China
| | - Jing Huang
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Guizhou Provincial Cardiovascular Disease Clinical Medicine Research Center, Guiyang, China.,Medical College, Guizhou University, Guiyang, China
| | - Yu Qian
- Department of Cardiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - De-Bin Liu
- Department of Cardiology, Shantou Second People's Hospital, Shantou, China
| | - Qi-Fang Liu
- Department of Cardiology, Guizhou Provincial People's Hospital, Guiyang, China.,Guizhou Provincial Cardiovascular Disease Clinical Medicine Research Center, Guiyang, China
| |
Collapse
|
5
|
Liu B, Wang B, Zhang X, Lock R, Nash T, Vunjak-Novakovic G. Cell type-specific microRNA therapies for myocardial infarction. Sci Transl Med 2021; 13:eabd0914. [PMID: 33568517 PMCID: PMC8848299 DOI: 10.1126/scitranslmed.abd0914] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/19/2021] [Indexed: 12/13/2022]
Abstract
Current interventions fail to recover injured myocardium after infarction and prompt the need for development of cardioprotective strategies. Of increasing interest is the therapeutic use of microRNAs to control gene expression through specific targeting of mRNAs. In this Review, we discuss current microRNA-based therapeutic strategies, describing the outcomes and limitations of key microRNAs with a focus on target cell types and molecular pathways. Last, we offer a perspective on the outlook of microRNA therapies for myocardial infarction, highlighting the outstanding challenges and emerging strategies.
Collapse
Affiliation(s)
- Bohao Liu
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Bryan Wang
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Xiaokan Zhang
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Roberta Lock
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Trevor Nash
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Gordana Vunjak-Novakovic
- Department of Medicine, Columbia University, New York, NY 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
CYP2J2 Modulates Diverse Transcriptional Programs in Adult Human Cardiomyocytes. Sci Rep 2020; 10:5329. [PMID: 32210298 PMCID: PMC7093536 DOI: 10.1038/s41598-020-62174-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
CYP2J2, a member of the Cytochrome P450 family of enzymes, is the most abundant epoxygenase in the heart and has multifunctional properties including bioactivation of arachidonic acid to epoxyeicosatrienoic acids, which, in turn, have been implicated in mediating several cardiovascular conditions. Using a proteomic approach, we found that CYP2J2 expression is lower in cardiac tissue from patients with cardiomyopathy compared to controls. In order to better elucidate the complex role played by CYP2J2 in cardiac cells, we performed targeted silencing of CYP2J2 expression in human adult ventricular cardiomyocytes and interrogated whole genome transcriptional responses. We found that knockdown of CYP2J2 elicits widespread alterations in gene expression of ventricular cardiomyocytes and leads to the activation of a diverse repertoire of programs, including those involved in ion channel signaling, development, extracellular matrix, and metabolism. Several members of the differentially up-regulated ion channel module have well-known pathogenetic roles in cardiac dysrhythmias. By leveraging causal network and upstream regulator analysis, we identified several candidate drivers of the observed transcriptional response to CYP2J2 silencing; these master regulators have been implicated in aberrant cardiac remodeling, heart failure, and myocyte injury and repair. Collectively, our study demonstrates that CYP2J2 plays a central and multifaceted role in cardiomyocyte homeostasis and provides a framework for identifying critical regulators and pathways influenced by this gene in cardiovascular health and disease.
Collapse
|
7
|
Zhu H, Li Y, Wang MX, Wang JH, Du WX, Zhou F. Analysis of cardiovascular disease-related NF-κB-regulated genes and microRNAs in TNFα-treated primary mouse vascular endothelial cells. J Zhejiang Univ Sci B 2020; 20:803-815. [PMID: 31489800 DOI: 10.1631/jzus.b1800631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Activated nuclear factor-κB (NF-κB) plays an important role in the development of cardiovascular disease (CVD) through its regulated genes and microRNAs (miRNAs). However, the gene regulation profile remains unclear. In this study, primary mouse vascular endothelial cells (pMVECs) were employed to detect CVD-related NF-κB-regulated genes and miRNAs. Genechip assay identified 77 NF-κB-regulated genes, including 45 upregulated and 32 downregulated genes, in tumor necrosis factor α (TNFα)-treated pMVECs. Ten of these genes were also found to be regulated by NF-κB in TNFα-treated HeLa cells. Quantitative real-time PCR (qRT-PCR) assay confirmed the up-regulation of Egr1, Tnf, and Btg2 by NF-κB in the TNFα-treated pMVECs. The functional annotation revealed that many NF-κB-regulated genes identified in pMVECs were clustered into classical NF-κB-involved biological processes. Genechip assay also identified 26 NF-κB-regulated miRNAs, of which 21 were upregulated and 5 downregulated, in the TNFα-treated pMVECs. Further analysis showed that nine of the identified genes are regulated by seven of these miRNAs. Finally, among the identified NF-κB-regulated genes and miRNAs, 5 genes and 12 miRNAs were associated with CVD by miRWalk and genetic association database analysis. Taken together, these findings show an intricate gene regulation network raised by NF-κB in TNFα-treated pMVECs. The network provides new insights for understanding the molecular mechanism underlying the progression of CVD.
Collapse
Affiliation(s)
- Hui Zhu
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Yun Li
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Mao-Xian Wang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Ju-Hong Wang
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| | - Wen-Xin Du
- Shandong Center for Drug and Food Evaluation & Certification, Jinan 250014, China
| | - Fei Zhou
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou 521041, China
| |
Collapse
|
8
|
Xiong A, Wang J, Mao XL, Jiang Y, Fan Y. MiR‐199a‐3p modulates the function of dendritic cells involved in transplantation tolerance by targeting CD86. HLA 2019; 94:493-503. [PMID: 31448543 DOI: 10.1111/tan.13677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/06/2019] [Accepted: 08/23/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Ali Xiong
- Department of Medical Laboratory, The Central Hospital of WuhanTongJi Medical College, Huazhong University of Science and Technology WuHan China
| | - Jing Wang
- Department of Medical Laboratory, The Central Hospital of WuhanTongJi Medical College, Huazhong University of Science and Technology WuHan China
| | - Xiao Li Mao
- Department of Medical Laboratory, The Central Hospital of WuhanTongJi Medical College, Huazhong University of Science and Technology WuHan China
| | - Yi Jiang
- Department of Medical Laboratory, The Central Hospital of WuhanTongJi Medical College, Huazhong University of Science and Technology WuHan China
| | - Yue Fan
- Department of Medical Laboratory, The Central Hospital of WuhanTongJi Medical College, Huazhong University of Science and Technology WuHan China
| |
Collapse
|
9
|
Zhang C, Zhang C, Wang H, Qi Y, Kan Y, Ge Z. Effects of miR‑103a‑3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5. Int J Mol Med 2019; 43:1951-1960. [PMID: 30864677 PMCID: PMC6443343 DOI: 10.3892/ijmm.2019.4128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
Abstract
Autophagy and apoptosis are associated with cardiovascular diseases. Emerging evidence shows that microRNAs (miRs) are critical in the development of pathological processes underlying cardiovascular diseases by regulating the induction of apoptosis and autophagy. The present study aimed to investigate the role of miR-103a-3p in cardiomyocyte injury through autophagy and apoptosis. H9c2 cells were cultured under hypoxia and reoxygenation (H/R) conditions and were used to mimic cells under ischemia. The transfection of cells with miR-103a-3p (mimics and inhibitors) was performed to examine its function in cardiomyocytes. The expression levels of miR-103a-3p were evaluated by reverse transcription-quantitative polymerase chain reaction analysis. Cell viability was determined using an MTT assay, and the lactate dehydrogenase assay (LDH) was used to investigate cell injury. The expression levels of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein, Beclin-1, autophagy-related 5 (Atg5), cleaved caspase-3 and cleaved caspase-9 were detected using western blotting. Immunofluorescence assays were performed to detect the expression of LC3 as a marker of autophagy. The target gene of miR-103a-3p was identified using dual-luciferase reporter assays. The results revealed that the expression levels of miR-103a-3p were significantly downregulated in cardiomyocytes under H/R conditions. Injury of the cardiomyocytes was evaluated under H/R conditions. Following transfection of the cells with miR-103a-3p inhibitors, cell injury was increased, as determined by LDH and MTT assays. The expression levels of apoptotic proteins were consistent with the results obtained in the LDH and cell viability assays. The induction of autophagy was increased in cells under H/R conditions and cells with miR-103a-3p inhibitor transfection, whereas the induction of autophagy was decreased in cells transfected with miR-103a-3p mimics. In addition, the data indicated that miR-103a-3p directly targeted Atg5, which regulated the induction of autophagy and apoptosis. Taken together, these findings indicate that, following the inhibition of miR-103a-3p, Atg5 promotes autophagy and apoptosis in cardiomyocytes by directly targeting Atg5. Therefore, miR-103a-3p can be considered a potential therapeutic target for myocardial ischemia.
Collapse
Affiliation(s)
- Chenjun Zhang
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Chenjun Zhang
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Hairong Wang
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Yuan Qi
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Ying Kan
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Zhiru Ge
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| |
Collapse
|
10
|
Chang L, Chai X, Chen P, Cao J, Xie H, Zhu J. miR-181b-5p suppresses starvation-induced cardiomyocyte autophagy by targeting Hspa5. Int J Mol Med 2018; 43:143-154. [PMID: 30431062 PMCID: PMC6257845 DOI: 10.3892/ijmm.2018.3988] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/16/2018] [Indexed: 12/25/2022] Open
Abstract
This study aimed to investigate the role of microRNA-181b-5p (miR-181b-5p) in starvation-induced cardiomyocyte autophagy by targeting heat shock protein family A member 5 (Hspa5). For this purpose, H9c2 cardiomyocytes and neonatal rat ventricular myocytes (NRVMs) were glucose-starved in Earle's Balanced Salt Solution (EBSS) for different periods of time (0, 2, 4, 6 and 8 h). RT-qPCR analysis was performed to examine the expression of miR-181b-5p in the different groups. Immunofluorescence was performed to detect the expression of LC3. In addition, the H9c2 cardiomyo-cytes and NRVMs were transfected with miR-181b-5p mimic, miR-181b-5p inhibitor, siHspa5 or their respective controls. An MTT assay was performed to measure cell proliferation in the different groups. Western blot analysis was performed to determine the expression of Beclin-1, Hspa5, phosphorylated phosphoinositide 3-kinase PI3K (p-PI3K), phosphorylated Akt (p-Akt), phosphorylated mammalian target of rapamycin (p-mTOR), Bcl-2, Bax and cleaved caspase-3. Flow cytometry was performed to assess cell apoptosis. A luciferase reporter assay was performed to determine whether Hspa5 is a direct target of miR-181b-5p. The results revealed that the down-regulation of miR-181b-5p promoted cell autophagy in the cardiomyocytes. Moreover, miR-181b-5p negatively regulated Beclin-1 and Hspa5. Beclin-1 is a well-known autophagy- and apoptosis-related protein. In addition, cell apoptosis was attenuated by the decreased expression of miR-181b-5p in the cardiomyocytes. Bcl-2 prevented apoptosis and autophagy by binding to Bax and Bcl-2, respectively. The upregulation of miR-181b-5p inhibited autophagy and promoted apoptosis via Hspa5. miR-181b-5p inhibition promoted p-mTOR, p-Akt and p-PI3K expression via Hspa5. The results of luciferase reporter assay also confirmed that Hspa5 is a direct target of miR-181b-5p. On the whole, the findings of this study suggest that miR-181b-5p contributes to starvation-induced autophagy and apoptosis in cardiomyocytes by directly targeting Hspa5 via the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Liuhui Chang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Xiaoming Chai
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Peiming Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jianfang Cao
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Hong Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Jiang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|