1
|
Deng Q, Yao X, Fang S, Sun Y, Liu L, Li C, Li G, Guo Y, Liu J. Mast cell-mediated microRNA functioning in immune regulation and disease pathophysiology. Clin Exp Med 2025; 25:38. [PMID: 39812911 PMCID: PMC11735496 DOI: 10.1007/s10238-024-01554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Upon stimulation and activation, mast cells (MCs) release soluble mediators, including histamine, proteases, and cytokines. These mediators are often stored within cytoplasmic granules in MCs and may be released in a granulated form. The secretion of cytokines and chemokines occurs within hours following activation, with the potential to result in chronic inflammation. In addition to their role in allergic inflammation, MCs are components of the tumor microenvironment (TME). MicroRNAs (miRNAs) are small RNA molecules that do not encode proteins, but regulate post-transcriptional gene expression by binding to the 3' non-coding regions of mRNAs. This plays a crucial role in the function of MC, including the key processes of MC proliferation, maturation, apoptosis, and activation. It has been demonstrated that miRNAs are also present in extracellular vesicles (EVs) secreted by MCs. EVs derived from MCs mediate intercellular communication by carrying miRNAs, affecting various diseases including allergic diseases, intestinal disorders, neuroinflammation, and tumors. These findings provide important insights into the therapeutic mechanisms and targets of miRNAs in MCs that affect diseases. This review discusses the relevance of miRNA production by MCs in regulating their own activity and the effect of miRNAs putatively produced by other cells in the control of MC activity and their participation in selected pathologies.
Collapse
Affiliation(s)
- Qiuping Deng
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Xiuju Yao
- Department of Clinical Laboratory, 363 Hospital, Chengdu, 610016, Sichuan, China
| | - Siyun Fang
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Yueshan Sun
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Lei Liu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Chao Li
- Department of Clinical Laboratory, Chengdu Jinjiang Hospital for Women's and Children's Health, Chengdu, 610016, Sichuan, China
| | - Guangquan Li
- Department of Clinical Laboratory, 363 Hospital, Chengdu, 610016, Sichuan, China
| | - Yuanbiao Guo
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China.
| | - Jinbo Liu
- The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Díaz CR, Hernández-Huerta MT, Mayoral LPC, Villegas MEA, Zenteno E, Cruz MM, Mayoral EPC, Del Socorro Pina Canseco M, Andrade GM, Castellanos MÁ, Matías Salvador JM, Cruz Parada E, Martínez Barras A, Cruz Fernández JN, Scott-Algara D, Pérez-Campos E. Non-Coding RNAs and Innate Immune Responses in Cancer. Biomedicines 2024; 12:2072. [PMID: 39335585 PMCID: PMC11429077 DOI: 10.3390/biomedicines12092072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Non-coding RNAs (ncRNAs) and the innate immune system are closely related, acting as defense mechanisms and regulating gene expression and innate immunity. Both are modulators in the initiation, development and progression of cancer. We aimed to review the major types of ncRNAs, including small interfering RNAs (siRNAs), microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and long non-coding RNAs (lncRNAs), with a focus on cancer, innate immunity, and inflammation. We found that ncRNAs are closely related to innate immunity, epigenetics, chronic inflammation, and cancer and share properties such as inducibility, specificity, memory, and transfer. These similarities and interrelationships suggest that ncRNAs and modulators of trained immunity, together with the control of chronic inflammation, can be combined to develop novel therapeutic approaches for personalized cancer treatment. In conclusion, the close relationship between ncRNAs, the innate immune system, and inflammation highlights their importance in cancer pathways and their potential as targets for novel therapeutic strategies.
Collapse
Affiliation(s)
| | - María Teresa Hernández-Huerta
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | | | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Ciudad de México 04510, Mexico
| | | | - Eduardo Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - María Del Socorro Pina Canseco
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - Gabriel Mayoral Andrade
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | | | | | - Eli Cruz Parada
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico
| | | | - Jaydi Nora Cruz Fernández
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - Daniel Scott-Algara
- Unité de Biologie Cellulaire des Lymphocytes and Direction of International Affairs, Institut Pasteur, 75015 Paris, France
| | - Eduardo Pérez-Campos
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico
- Laboratorio de Patología Clínica "Dr. Eduardo Pérez Ortega", Oaxaca 68000, Mexico
| |
Collapse
|
3
|
Watson N, Kuppuswamy S, Ledford WL, Sukumari-Ramesh S. The role of HDAC3 in inflammation: mechanisms and therapeutic implications. Front Immunol 2024; 15:1419685. [PMID: 39050859 PMCID: PMC11266039 DOI: 10.3389/fimmu.2024.1419685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Histone deacetylases (HDACs) are critical regulators of inflammatory gene expression, and the efficacy of pan-HDAC inhibitors has been implicated in various disease conditions. However, it remains largely unclear how HDACs precisely regulate inflammation. To this end, evaluating the isoform-specific function of HDACs is critical, and the isoform-specific targeting could also circumvent the off-target effects of pan-HDAC inhibitors. This review provides an overview of the roles of HDAC3, a class I HDAC isoform, in modulating inflammatory responses and discusses the molecular mechanisms by which HDAC3 regulates inflammation associated with brain pathology, arthritis, cardiovascular diseases, lung pathology, allergic conditions, and kidney disorders. The articles also identify knowledge gaps in the field for future studies. Despite some conflicting reports, the selective inhibition of HDAC3 has been demonstrated to play a beneficial role in various inflammatory pathologies. Exploring the potential of HDAC3 inhibition to improve disease prognosis is a promising avenue requiring further investigation.
Collapse
Affiliation(s)
| | | | | | - Sangeetha Sukumari-Ramesh
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
4
|
Al-Gazally ME, Khan R, Imran M, Ramírez-Coronel AA, Alshahrani SH, Altalbawy FMA, Turki Jalil A, Romero-Parra RM, Zabibah RS, Shahid Iqbal M, Karampoor S, Mirzaei R. The role and mechanism of action of microRNA-122 in cancer: Focusing on the liver. Int Immunopharmacol 2023; 123:110713. [PMID: 37523968 DOI: 10.1016/j.intimp.2023.110713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
| | - Ramsha Khan
- MBBS, Nawaz Sharif Medical College, Gujrat, Pakistan
| | - Muhammad Imran
- MBBS, Multan Medical and Dental College, Multan, Pakistan
| | | | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Erfan R, Shaker OG, Khalil MA, AlOrbani AM, Abu-El-Azayem AK, Samy A, Zaki OM, Abdelhamid H, Fares R, Mohammed A. Lnc-HULC, miR-122, and sirtulin-1 as potential diagnostic biomarkers for psoriasis and their association with the development of metabolic syndrome during the disease course. Noncoding RNA Res 2023; 8:340-349. [PMID: 37455763 PMCID: PMC10338904 DOI: 10.1016/j.ncrna.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 07/18/2023] Open
Abstract
Psoriasis is a persistent inflammatory skin disorder driven by T cells. The disease is characterized by aberrant keratinocytes (KCs) differentiation, epidermal proliferation, and excessive hyperplasia of veins and arteries. The purpose of the study was to identify the levels of circulating lnc-HULC, miR-122, and Sirtuin 1 (SIRT-1) in psoriatic patients, evaluate their possible roles as diagnostic biomarkers, and link their levels with the development of metabolic syndrome during psoriasis progression. This study included 176 participants. The subjects were divided into four groups, with 44 participants in each group. All patients have undergone a complete history taking and clinical examination. Laboratory investigations included Low-density lipoprotein (LDL), High-density lipoprotein (HDL), Triglycerides (TG), Fasting blood sugar (FBS), and cholesterol plasma levels. Serum levels of miR-122 and lnc-HULC were examined by qRT-PCR. Serum levels of SIRT-1 were examined by ELISA. The serum concentrations of lnc-HULC and miR-122 were significantly higher in psoriatic participants compared to controls. Psoriatic patients' serum concentrations of SIRT-1 were much lower than those of healthy individuals. There was a negative association between SIRT-1 concentration and BMI, disease duration, PASI score, LDL, and cholesterol levels. The blood levels of lnc-HULC, miR-122, and SIRT-1 in psoriasis patients provide a promising role as diagnostic biomarkers in patients with and without metabolic syndrome.
Collapse
Affiliation(s)
- Randa Erfan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, 12613, Egypt
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, 12613, Egypt
| | - Mahmoud A.F. Khalil
- Department of Microbiology and Immunology, Faculty of Pharmacy, Fayoum University, Fayoum, 63514, Egypt
| | - Aya M. AlOrbani
- Department of Dermatology, Faculty of Medicine, Cairo University, 12613, Egypt
| | - Abeer K. Abu-El-Azayem
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, 12613, Cairo, Egypt
| | - Amira Samy
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Cairo University, 12613, Cairo, Egypt
| | - Othman M. Zaki
- Department of Clinical Pathology, Faculty of Medicine, Damietta University, Damietta, Egypt
| | | | - Reham Fares
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, 63514, Egypt
| | - Asmaa Mohammed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
6
|
Kwon Y, Kim M, Kim Y, Jeong MS, Jung HS, Jeoung D. EGR3-HDAC6-IL-27 Axis Mediates Allergic Inflammation and Is Necessary for Tumorigenic Potential of Cancer Cells Enhanced by Allergic Inflammation-Promoted Cellular Interactions. Front Immunol 2021; 12:680441. [PMID: 34234781 PMCID: PMC8257050 DOI: 10.3389/fimmu.2021.680441] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to investigate mechanisms of allergic inflammation both in vitro and in vivo in details. For this, RNA sequencing was performed. Early growth response 3 gene (Egr3) was one of the most highly upregulated genes in rat basophilic leukemia (RBL2H3) cells stimulated by antigen. The role of Egr3 in allergic inflammation has not been studied extensively. Egr3 was necessary for passive cutaneous anaphylaxis (PCA) and passive systemic anaphylaxis (PSA). Egr3 promoter sequences contained potential binding site for NF-κB p65. NF-κB p65 directly regulated Egr3 expression and mediated allergic inflammation in vitro. Histone deacetylases (HDACs) is known to be involved in allergic airway inflammation. HDAC6 promoter sequences contained potential binding site for EGR3. EGR3 showed binding to promoter sequences of HDAC6. EGR3 was necessary for increased expression of histone deacetylase 6 (HDAC6) in antigen-stimulated RBL2H3 cells. HDAC6 mediated allergic inflammation in vitro and PSA. TargetScan analysis predicted that miR-182-5p was a negative regulator of EGR3. Luciferase activity assay confirmed that miR-182-5p was a direct regulator of EGR3. MiR-182-5p mimic inhibited allergic inflammation both in vitro and in vivo. Cytokine array showed that HDAC6 was necessary for increased interleukin-27 (IL-27) expression in BALB/C mouse model of PSA. Antigen stimulation did not affect expression of EBI3, another subunit of IL-27 in RBL2H3 cells or BALB/C mouse model of PCA or PSA. IL-27 receptor alpha was shown to be able to bind to HDAC6. IL-27 p28 mediated allergic inflammation in vitro, PCA, and PSA. Mouse recombinant IL-27 protein promoted features of allergic inflammation in an antigen-independent manner. HDAC6 was necessary for tumorigenic and metastatic potential enhanced by PSA. PSA enhanced the metastatic potential of mouse melanoma B16F1 cells in an IL-27-dependent manner. Experiments employing culture medium and mouse recombinant IL-27 protein showed that IL-27 mediated and promoted cellular interactions involving B16F1 cells, lung macrophages, and mast cells during allergic inflammation. IL-27 was present in exosomes of antigen-stimulated RBL2H3 cells. Exosomes from antigen-stimulated RBL2H3 cells enhanced invasion of B16F1 melanoma cells in an IL-27-dependemt manner. These results present evidence that EGR3-HDAC6-IL-27 axis can regulate allergic inflammation by mediating cellular interactions.
Collapse
Affiliation(s)
- Yoojung Kwon
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Misun Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea.,Chuncheon Center, Korea Basic Science Institute, Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
7
|
Kim M, Jo H, Kwon Y, Jeong MS, Jung HS, Kim Y, Jeoung D. MiR-154-5p-MCP1 Axis Regulates Allergic Inflammation by Mediating Cellular Interactions. Front Immunol 2021; 12:663726. [PMID: 34135893 PMCID: PMC8201518 DOI: 10.3389/fimmu.2021.663726] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/17/2021] [Indexed: 12/25/2022] Open
Abstract
In a previous study, we have demonstrated that p62, a selective receptor of autophagy, can regulate allergic inflammation. In the present study, microRNA array analysis showed that miR-154-5p was increased by antigen (DNP-HSA) in a p62-dependent manner in rat basophilic leukemia cells (RBL2H3). NF-kB directly increased the expression of miR-154-5p. miR-154-5p mediated in vivo allergic reactions, including passive cutaneous anaphylaxis and passive systemic anaphylaxis. Cytokine array analysis showed that antigen stimulation increased the expression of MCP1 in RBL2H3 cells in an miR-154-5p-dependent manner. Reactive oxygen species (ROS)-ERK-NF-kB signaling increased the expression of MCP1 in antigen-stimulated RBL2H3 cells. Recombinant MCP1 protein induced molecular features of allergic reactions both in vitro and in vivo. Anaphylaxis-promoted tumorigenic potential has been known to be accompanied by cellular interactions involving mast cells, and macrophages, and cancer cells. Our experiments employing culture medium, co-cultures, and recombinant MCP1 protein showed that miR-154 and MCP1 mediated these cellular interactions. MiR-154-5p and MCP1 were found to be present in exosomes of RBL2H3 cells. Exosomes from PSA-activated BALB/C mouse induced molecular features of passive cutaneous anaphylaxis in an miR-154-5p-dependent manner. Exosomes from antigen-stimulated RBL2H3 cells enhanced both tumorigenic and metastatic potentials of B16F1 melanoma cells in an miR-154-5p-dependent manner. Exosomes regulated both ROS level and ROS mediated cellular interactions during allergic inflammation. Our results indicate that the miR-154-5p-MCP1 axis might serve as a valuable target for the development of anti-allergy therapeutics.
Collapse
Affiliation(s)
- Misun Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Hyein Jo
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Yoojung Kwon
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea.,Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Youngmi Kim
- Institute of New Frontier Research, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
8
|
Šatrauskienė A, Navickas R, Laucevičius A, Krilavičius T, Užupytė R, Zdanytė M, Ryliškytė L, Jucevičienė A, Holvoet P. Mir-1, miR-122, miR-132, and miR-133 Are Related to Subclinical Aortic Atherosclerosis Associated with Metabolic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041483. [PMID: 33557426 PMCID: PMC7915826 DOI: 10.3390/ijerph18041483] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
Previously, miR-1, miR-122, miR-126, miR-132, miR-133, and miR-370 were found to be related to coronary artery disease (CAD) progression. However, their relationship with subclinical atherosclerosis, especially in subjects with metabolic syndrome, is unknown. Therefore, our aim was to determine their relationship with arterial markers of subclinical atherosclerosis. Metabolic syndrome subjects (n = 182) with high cardiovascular risk but without overt cardiovascular disease (CVD) were recruited from the Lithuanian High Cardiovascular Risk (LitHiR) primary prevention program. The ardio-ankle vascular index (CAVI), augmentation index normalized to a heart rate of 75 bpm (AIxHR75), aortic pulse wave velocity (AoPWV), and carotid artery stiffness were assessed. MicroRNAs (miRs) were analyzed in serum. Pearson correlation and a univariate linear regression t-test showed that miR-1, miR-133b, and miR-133a were negatively associated with CAVI mean, whereas miR-122 was positively associated. MiR-1, miR-133b and miR-133a, and miR-145 were negatively associated with AIxHR75. MiR-122 correlated negatively with AoPWV. In multivariate linear regression models, miR-133b and miR-122 predicted CAVImean, miR-133 predicted AIxHR75, and miR-122 predicted AoPWV. MiR-132 predicted right carotid artery stiffness, and miR-1 predicted left carotid artery stiffness. The addition of smoking to miR-133b and miR-122 enhanced the prediction of CAVI. Age and triglycerides enhanced the prediction of AoPWV by miR-122. A cluster of four miRs are related to subclinical atherosclerosis in subjects with metabolic syndrome. Combined, they may have a more substantial diagnostic or prognostic value than any single miR. Future follow-up studies are needed to establish their clinical relevance.
Collapse
Affiliation(s)
- Agnė Šatrauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania; (A.Š.); (A.L.); (L.R.); (A.J.)
- Centre of Cardiology and Angiology, Vilnius University Hospital, Santaros Klinikos, 08410 Vilnius, Lithuania
| | - Rokas Navickas
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania; (A.Š.); (A.L.); (L.R.); (A.J.)
- Centre of Cardiology and Angiology, Vilnius University Hospital, Santaros Klinikos, 08410 Vilnius, Lithuania
- Correspondence:
| | - Aleksandras Laucevičius
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania; (A.Š.); (A.L.); (L.R.); (A.J.)
- Centre of Cardiology and Angiology, Vilnius University Hospital, Santaros Klinikos, 08410 Vilnius, Lithuania
- Experimental, Preventive, and Clinic Medicine Department, Centre for Innovative Medicine, 08406 Vilnius, Lithuania
| | - Tomas Krilavičius
- Informatics Faculty, Vytautas Magnus University, 44248 Kaunas, Lithuania; (T.K.); (R.U.)
- Baltic Institute of Advanced Technology, 01124 Vilnius, Lithuania
| | - Rūta Užupytė
- Informatics Faculty, Vytautas Magnus University, 44248 Kaunas, Lithuania; (T.K.); (R.U.)
- Baltic Institute of Advanced Technology, 01124 Vilnius, Lithuania
- Faculty of Mathematics and Informatics, Vilnius University, 03225 Vilnius, Lithuania
| | - Monika Zdanytė
- Department of Cardiology and Cardiovascular Medicine, Universität Tübingen, 72074 Tübingen, Germany;
| | - Ligita Ryliškytė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania; (A.Š.); (A.L.); (L.R.); (A.J.)
- Centre of Cardiology and Angiology, Vilnius University Hospital, Santaros Klinikos, 08410 Vilnius, Lithuania
| | - Agnė Jucevičienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania; (A.Š.); (A.L.); (L.R.); (A.J.)
- Centre of Cardiology and Angiology, Vilnius University Hospital, Santaros Klinikos, 08410 Vilnius, Lithuania
| | - Paul Holvoet
- Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
9
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate target gene expression by binding to sequences in messenger RNA processing. Inflammation is a protective reaction from harmful stimuli. MiRNAs can be biomarkers of diseases related to inflammation and are widely expressed in serum. However, overall changes in serum miRNA levels during inflammation have yet to be observed. Here, we selected studies published until 20 January 2020 that examined miRNAs in mouse models of inflammation. Serum microRNA, inflammation, inflammatory and mouse were used as search terms to select articles from PubMed and MEDLINE. Among the articles, sepsis and 18 related miRNAs were mainly examined. Eleven miRNAs were related to brain disease and 10 with fibrosis. Seventeen injury-induced inflammatory disease studies were included, as well as other inflammatory diseases, such as metabolic disease, vascular disease, arthritis, asthma, autoimmune disease, inflammatory bowel disease, and thyroiditis. The data described miRNA-associated downstream pathways associated with inflammation as well as mitochondrial responses, oxidative responses, apoptosis, cell signalling, and cell differentiation. We expect that the data will inform future animal inflammation-related miRNA studies.
Collapse
Affiliation(s)
- Areum Lee
- College of Korean Medicine, Dongguk University, Goyang, Republic of Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang, Republic of Korea
| |
Collapse
|
10
|
Kim M, Jo H, Kwon Y, Kim Y, Jung HS, Jeoung D. Homoharringtonine Inhibits Allergic Inflammations by Regulating NF-κB-miR-183-5p-BTG1 Axis. Front Pharmacol 2020; 11:1032. [PMID: 32733254 PMCID: PMC7358642 DOI: 10.3389/fphar.2020.01032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 12/28/2022] Open
Abstract
Homoharringtonine (HHT) is a drug for treatment of chronic myeloid leukemia. However, the role of HHT in allergic inflammations remains unknown. Mouse model of atopic dermatitis (AD) induced by 2, 4,-dinitroflurobenzene (DNFB) and anaphylaxis employing 2,4-dinitropheny-human serum albumin (DNP-HSA) were used to examine the role of HHT in allergic inflammations. HHT inhibited in vitro allergic reactions and attenuated clinical symptoms associated with AD. DNFB induced features of allergic reactions in rat basophilic leukemia (RBL2H3) cells. HHT suppressed effect of AD on the expression of Th1/Th2 cytokines. HHT inhibited passive cutaneous anaphylaxis and passive systemic anaphylaxis. MiR-183-5p, increased by antigen stimulation, was downregulated by HHT in RBL2H3 cells. MiR-183-5p inhibitor suppressed anaphylaxis and AD. B cell translocation gene 1 (BTG1) was shown to be a direct target of miR-183-5p. BTG1 prevented antigen from inducing molecular features of in vitro allergic reactions. AD increased the expression of NF-κB, and NF-κB showed binding to the promoter sequences of miR-183-5p. NF-κB and miR-183 formed positive feedback to mediate in vitro allergic reactions. Thus, HHT can be an anti-allergy drug. We present evidence that NF-κB-miR-183-5p-BTG1 axis can serve as target for development of anti-allergy drug.
Collapse
Affiliation(s)
- Misun Kim
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Hyein Jo
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Yoojung Kwon
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Youngmi Kim
- College of Medicine, Institute of New Frontier Research, Hallym University, Chunchon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| |
Collapse
|
11
|
Microbiota-governed microRNA-204 impairs endothelial function and blood pressure decline during inactivity in db/db mice. Sci Rep 2020; 10:10065. [PMID: 32572127 PMCID: PMC7308358 DOI: 10.1038/s41598-020-66786-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/15/2020] [Indexed: 01/05/2023] Open
Abstract
An impaired decline in blood pressure at rest is typical in people with diabetes, reflects endothelial dysfunction, and increases the risk of end-organ damage. Here we report that microRNA-204 (miR-204) promotes endothelial dysfunction and impairment in blood pressure decline during inactivity. We show that db/db mice overexpress miR-204 in the aorta, and its absence rescues endothelial dysfunction and impaired blood pressure decline during inactivity despite obesity. The vascular miR-204 is sensitive to microbiota, and microbial suppression reversibly decreases aortic miR-204 and improves endothelial function, while the endothelial function of mice lacking miR-204 remained indifferent to the microbial alterations. We also show that the circulating miR-122 regulates vascular miR-204 as miR-122 inhibition decreases miR-204 in endothelial cells and aorta. This study establishes that miR-204 impairs endothelial function, promotes impairment in blood pressure decline during rest, and opens avenues for miR-204 inhibition strategies against vascular dysfunction.
Collapse
|
12
|
Abstract
Mast cells are innate immune cells that intersect with the adaptive immunity and play a crucial role in the initiation of allergic reactions and the host defense against certain parasites and venoms. When activated in an allergen- and immunoglobulin E (IgE)-dependent manner, these cells secrete a large variety of allergenic mediators that are pre-stored in secretory granules or
de novo–synthesized. Traditionally, studies have predominantly focused on understanding this mechanism of mast cell activation and regulation. Along this line of study, recent studies have shed light on what structural features are required for allergens and how IgE, particularly anaphylactic IgE, is produced. However, the last few years have seen a flurry of new studies on IgE-independent mast cell activation, particularly via Mrgprb2 (mouse) and MRGPRX2 (human). These studies have greatly advanced our understanding of how mast cells exert non-histaminergic itch, pain, and drug-induced pseudoallergy by interacting with sensory neurons. Recent studies have also characterized mast cell activation and regulation by interleukin-33 (IL-33) and other cytokines and by non-coding RNAs. These newly identified mechanisms for mast cell activation and regulation will further stimulate the allergy/immunology community to develop novel therapeutic strategies for treatment of allergic and non-allergic diseases.
Collapse
Affiliation(s)
- Hwan Soo Kim
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA.,Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yu Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Kazumi Kasakura
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, California, 92037, USA.,Department of Dermatlogy, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| |
Collapse
|
13
|
Baskara-Yhuellou I, Tost J. The impact of microRNAs on alterations of gene regulatory networks in allergic diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 120:237-312. [PMID: 32085883 DOI: 10.1016/bs.apcsb.2019.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Allergic diseases including asthma are worldwide on the rise and contribute significantly to health expenditures. Allergic diseases are prototypic diseases with a strong gene by environment interaction component and epigenetic mechanisms might mediate the effects of the environment on the disease phenotype. MicroRNAs, small non-coding RNAs (miRNAs), regulate gene expression post-transcriptionally. Functional single-stranded miRNAs are generated in multiple steps of enzymatic processing from their precursors and mature miRNAs are included into the RNA-induced silencing complex (RISC). They imperfectly base-pair with the 3'UTR region of targeted genes leading to translational repression or mRNA decay. The cellular context and microenvironment as well the isoform of the mRNA control the dynamics and complexity of the regulatory circuits induced by miRNAs that regulate cell fate decisions and function. MiR-21, miR-146a/b and miR-155 are among the best understood miRNAs of the immune system and implicated in different diseases including allergic diseases. MiRNAs are implicated in the induction of the allergy reinforcing the Th2 phenotype (miR-19a, miR-24, miR-27), while other miRNAs promote regulatory T cells associated with allergen tolerance or unresponsiveness. In the current chapter we describe in detail the biogenesis and regulatory function of miRNAs and summarize current knowledge on miRNAs in allergic diseases and allergy relevant cell fate decisions focusing mainly on immune cells. Furthermore, we evoke the principles of regulatory loops and feedback mechanisms involving miRNAs on examples with relevance for allergic diseases. Finally, we show the potential of miRNAs and exosomes containing miRNAs present in several biological fluids that can be exploited with non-invasive procedures for diagnostic and potentially therapeutic purposes.
Collapse
Affiliation(s)
- Indoumady Baskara-Yhuellou
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, Evry, France
| |
Collapse
|
14
|
Yeon M, Lee S, Lee JE, Jung HS, Kim Y, Jeoung D. CAGE-miR-140-5p-Wnt1 Axis Regulates Autophagic Flux, Tumorigenic Potential of Mouse Colon Cancer Cells and Cellular Interactions Mediated by Exosomes. Front Oncol 2019; 9:1240. [PMID: 31799196 PMCID: PMC6868029 DOI: 10.3389/fonc.2019.01240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Although the cancer/testis antigen CAGE has been implicated in tumorigenesis, the molecular mechanisms of CAGE-promoted tumorigenesis remain largely unknown. CT26Flag−CAGE cells, CT26 (mouse colon cancer cells) cells stably expressing CAGE, were established to investigate CAGE-promoted tumorigenesis. Down-regulation of CAGE led to decreased autophagic flux in CT26Flag−CAGE cells. CAGE interacted with Beclin1, a mediator of autophagy. The CT26Flag−CAGE cells showed enhanced autophagosome formation and displayed greater tumor spheroid-forming potential than CT26 cells. MicroRNA array analysis revealed that CAGE decreased the expression of various microRNAs, including miR-140-5p, in CT26 cells. CAGE was shown to bind to the promoter sequences of miR-140-5p. MiR-140-5p inhibition increased the tumorigenic potential of and autophagic flux in CT26 cells. A miR-140-5p mimic exerted negative effects on the tumorigenic potential of CT26Flag−CAGE cells and autophagic flux in CT26Flag−CAGE cells. MiR-140-5p was predicted to bind to the 3′-UTR of Wnt1. CT26Flag−CAGE cells showed higher expression of Wnt1 than CT26 cells. Down-regulation of Wnt1 decreased autophagic flux. Luciferase activity assays showed the direct regulation of wnt1 by miR-140-5p. Tumor tissue derived from the CT26Flag−CAGE cells revealed higher expressions of factors associated with activated mast cells and tumor-associated macrophages than tumor tissue derived from CT26 cells. Culture medium from the CT26Flag−CAGE cells increased autophagic flux in CT26 cells, mast cells and macrophages. Culture medium from the CT26Flag−CAGE cells increased CD163 and autophagic flux in CT26 cells, mast cells, and macrophages in a Wnt1-dependent manner. Exosomes from CT26Flag−CAGE cells increased autophagc flux in CT26 cells, mast cells, and macrophages. Exosomes from CT26Flag−CAGE cells increased the tumorigenic potential of CT26 cells. Wnt1 was shown to be present within the exosomes. Recombinant Wnt1 protein increased autophagic flux in CT26, mast cells, and macrophages. Recombinant wnt1 protein mediated interactions between the CT26 cells, mast cells, and macrophages. Our results showed novel roles for the CAGE-miR-140-5p-Wnt1 axis in autophagic flux and cellular interactions mediated by exosomes.
Collapse
Affiliation(s)
- Minjeong Yeon
- Department of Biochemistry, Kangwon National University, Chuncheon-si, South Korea
| | - Seungheon Lee
- Department of Biochemistry, Kangwon National University, Chuncheon-si, South Korea
| | - Joo-Eun Lee
- Department of Biochemistry, Kangwon National University, Chuncheon-si, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon-si, South Korea
| | - Youngmi Kim
- College of Medicine, Institute of New Frontier Research, Hallym University, Chuncheon-si, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon-si, South Korea
| |
Collapse
|
15
|
Ding Z, Lin J, Sun Y, Cong S, Liu S, Zhang Y, Chen Q, Chen J. miR‐122‐5p negatively regulates the transforming growth factor‐β/Smad signaling pathway in skeletal muscle myogenesis. Cell Biochem Funct 2019; 38:231-238. [PMID: 31710120 DOI: 10.1002/cbf.3460] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/27/2019] [Accepted: 10/29/2019] [Indexed: 02/05/2023]
Affiliation(s)
- Zheci Ding
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinrong Lin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaying Sun
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuang Cong
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shaohua Liu
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuhan Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingyan Chen
- Biology Department, Boston University, Boston, Massachusetts, USA
| | - Jiwu Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
16
|
FcεRI-HDAC3-MCP1 Signaling Axis Promotes Passive Anaphylaxis Mediated by Cellular Interactions. Int J Mol Sci 2019; 20:ijms20194964. [PMID: 31597362 PMCID: PMC6801807 DOI: 10.3390/ijms20194964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022] Open
Abstract
Anaphylaxis is an acute and life-threatening systemic reaction. Food, drug, aero-allergen and insect sting are known to induce anaphylaxis. Mast cells and basophils are known to mediate Immunoglobulin E (IgE)-dependent anaphylaxis, while macrophages, neutrophils and basophils mediate non IgE-dependent anaphylaxis. Histone deacetylases (HDACs) play various roles in biological processes by deacetylating histones and non-histones proteins. HDAC inhibitors can increase the acetylation of target proteins and affect various inflammatory diseases such as cancers and allergic diseases. HDAC3, a class I HDAC, is known to act as epigenetic and transcriptional regulators. It has been shown that HDAC3 can interact with the high-affinity Immunoglobulin E receptor (FcεRI), to mediate passive anaphylaxis and cellular interactions during passive anaphylaxis. Effects of HDAC3 on anaphylaxis, cellular interactions involving mast cells and macrophages during anaphylaxis, and any tumorigenic potential of cancer cells enhanced by mast cells will be discussed in this review. Roles of microRNAs that form negative feedback loops with hallmarks of anaphylaxis such as HDAC3 in anaphylaxis and cellular interactions will also be discussed. The roles of MCP1 regulated by HDAC3 in cellular interactions during anaphylaxis are discussed. Roles of exosomes in cellular interactions mediated by HDAC3 during anaphylaxis are also discussed. Thus, review might provide clues for development of drugs targeting passive anaphylaxis.
Collapse
|
17
|
Wang C, Qu Z, Kong L, Xu L, Zhang M, Liu J, Yang Z. RETRACTED: Quercetin ameliorates lipopolysaccharide-caused inflammatory damage via down-regulation of miR-221 in WI-38 cells. Exp Mol Pathol 2019; 108:1-8. [PMID: 30849307 DOI: 10.1016/j.yexmp.2019.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/21/2019] [Accepted: 03/05/2019] [Indexed: 12/18/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Given the comments of Dr Elisabeth Bik regarding this article “… the Western blot bands in all 400+ papers are all very regularly spaced and have a smooth appearance in the shape of a dumbbell or tadpole, without any of the usual smudges or stains. All bands are placed on similar looking backgrounds, suggesting they were copy/pasted from other sources, or computer generated”, the journal requested the authors to provide the raw data. However, the authors were not able to fulfil this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Chong Wang
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhenghai Qu
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lingpeng Kong
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Lei Xu
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Mengxue Zhang
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jianke Liu
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Zhaochuan Yang
- Children's Medical Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| |
Collapse
|
18
|
MicroRNA Involvement in Allergic and Non-Allergic Mast Cell Activation. Int J Mol Sci 2019; 20:ijms20092145. [PMID: 31052286 PMCID: PMC6539777 DOI: 10.3390/ijms20092145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/28/2019] [Accepted: 04/29/2019] [Indexed: 01/01/2023] Open
Abstract
Allergic inflammation is accompanied by the coordinated expression of numerous genes and proteins that initiate, sustain, and propagate immune responses and tissue remodeling. MicroRNAs (miRNAs) are a large class of small regulatory molecules that are able to control the translation of target mRNAs and consequently regulate various biological processes at the posttranscriptional level. MiRNA profiles have been identified in multiple allergic inflammatory diseases and in the tumor microenvironment. Mast cells have been found to co-localize within the above conditions. More specifically, in addition to being essential in initiating the allergic response, mast cells play a key role in both innate and adaptive immunity as well as in modulating tumor growth. This review summarizes the possible role of various miRNAs in the above-mentioned processes wherein mast cells have been found to be involved. Understanding the role of miRNAs in mast cell activation and function may serve as an important tool in developing diagnostic as well as therapeutic approaches in mast cell-dependent pathological conditions.
Collapse
|
19
|
Kim M, Park Y, Kwon Y, Kim Y, Byun J, Jeong MS, Kim HU, Jung HS, Mun JY, Jeoung D. MiR-135-5p-p62 Axis Regulates Autophagic Flux, Tumorigenic Potential, and Cellular Interactions Mediated by Extracellular Vesicles During Allergic Inflammation. Front Immunol 2019; 10:738. [PMID: 31024564 PMCID: PMC6460569 DOI: 10.3389/fimmu.2019.00738] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/19/2019] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to investigate the relationship between autophagy and allergic inflammation. In vitro allergic inflammation was accompanied by an increased autophagic flux in rat basophilic leukemia (RBL2H3) cells. 3-MA, an inhibitor of autophagic processes, negatively regulated allergic inflammation both in vitro and in vivo. The role of p62, a selective receptor of autophagy, in allergic inflammation was investigated. P62, increased by antigen stimulation, mediated in vitro allergic inflammation, passive cutaneous anaphylaxis (PCA), and passive systemic anaphylaxis (PSA). P62 mediated cellular interactions during allergic inflammation. It also mediated tumorigenic and metastatic potential of cancer cells enhanced by PSA. TargetScan analysis predicted that miR-135-5p was a negative regulator of p62. Luciferase activity assay showed that miR-135-5p directly regulated p62. MiR-135-5p mimic negatively regulated features of allergic inflammation and inhibited tumorigenic and metastatic potential of cancer cells enhanced by PSA. MiR-135-5p mimic also inhibited cellular interactions during allergic inflammation. Extracellular vesicles mediated allergic inflammation both in vitro and in vivo. Extracellular vesicles were also necessary for cellular interactions during allergic inflammation. Transmission electron microscopy showed p62 within extracellular vesicles of antigen-stimulated rat basophilic leukemia cells (RBL2H3). Extracellular vesicles isolated from antigen-stimulated RBL2H3 cells induced activation of macrophages and enhanced invasion and migration potential of B16F1 mouse melanoma cells in a p62-dependent manner. Extracellular vesicles isolated from PSA-activated BALB/C mouse enhanced invasion and migration potential of B16F1 cells, and induced features of allergic inflammation in RBL2H3 cells. Thus, miR-135-5p-p62 axis might serve as a target for developing anti-allergy drugs.
Collapse
Affiliation(s)
- Misun Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Yeongseo Park
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Yoojung Kwon
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Youngmi Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Jaehwan Byun
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Myeong Seon Jeong
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea.,Chuncheon Center, Korean Basic Science Institute, Chuncheon, South Korea
| | - Han-Ul Kim
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| | - Ji Young Mun
- Department of Structure and Function of Neural Network, Korea Brain Research Institute, Daegu, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
20
|
Wang H, Wei S. Tanshinol relieves lipopolysaccharide-induced inflammatory injury of HaCaT cells via down-regulation of microRNA-122. Phytother Res 2019; 33:910-918. [PMID: 30632205 DOI: 10.1002/ptr.6283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/08/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
Abstract
This study investigated the effects of tanshinol (TAN) on lipopolysaccharide (LPS)-induced human keratinocytes inflammatory injury and underlying potential molecular mechanisms. Viability and apoptosis of HaCaT cells were assessed using MTT assay and Annexin V-FITC/PI staining, respectively. Quantitative reverse transcription-polymerase chain reaction was performed to measure the expression of microRNA-122 (miR-122) in HaCaT cells. Cell transfection was conducted to up-regulate the expression of miR-122. Western blotting was used to detect the protein expression levels of key factors involved in cell apoptosis, inflammatory response, c-Jun N-terminal kinase (JNK), and nuclear factor kappa B (NF-κB) pathways. We found that LPS treatment induced HaCaT cell inflammatory injury by inhibiting cell viability, promoting cell apoptosis, and enhancing the protein expression levels of cyclooxygenase 2 and inducible nitric oxide synthase. TAN treatment relieved LPS-induced HaCaT cell inflammatory injury. Moreover, TAN treatment attenuated LPS-induced activation of JNK and NF-κB pathways in HaCaT cells. Furthermore, TAN treatment alleviated LPS-induced up-regulation of miR-122. Overexpression of miR-122 reversed the effects of TAN on LPS-induced HaCaT cell inflammatory injury and activation of JNK and NF-κB pathways. In conclusion, TAN exerted anti-inflammatory and protective effects on keratinocytes injury. TAN relieved LPS-induced inflammatory injury of human HaCaT cells via down-regulating miR-122 and then inactivating JNK and NF-κB pathways.
Collapse
Affiliation(s)
- Hui Wang
- Operating Room, Jining No.1 People's Hospital, Jining, 272011, China.,Affiliated Jining No.1 People's Hospital of Jining Medical University, Jining Medical University, Jining, 272067, China
| | - Shujing Wei
- Operating Room, Jining No.1 People's Hospital, Jining, 272011, China
| |
Collapse
|
21
|
Kim M, Lee SH, Kim Y, Kwon Y, Park Y, Lee HK, Jung HS, Jeoung D. Human Adipose Tissue-Derived Mesenchymal Stem Cells Attenuate Atopic Dermatitis by Regulating the Expression of MIP-2, miR-122a-SOCS1 Axis, and Th1/Th2 Responses. Front Pharmacol 2018; 9:1175. [PMID: 30459600 PMCID: PMC6232252 DOI: 10.3389/fphar.2018.01175] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/28/2018] [Indexed: 01/26/2023] Open
Abstract
The objective of this study was to investigate the effect of human adipose tissue-derived mesenchymal stem cells (AdMSCs) on atopic dermatitis (AD) in the BALB/c mouse model. The AdMSCs attenuated clinical symptoms associated with AD, decreased numbers of degranulated mast cells (MCs), IgE level, amount of histamine released, and prostaglandin E2 level. Atopic dermatitis increased the expression levels of cytokines/chemokines, such as interleukin-5 (IL-5), macrophage inflammatory protein-1ß (MIP-1ß), MIP-2, chemokine (C-C motif) ligand 5 (CCL5), and IL-17, in BALB/c mouse. The AdMSCs showed decreased expression levels of these cytokines in the mouse model of AD. In vivo downregulation of MIP-2 attenuated the clinical symptoms associated with AD. Atopic dermatitis increased the expression levels of hallmarks of allergic inflammation, induced interactions of Fc𝜀RIβ with histone deacetylase 3 (HDAC3) and Lyn, increased ß-hexosaminidase activity, increased serum IgE level, and increased the amount of histamine released in an MIP-2-dependent manner. Downregulation of MIP-2 increased the levels of several miRNAs, including miR-122a-5p. Mouse miR-122a-5p mimic inhibited AD, while suppressor of cytokine signaling 1 (SOCS1), a predicted downstream target of miR-122a-5p, was required for AD. The downregulation of SOCS1 decreased the expression levels of MIP-2 and chemokine (C-X-C motif) ligand 13 (CXCL13) in the mouse model of AD. The downregulation of CXCL13 attenuated AD and allergic inflammation such as passive cutaneous anaphylaxis. The role of T cell transcription factors in AD was also investigated. Atopic dermatitis increased the expression levels of T-bet and GATA-3 [transcription factors of T-helper 1 (Th1) and T-helper 2 (Th2) cells, respectively] but decreased the expression of Foxp3, a transcription factor of regulatory T (Treg) cells, in an SOCS1-dependent manner. In addition to this, miR-122a-5p mimic also prevented AD from regulating the expression of T-bet, GATA-3, and Foxp3. Atopic dermatitis increased the expression of cluster of differentiation 163 (CD163), a marker of M2 macrophages, but decreased the expression of inducible nitric oxide synthase (iNOS), a marker of M1 macrophages. Additionally, SOCS1 and miR-122a-5p mimic regulated the expression of CD163 and iNOS in the mouse model of AD. Experiments employing conditioned medium showed interactions between MCs and macrophages in AD. The conditioned medium of AdMSCs, but not the conditioned medium of human dermal fibroblasts, negatively inhibited the features of allergic inflammation. In summary, we investigated the anti-atopic effects of AdMSCs, identified targets of AdMSCs, and determined the underlying mechanism for the anti-atopic effects of AdMSCs.
Collapse
Affiliation(s)
- Misun Kim
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Sung-Hoon Lee
- Biotechnology Institute, EHL-BIO Co., Ltd., Uiwang, South Korea
| | - Youngmi Kim
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Yoojung Kwon
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Yeongseo Park
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Hong-Ki Lee
- Biotechnology Institute, EHL-BIO Co., Ltd., Uiwang, South Korea
| | - Hyun Suk Jung
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| | - Dooil Jeoung
- Department of Biochemistry, Kangwon National University, Chunchon, South Korea
| |
Collapse
|
22
|
Xiao L, Jiang L, Hu Q, Li Y. MiR-302e attenuates allergic inflammation in vitro model by targeting RelA. Biosci Rep 2018; 38:BSR20180025. [PMID: 29748238 PMCID: PMC6435536 DOI: 10.1042/bsr20180025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/01/2018] [Accepted: 05/04/2018] [Indexed: 02/06/2023] Open
Abstract
Allergic inflammation is the foundation of allergic rhinitis and asthma. Although microRNAs are implicated in the pathogenesis of various diseases, information regarding the functional role of microRNAs in allergic diseases is limited. Herein, we reported that microRNA-302e (miR-302e) serves as an important regulator of allergic inflammation in human mast cell line, HMC-1 cells. Our results showed that miR-302e is the dominant member of miR-302 family expressed in HMC-1 cells. Moreover, the expression of miR-302e was significantly decreased in response to phorbol 12-myristate 13-acetate (PMA) and calcium ionophore A23187 or ovalbumin (OVA) stimulation. Overexpression of miR-302e blocked PMA/A23187 or OVA induced the increase in inflammatory cytokines levels, such as IL-1β, IL-6, tumor necrosis factor (TNF)-α and thymic stromal lymphopoietin, while miR-302 inhibition further promoted the release of these cytokines. Mechanistically, we found that miR-302e is a novel miRNA that targets RelA, a gene known to be involved in regulating inflammation, through binding to the 3'-UTR of RelA mRNA. Ectopic miR-302e remarkably suppressed the luciferase activity and expression of RelA, whereas down-regulation of miR-302e increased RelA luciferase activity and expression. Pharmacological inhibition of NF-κB reversed the augmented effect of miR-302e down-regulation on inflammatory cytokines level. Taken together, the present study demonstrates miR-302e limits allergic inflammation through inhibition of NF-κB activation, suggesting miR-302e may play an anti-inflammatory role in allergic diseases and function as a novel therapeutic target for the treatment of these diseases.
Collapse
Affiliation(s)
- Lifeng Xiao
- Department of Otolaryngology Head and Neck surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Li Jiang
- Department of Otolaryngology Head and Neck surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Qi Hu
- Department of Otolaryngology Head and Neck surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yuru Li
- Department of Otolaryngology Head and Neck surgery, the First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
23
|
Hussein HAM, Akula SM. miRNA-36 inhibits KSHV, EBV, HSV-2 infection of cells via stifling expression of interferon induced transmembrane protein 1 (IFITM1). Sci Rep 2017; 7:17972. [PMID: 29269892 PMCID: PMC5740118 DOI: 10.1038/s41598-017-18225-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/07/2017] [Indexed: 02/08/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is etiologically associated with all forms of Kaposi's sarcoma worldwide. Little is currently known about the role of microRNAs (miRNAs) in KSHV entry. We recently demonstrated that KSHV induces a plethora of host cell miRNAs during the early stages of infection. In this study, we show the ability of host cell novel miR-36 to specifically inhibit KSHV-induced expression of interferon induced transmembrane protein 1 (IFITM1) to limit virus infection of cells. Transfecting cells with miR-36 mimic specifically lowered IFITM1 expression and thereby significantly dampening KSHV infection. In contrast, inhibition of miR-36 using miR-36 inhibitor had the direct opposite effect on KSHV infection of cells, allowing enhanced viral infection of cells. The effect of miR-36 on KSHV infection of cells was at a post-binding stage of virus entry. The highlight of this work was in deciphering a common theme in the ability of miR-36 to regulate infection of closely related DNA viruses: KSHV, Epstein-Barr virus (EBV), and herpes simplexvirus-2 (HSV-2). Taken together, we report for the first time the ability of host cell miRNA to regulate internalization of KSHV, EBV, and HSV-2 in hematopoietic and endothelial cells.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA
| | - Shaw M Akula
- Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|