1
|
Milan Bonotto R, Mitrović A, Sosič I, Martinez-Orellana P, Dattola F, Gobec S, Kos J, Marcello A. Cathepsin inhibitors nitroxoline and its derivatives inhibit SARS-CoV-2 infection. Antiviral Res 2023:105655. [PMID: 37355023 PMCID: PMC10287183 DOI: 10.1016/j.antiviral.2023.105655] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
The severity of the SARS-CoV-2 pandemic and the recurring (re)emergence of viruses prompted the development of new therapeutic approaches that target viral and host factors crucial for viral infection. Among them, host peptidases cathepsins B and L have been described as essential enzymes during SARS-CoV-2 entry. In this study, we evaluated the effect of potent selective cathepsin inhibitors as antiviral agents. We demonstrated that selective cathepsin B inhibitors, such as the antimicrobial agent nitroxoline and its derivatives, impair SARS-CoV-2 infection in vitro. Antiviral activity observed at early stage of virus entry was cell-type dependent and correlated well with the intracellular content and enzymatic function of cathepsins B or L. Furthermore, tested inhibitors were effective against the ancestral SARS-CoV-2 D614 as well as against the more recent BA.1_4 (Omicron). Taken together, our results highlight the important role of host cysteine cathepsin B in SARS-CoV-2 virus entry and show that cathepsin-specific inhibitors, such as nitroxoline and its derivatives, could be used to treat COVID-19. Finally, these results also suggest that nitroxoline has potential to be further explored as repurposed drug in antiviral therapy.
Collapse
Affiliation(s)
- Rafaela Milan Bonotto
- Laboratory of Molecular Virology, The International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149, Trieste, Italy
| | - Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Pamela Martinez-Orellana
- Laboratory of Molecular Virology, The International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149, Trieste, Italy
| | - Federica Dattola
- Laboratory of Molecular Virology, The International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149, Trieste, Italy
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia; Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000, Ljubljana, Slovenia.
| | - Alessandro Marcello
- Laboratory of Molecular Virology, The International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149, Trieste, Italy.
| |
Collapse
|
2
|
Csuvik O, Szatmári I. Synthesis of Bioactive Aminomethylated 8-Hydroxyquinolines via the Modified Mannich Reaction. Int J Mol Sci 2023; 24:ijms24097915. [PMID: 37175622 PMCID: PMC10177806 DOI: 10.3390/ijms24097915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
8-hydroxyquinoline (oxine) is a widely known and frequently used chelating agent, and the pharmacological effects of the core molecule and its derivatives have been studied since the 19th century. There are several synthetic methods to modify this core. The Mannich reaction is one of the most easily implementable examples, which requires mild reaction conditions and simple chemical reagents. The three components of the Mannich reaction are a primary or secondary amine, an aldehyde and a compound having a hydrogen with pronounced activity. In the modified Mannich reaction, naphthol or a nitrogen-containing naphthol analogue (e.g., 8-hydroxyquinoline) is utilised as the active hydrogen provider compound, thus affording the formation of aminoalkylated products. The amine component can be ammonia and primary or secondary amines. The aldehyde component is highly variable, including aliphatic and aromatic aldehydes. Based on the pharmacological relevance of aminomethylated 8-hydroxyquinolines, this review summarises their syntheses via the modified Mannich reaction starting from 8-hydroxyquinoline, formaldehyde and various amines.
Collapse
Affiliation(s)
- Oszkár Csuvik
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- Stereochemistry Research Group, Eötvös Loránd Research Network, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Majc B, Habič A, Novak M, Rotter A, Porčnik A, Mlakar J, Župunski V, Fonović UP, Knez D, Zidar N, Gobec S, Kos J, Turnšek TL, Pišlar A, Breznik B. Upregulation of Cathepsin X in Glioblastoma: Interplay with γ-Enolase and the Effects of Selective Cathepsin X Inhibitors. Int J Mol Sci 2022; 23:ijms23031784. [PMID: 35163706 PMCID: PMC8836869 DOI: 10.3390/ijms23031784] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown. In this study, cathepsin X expression and activity were found to be upregulated in human GBM tissues compared to low-grade gliomas and nontumor brain tissues. Cathepsin X was localized in GBM cells as well as in tumor-associated macrophages and microglia. Subsequently, potent irreversible (AMS36) and reversible (Z7) selective cathepsin X inhibitors were tested in vitro. Selective cathepsin X inhibitors decreased the viability of patient-derived GBM cells as well as macrophages and microglia that were cultured in conditioned media of GBM cells. We next examined the expression pattern of neuron-specific enzyme γ-enolase, which is the target of cathepsin X. We found that there was a correlation between high proteolytic activity of cathepsin X and C-terminal cleavage of γ-enolase and that cathepsin X and γ-enolase were colocalized in GBM tissues, preferentially in GBM-associated macrophages and microglia. Taken together, our results on patient-derived material suggest that cathepsin X is involved in GBM progression and is a potential target for therapeutic approaches against GBM.
Collapse
Affiliation(s)
- Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, 1000 Ljubljana, Slovenia; (B.M.); (A.H.); (M.N.); (A.R.); (T.L.T.)
- Jozef Stefan International Postgraduate School, 39 Jamova cesta, 1000 Ljubljana, Slovenia
| | - Anamarija Habič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, 1000 Ljubljana, Slovenia; (B.M.); (A.H.); (M.N.); (A.R.); (T.L.T.)
- Jozef Stefan International Postgraduate School, 39 Jamova cesta, 1000 Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, 1000 Ljubljana, Slovenia; (B.M.); (A.H.); (M.N.); (A.R.); (T.L.T.)
| | - Ana Rotter
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, 1000 Ljubljana, Slovenia; (B.M.); (A.H.); (M.N.); (A.R.); (T.L.T.)
| | - Andrej Porčnik
- Department of Neurosurgery, University Medical Centre Ljubljana, 7 Zaloška cesta, 1000 Ljubljana, Slovenia;
| | - Jernej Mlakar
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 2 Korytkova ulica, 1000 Ljubljana Slovenia;
| | - Vera Župunski
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000 Ljubljana, Slovenia;
| | - Urša Pečar Fonović
- Faculty of Pharmacy, University of Ljubljana, 7 Aškerčeva cesta, 1000 Ljubljana, Slovenia; (U.P.F.); (D.K.); (N.Z.); (S.G.); (J.K.)
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, 7 Aškerčeva cesta, 1000 Ljubljana, Slovenia; (U.P.F.); (D.K.); (N.Z.); (S.G.); (J.K.)
| | - Nace Zidar
- Faculty of Pharmacy, University of Ljubljana, 7 Aškerčeva cesta, 1000 Ljubljana, Slovenia; (U.P.F.); (D.K.); (N.Z.); (S.G.); (J.K.)
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, 7 Aškerčeva cesta, 1000 Ljubljana, Slovenia; (U.P.F.); (D.K.); (N.Z.); (S.G.); (J.K.)
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, 7 Aškerčeva cesta, 1000 Ljubljana, Slovenia; (U.P.F.); (D.K.); (N.Z.); (S.G.); (J.K.)
| | - Tamara Lah Turnšek
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, 1000 Ljubljana, Slovenia; (B.M.); (A.H.); (M.N.); (A.R.); (T.L.T.)
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, 113 Večna pot, 1000 Ljubljana, Slovenia;
| | - Anja Pišlar
- Faculty of Pharmacy, University of Ljubljana, 7 Aškerčeva cesta, 1000 Ljubljana, Slovenia; (U.P.F.); (D.K.); (N.Z.); (S.G.); (J.K.)
- Correspondence: (B.B.); Tel.: +386-(0)59-232-870; (A.P.), Tel.: +386-(0)14-169-526
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, 1000 Ljubljana, Slovenia; (B.M.); (A.H.); (M.N.); (A.R.); (T.L.T.)
- Correspondence: (B.B.); Tel.: +386-(0)59-232-870; (A.P.), Tel.: +386-(0)14-169-526
| |
Collapse
|
4
|
Van de Walle T, Cools L, Mangelinckx S, D'hooghe M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur J Med Chem 2021; 226:113865. [PMID: 34655985 DOI: 10.1016/j.ejmech.2021.113865] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
Quinoline, a privileged scaffold in medicinal chemistry, has always been associated with a multitude of biological activities. Especially in antimalarial and anticancer research, quinoline played (and still plays) a central role, giving rise to the development of an array of quinoline-containing pharmaceuticals in these therapeutic areas. However, both diseases still affect millions of people every year, pointing to the necessity of new therapies. Quinolines have a long-standing history as antimalarial agents, but established quinoline-containing antimalarial drugs are now facing widespread resistance of the Plasmodium parasite. Nevertheless, as evidenced by a massive number of recent literature contributions, they are still of great value for future developments in this field. On the other hand, the number of currently approved anticancer drugs containing a quinoline scaffold are limited, but a strong increase and interest in quinoline compounds as potential anticancer agents can be seen in the last few years. In this review, a literature overview of recent contributions made by quinoline-containing compounds as potent antimalarial or anticancer agents is provided, covering publications between 2018 and 2020.
Collapse
Affiliation(s)
- Tim Van de Walle
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Lore Cools
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
5
|
Khan R, Khan H, Abdullah Y, Dou QP. Feasibility of Repurposing Clioquinol for Cancer Therapy. Recent Pat Anticancer Drug Discov 2021; 15:14-31. [PMID: 32106803 DOI: 10.2174/1574892815666200227090259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cancer is a prevalent disease in the world and is becoming more widespread as time goes on. Advanced and more effective chemotherapeutics need to be developed for the treatment of cancer to keep up with this prevalence. Repurposing drugs is an alternative to discover new chemotherapeutics. Clioquinol is currently being studied for reposition as an anti-cancer drug. OBJECTIVE This study aimed to summarize the anti-cancer effects of clioquinol and its derivatives through a detailed literature and patent review and to review their potential re-uses in cancer treatment. METHODS Research articles were collected through a PubMed database search using the keywords "Clioquinol" and "Cancer." The keywords "Clioquinol Derivatives" and "Clioquinol Analogues" were also used on a PubMed database search to gather research articles on clioquinol derivatives. Patents were gathered through a Google Patents database search using the keywords "Clioquinol" and "Cancer." RESULTS Clioquinol acts as a copper and zinc ionophore, a proteasome inhibitor, an anti-angiogenesis agent, and is an inhibitor of key signal transduction pathways responsible for its growth-inhibitory activity and cytotoxicity in cancer cells preclinically. A clinical trial conducted by Schimmer et al., resulted in poor outcomes that prompted studies on alternative clioquinol-based applications, such as new combinations, new delivery methods, or new clioquinol-derived analogues. In addition, numerous patents claim alternative uses of clioquinol for cancer therapy. CONCLUSION Clioquinol exhibits anti-cancer activities in many cancer types, preclinically. Low therapeutic efficacy in a clinical trial has prompted new studies that aim to discover more effective clioquinol- based cancer therapies.
Collapse
Affiliation(s)
- Raheel Khan
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Harras Khan
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Yassen Abdullah
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Q Ping Dou
- Departments of Oncology, Pharmacology, and Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
6
|
Gupta R, Luxami V, Paul K. Insights of 8-hydroxyquinolines: A novel target in medicinal chemistry. Bioorg Chem 2021; 108:104633. [PMID: 33513476 DOI: 10.1016/j.bioorg.2021.104633] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
8-Hydroxyquinoline (8-HQ) is a significant heterocyclic scaffold in organic and analytical chemistry because of the properties of chromophore and is used to detect various metal ions and anions. But from the last 2 decades, this moiety has been drawn great attention of medicinal chemists due to its significant biological activities. Synthetic modification of 8-hydroxyquinoline is under exploration on large scale to develop more potent target-based broad spectrum drug molecules for the treatment of several life-threatening diseases such as anti-cancer, HIV, neurodegenerative disorders, etc. Metal chelation properties of 8-hydroxyquinoline and its derivatives also make these potent drug candidates for the treatment of various diseases. This review comprises 8-hydroxyquinoline derivatives reported in the literature in last five years (2016-2020) and we anticipate that it will assist medicinal chemists in the synthesis of novel and pharmacologically potent agents for various therapeutic targets, mainly anti-proliferative, anti-microbial, anti-fungal and anti-viral as well as for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rohini Gupta
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India.
| |
Collapse
|
7
|
Van de Walle T, Briand M, Mitrović A, Sosič I, Gobec S, Kos J, Persoons L, Daelemans D, De Jonghe S, Ubiparip Z, Desmet T, Van Hecke K, Mangelinckx S, D'hooghe M. Synthesis of Novel Nitroxoline Analogs with Potent Cathepsin B Exopeptidase Inhibitory Activity. ChemMedChem 2020; 15:2477-2490. [PMID: 32744405 DOI: 10.1002/cmdc.202000402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 01/02/2023]
Abstract
Nitroxoline, a well-known antimicrobial agent, has been identified in several independent studies, and on different molecular targets, as a promising candidate to be repurposed for cancer treatment. One specific target of interest concerns cathepsin B, a lysosomal peptidase involved in the degradation of the extracellular matrix (ECM), leading to tumor invasion, metastasis and angiogenesis. However, dedicated optimization of the nitroxoline core is needed to actually deliver a nitroxoline-based antitumor drug candidate. Within that context, 34 novel nitroxoline analogs were synthesized and evaluated for their relative cathepsin B inhibitory activity, their antiproliferative properties and their antimicrobial activity. More than twenty analogs were shown to exert a similar or even slightly higher cathepsin B inhibitory activity compared to nitroxoline. The implemented modifications of the nitroxoline scaffold and the resulting SAR information can form an eligible basis for further optimization toward more potent cathepsin B inhibitors in the quest for a clinical nitroxoline-based antitumor agent.
Collapse
Affiliation(s)
- Tim Van de Walle
- SynbioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marina Briand
- SynbioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Izidor Sosič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.,Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Leentje Persoons
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Steven De Jonghe
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Zorica Ubiparip
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Kristof Van Hecke
- Xstruct, Department of Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S3, 9000, Ghent, Belgium
| | - Sven Mangelinckx
- SynbioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynbioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
8
|
Majc B, Sever T, Zarić M, Breznik B, Turk B, Lah TT. Epithelial-to-mesenchymal transition as the driver of changing carcinoma and glioblastoma microenvironment. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118782. [PMID: 32554164 DOI: 10.1016/j.bbamcr.2020.118782] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 02/07/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is an essential molecular and cellular process that is part of normal embryogenesis and wound healing, and also has a ubiquitous role in various types of carcinoma and glioblastoma. EMT is activated and regulated by specific microenvironmental endogenous triggers and a complex network of signalling pathways. These mostly include epigenetic events that affect protein translation-controlling factors and proteases, altogether orchestrated by the switching on and off of oncogenes and tumour-suppressor genes in cancer cells. The hallmark of cancer-linked EMT is that the process is incomplete, as it is opposed by the reverse process of mesenchymal-to-epithelial transition, which results in a hybrid epithelial/mesenchymal phenotype that shows notable cell plasticity. This is a characteristic of cancer stem cells (CSCs), and it is of the utmost importance in their niche microenvironment, where it governs CSC migratory and invasive properties, thereby creating metastatic CSCs. These cells have high resistance to therapeutic treatments, in particular in glioblastoma.
Collapse
Affiliation(s)
- Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Tilen Sever
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia; Department of Biochemistry, Molecular and Structural Biology, Josef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Miki Zarić
- Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia; Department of Biochemistry, Molecular and Structural Biology, Josef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Josef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia; Institute of Regenerative Medicine, I.M. Sechenov First Moscow State Medical University, Bol'shaya Pirogovskaya Ulitsa, 19с1, Moscow 119146, Russia
| | - Tamara T Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Petushkova AI, Savvateeva LV, Korolev DO, Zamyatnin AA. Cysteine Cathepsins: Potential Applications in Diagnostics and Therapy of Malignant Tumors. BIOCHEMISTRY (MOSCOW) 2019; 84:746-761. [PMID: 31509726 DOI: 10.1134/s000629791907006x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cysteine cathepsins are proteolytic enzymes involved in protein degradation in lysosomes and endosomes. Cysteine cathepsins have been also found in the tumor microenvironment during carcinogenesis, where they are implicated in proliferation, invasion and metastasis of tumor cells through the degradation of extracellular matrix, suppression of cell-cell interactions, and promotion of angiogenesis. In this regard, cathepsins can have a diagnostic value and represent promising targets for antitumor drugs aimed at inhibition of these proteases. Moreover, cysteine cathepsins can be used as activators of novel targeted therapeutic agents. This review summarizes recent discovered roles of cysteine cathepsins in carcinogenesis and discusses new trends in cancer therapy and diagnostics using cysteine cathepsins as markers, targets, or activators.
Collapse
Affiliation(s)
- A I Petushkova
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - L V Savvateeva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - D O Korolev
- Sechenov First Moscow State Medical University, Institute of Uronephrology and Human Reproductive Health, Moscow, 119991, Russia
| | - A A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
10
|
Mitrović A, Kljun J, Sosič I, Uršič M, Meden A, Gobec S, Kos J, Turel I. Organoruthenated Nitroxoline Derivatives Impair Tumor Cell Invasion through Inhibition of Cathepsin B Activity. Inorg Chem 2019; 58:12334-12347. [PMID: 31464130 PMCID: PMC6751773 DOI: 10.1021/acs.inorgchem.9b01882] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Lysosomal
cysteine peptidase cathepsin B (catB) is an important tumor-promoting
factor involved in tumor progression and metastasis representing a
relevant target for the development of new antitumor agents. In the
present study, we synthesized 11 ruthenium compounds bearing either
the clinical agent nitroxoline that was previously identified as potent
selective reversible inhibitor of catB activity or its derivatives.
We demonstrated that organoruthenation is a viable strategy for obtaining
highly effective and specific inhibitors of catB endo- and exopeptidase
activity, as shown using enzyme kinetics and microscale thermophoresis.
Furthermore, we showed that the novel metallodrugs by catB inhibition
significantly impair processes of tumor progression in in vitro cell
based functional assays at low noncytotoxic concentrations. Generally,
by using metallodrugs we observed an improvement in catB inhibition,
a reduction of extracellular matrix degradation and tumor cell invasion
in comparison to free ligands, and a correlation with the reactivity
of the monodentate halide leaving ligand. Eleven ruthenium
compounds bearing either the clinical agent nitroxoline or its potent
cathepsin B (catB) inhibiting derivatives were evaluated as antimetastatic
agents. We demonstrated that organoruthenation is a viable strategy
for obtaining highly effective and specific inhibitors of catB activities,
as shown using enzyme kinetics and microscale thermophoresis. Furthermore,
we showed that the novel metallodrugs significantly impair processes
of tumor progression in in vitro cell based functional assays at low
noncytotoxic concentrations.
Collapse
Affiliation(s)
- Ana Mitrović
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva c. 7 , SI-1000 Ljubljana , Slovenia.,Department of Biotechnology , Jožef Stefan Institute , Jamova c. 39 , SI-1000 Ljubljana , Slovenia
| | - Jakob Kljun
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva c. 7 , SI-1000 Ljubljana , Slovenia
| | - Matija Uršič
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Anton Meden
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva c. 7 , SI-1000 Ljubljana , Slovenia
| | - Janko Kos
- Faculty of Pharmacy , University of Ljubljana , Aškerčeva c. 7 , SI-1000 Ljubljana , Slovenia.,Department of Biotechnology , Jožef Stefan Institute , Jamova c. 39 , SI-1000 Ljubljana , Slovenia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| |
Collapse
|
11
|
Yu J, Ji C, Shi M. Nitroxoline induces cell apoptosis by inducing MDM2 degradation in small‐cell lung cancer. Kaohsiung J Med Sci 2019; 35:202-208. [PMID: 30896891 DOI: 10.1002/kjm2.12051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/06/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Jin‐Guo Yu
- Department of Respiratory MedicineThe Second Affiliated Hospital of Soochow University Suzhou China
| | - Cheng‐Hong Ji
- Department of Respiratory MedicineThe Second Affiliated Hospital of Soochow University Suzhou China
| | - Min‐Hua Shi
- Department of Respiratory MedicineThe Second Affiliated Hospital of Soochow University Suzhou China
| |
Collapse
|
12
|
Štefane B, Grošelj U, Svete J, Požgan F, Kočar D, Brodnik Žugelj H. The Influence of the Quinoline Moiety on Direct Pd-Catalyzed Arylation of Five-Membered Heterocycles. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800842] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bogdan Štefane
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Večna pot 113 1000 Ljubljana Slovenia
| | - Uroš Grošelj
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Večna pot 113 1000 Ljubljana Slovenia
| | - Jurij Svete
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Večna pot 113 1000 Ljubljana Slovenia
| | - Franc Požgan
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Večna pot 113 1000 Ljubljana Slovenia
| | - Drago Kočar
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Večna pot 113 1000 Ljubljana Slovenia
| | - Helena Brodnik Žugelj
- Faculty of Chemistry and Chemical Technology; University of Ljubljana; Večna pot 113 1000 Ljubljana Slovenia
| |
Collapse
|
13
|
Olender D, Żwawiak J, Zaprutko L. Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines. Pharmaceuticals (Basel) 2018; 11:E54. [PMID: 29844300 PMCID: PMC6027522 DOI: 10.3390/ph11020054] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 01/27/2023] Open
Abstract
The current concept in searching for new bioactive products, including mainly original active substances with potential application in pharmacy and medicine, is based on compounds with a previously determined structure, well-known properties, and biological activity profile. Nowadays, many commonly used drugs originated from natural sources. Moreover, some natural materials have become the source of leading structures for processing further chemical modifications. Many organic compounds with great therapeutic significance have the nitro group in their structure. Very often, nitro compounds are active substances in many well-known preparations belonging to different groups of medicines that are classified according to their pharmacological potencies. Moreover, the nitro group is part of the chemical structure of veterinary drugs. In this review, we describe many bioactive substances with the nitro group, divided into ten categories, including substances with exciting activity and that are currently undergoing clinical trials.
Collapse
Affiliation(s)
- Dorota Olender
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Justyna Żwawiak
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| | - Lucjusz Zaprutko
- Department of Organic Chemistry, Pharmaceutical Faculty, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland.
| |
Collapse
|
14
|
Sosič I, Mitrović A, Ćurić H, Knez D, Brodnik Žugelj H, Štefane B, Kos J, Gobec S. Cathepsin B inhibitors: Further exploration of the nitroxoline core. Bioorg Med Chem Lett 2018; 28:1239-1247. [PMID: 29503024 DOI: 10.1016/j.bmcl.2018.02.042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/16/2018] [Accepted: 02/21/2018] [Indexed: 01/10/2023]
Abstract
Human cathepsin B is a cysteine protease with many house-keeping functions, such as intracellular proteolysis within lysosomes. Its increased activity and expression have been strongly associated with many pathological processes, including cancers. We present here the design and synthesis of novel derivatives of nitroxoline as inhibitors of cathepsin B. These were prepared either by omitting the pyridine part, or by modifying positions 2, 7, and 8 of nitroxoline. All compounds were evaluated for their ability to inhibit endopeptidase and exopeptidase activities of cathepsin B. For the most promising inhibitors, the ability to reduce extracellular and intracellular collagen IV degradation was determined, followed by their evaluation in cell-based in vitro models of tumor invasion. The presented data show that we have further defined the structural requirements for cathepsin B inhibition by nitroxoline derivatives and provided additional knowledge that could lead to non-peptidic compounds with usefulness against tumor progression.
Collapse
Affiliation(s)
- Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Ana Mitrović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Hrvoje Ćurić
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Damijan Knez
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Helena Brodnik Žugelj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Bogdan Štefane
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|