1
|
Aghaei SM, Hosseini SM. Inflammation-related miRNAs in obesity, CVD, and NAFLD. Cytokine 2024; 182:156724. [PMID: 39106574 DOI: 10.1016/j.cyto.2024.156724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Obesity, cardiovascular diseases (CVD), and nonalcoholic fatty liver disease (NAFLD) pose significant worldwide health challenges, characterized by complex interplay among inflammatory pathways that underlie their development. In this review, we examine the contribution of inflammation and associated signaling molecules to the pathogenesis of these conditions, while also emphasizing the significant participation of non-coding RNAs (ncRNAs) in modulating inflammatory pathways. In the context of obesity, aberrant expression patterns of inflammatory-associated miRNAs play a contributory role in adipose tissue inflammation and insulin resistance, thereby exacerbating disturbances in metabolic homeostasis. Similarly, in CVD, dysregulated miRNA expression alters inflammatory reactions, disrupts endothelial function, and induces cardiac remodeling, thereby impacting the advancement of the disease. Moreover, in the context of NAFLD, inflammatory-associated miRNAs are implicated in mediating hepatic inflammation, lipid deposition, and fibrosis, underscoring their candidacy as promising therapeutic targets. Additionally, the competing endogenous RNA (ceRNA) network has emerged as a novel regulatory mechanism in the etiology of CVD, obesity, and NAFLD, wherein ncRNAs assume pivotal roles in facilitating communication across diverse molecular pathways. Moreover, in the concluding section, we underscored the potential efficacy of directing interventions towards inflammatory-related miRNAs utilizing herbal remedies and therapies based on exosome delivery systems as a promising strategy for ameliorating pathologies associated with inflammation in obesity, CVD, and NAFLD.
Collapse
Affiliation(s)
- Sayed Mohsen Aghaei
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sayed Mostafa Hosseini
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ge Y, Huang J, Chen R, Fu Y, Ling T, Ou X, Rong X, Cheng Y, Lin Y, Zhou F, Lu C, Yuan S, Xu A. Downregulation of CPSF6 leads to global mRNA 3' UTR shortening and enhanced antiviral immune responses. PLoS Pathog 2024; 20:e1012061. [PMID: 38416782 PMCID: PMC10927093 DOI: 10.1371/journal.ppat.1012061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/11/2024] [Accepted: 02/19/2024] [Indexed: 03/01/2024] Open
Abstract
Alternative polyadenylation (APA) is a widespread mechanism of gene regulation that generates mRNA isoforms with alternative 3' untranslated regions (3' UTRs). Our previous study has revealed the global 3' UTR shortening of host mRNAs through APA upon viral infection. However, how the dynamic changes in the APA landscape occur upon viral infection remains largely unknown. Here we further found that, the reduced protein abundance of CPSF6, one of the core 3' processing factors, promotes the usage of proximal poly(A) sites (pPASs) of many immune related genes in macrophages and fibroblasts upon viral infection. Shortening of the 3' UTR of these transcripts may improve their mRNA stability and translation efficiency, leading to the promotion of type I IFN (IFN-I) signalling-based antiviral immune responses. In addition, dysregulated expression of CPSF6 is also observed in many immune related physiological and pathological conditions, especially in various infections and cancers. Thus, the global APA dynamics of immune genes regulated by CPSF6, can fine-tune the antiviral response as well as the responses to other cellular stresses to maintain the tissue homeostasis, which may represent a novel regulatory mechanism for antiviral immunity.
Collapse
Affiliation(s)
- Yong Ge
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jingrong Huang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Rong Chen
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yonggui Fu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Tao Ling
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xin Ou
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaohui Rong
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Youxiang Cheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yi Lin
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Fengyi Zhou
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Chuanjian Lu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Shaochun Yuan
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Anlong Xu
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Hu H, Xu W, Li Y, Wang Z, Wang S, Liu Y, Bai M, Lou Y, Yang Q. SIRT1 regulates endoplasmic reticulum stress-related organ damage. Acta Histochem 2024; 126:152134. [PMID: 38237370 DOI: 10.1016/j.acthis.2024.152134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024]
Abstract
Endoplasmic reticulum (ER) stress plays a key role in the pathogenesis of several organ damages. Studies show that excessive ER stress (ERS) can destroy cellular homeostasis, causing cell damage and physiological dysfunction in various organs. In recent years, Sirtuin1 (SIRT1) has become a research hotspot on ERS. Increasing evidence suggests that SIRT1 plays a positive role in various ERS-induced organ damage via multiple mechanisms, including inhibiting cellular apoptosis and promoting autophagy. SIRT1 can also alleviate liver, heart, lung, kidney, and intestinal damage by inhibiting ERS. We discuss the possible mechanism of SIRT1, explore potential therapeutic targets of diseases, and provide a theoretical basis for treating ERS-related diseases.
Collapse
Affiliation(s)
- He Hu
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Weichao Xu
- Department of Gastroenterology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| | - Yan Li
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhicheng Wang
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Siyue Wang
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yansheng Liu
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Minan Bai
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yingying Lou
- Department of Gastroenterology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China.
| | - Qian Yang
- Department of Gastroenterology, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
4
|
Samavarchi Tehrani S, Goodarzi G, Panahi G, Maniati M, Meshkani R. Multiple novel functions of circular RNAs in diabetes mellitus. Arch Physiol Biochem 2023; 129:1235-1249. [PMID: 34087083 DOI: 10.1080/13813455.2021.1933047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs), as an emerging group of non-coding RNAs (ncRNAs), have received the attention given evidence indicating that these novel ncRNAs are implicated in various biological processes. Due to the absence of 5' and 3' ends in circ-RNAs, their two ends are covalently bonded together, and they are synthesised from pre-mRNAs in a process called back-splicing, which makes them more stable than linear RNAs. There is accumulating evidence showing that circRNAs play a critical role in the pathogenesis of diabetes mellitus (DM). Moreover, it has been indicated that dysregulation of circRNAs has made them promising diagnostic biomarkers for the detection of DM. Recently, increasing attention has been paid to investigate the mechanisms underlying the DM process. It has been demonstrated that there is a strong correlation between the expression of circRNAs and DM. Hence, our aim is to discuss the crosstalk between circRNAs and DM and its complications.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Afsharmanesh MR, Mohammadi Z, Mansourian AR, Jafari SM. A Review of micro RNAs changes in T2DM in animals and humans. J Diabetes 2023; 15:649-664. [PMID: 37329278 PMCID: PMC10415875 DOI: 10.1111/1753-0407.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 04/22/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and its associated complications have become a crucial public health concern in the world. According to the literature, chronic inflammation and the progression of T2DM have a close relationship. Accumulated evidence suggests that inflammation enhances the insulin secretion lost by islets of Langerhans and the resistance of target tissues to insulin action, which are two critical features in T2DM development. Based on recently highlighted research that plasma concentration of inflammatory mediators such as tumor necrosis factor α and interleukin-6 are elevated in insulin-resistant and T2DM, and it raises novel question marks about the processes causing inflammation in both situations. Over the past few decades, microRNAs (miRNAs), a class of short, noncoding RNA molecules, have been discovered to be involved in the regulation of inflammation, insulin resistance, and T2DM pathology. These noncoding RNAs are specifically comprised of RNA-induced silencing complexes and regulate the expression of specific protein-coding genes through various mechanisms. There is extending evidence that describes the expression profile of a special class of miRNA molecules altered during T2DM development. These modifications can be observed as potential biomarkers for the diagnosis of T2DM and related diseases. In this review study, after reviewing the possible mechanisms involved in T2DM pathophysiology, we update recent information on the miRNA roles in T2DM, inflammation, and insulin resistance.
Collapse
Affiliation(s)
- Mohammad Reza Afsharmanesh
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Zeinab Mohammadi
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Azad Reza Mansourian
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research CenterGolestan University of Medical SciencesGorganIran
- Department of Biochemistry and Biophysics, School of MedicineGolestan University of Medical SciencesGorganIran
| |
Collapse
|
6
|
Alsenousy AHA, El-Tahan RA, Ghazal NA, Piñol R, Millán A, Ali LMA, Kamel MA. The Anti-Obesity Potential of Superparamagnetic Iron Oxide Nanoparticles against High-Fat Diet-Induced Obesity in Rats: Possible Involvement of Mitochondrial Biogenesis in the Adipose Tissues. Pharmaceutics 2022; 14:pharmaceutics14102134. [PMID: 36297569 PMCID: PMC9607364 DOI: 10.3390/pharmaceutics14102134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Obesity is a pandemic disease that is rapidly growing into a serious health problem and has economic impact on healthcare systems. This bleak image has elicited creative responses, and nanotechnology is a promising approach in obesity treatment. This study aimed to investigate the anti-obesity effect of superparamagnetic iron oxide nanoparticles (SPIONs) on a high-fat-diet rat model of obesity and compared their effect to a traditional anti-obesity drug (orlistat). METHODS The obese rats were treated daily with orlistat and/or SPIONs once per week for 8 weeks. At the end of the experiment, blood samples were collected for biochemical assays. Then, the animals were sacrificed to obtain white adipose tissues (WAT) and brown adipose tissues (BAT) for assessment of the expression of thermogenic genes and mitochondrial DNA copy number (mtDNA-CN). RESULTS For the first time, we reported promising ameliorating effects of SPIONs treatments against weight gain, hyperglycemia, adiponectin, leptin, and dyslipidemia in obese rats. At the molecular level, surprisingly, SPIONs treatments markedly corrected the disturbed expression and protein content of inflammatory markers and parameters controlling mitochondrial biogenesis and functions in BAT and WAT. CONCLUSIONS SPIONs have a powerful anti-obesity effect by acting as an inducer of WAT browning and activator of BAT functions.
Collapse
Affiliation(s)
- Aisha H. A. Alsenousy
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
- Correspondence: (A.H.A.A.); (M.A.K.)
| | - Rasha A. El-Tahan
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
| | - Nesma A. Ghazal
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
| | - Rafael Piñol
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Angel Millán
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Lamiaa M. A. Ali
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
- IBMM, University Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Maher A. Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
- Correspondence: (A.H.A.A.); (M.A.K.)
| |
Collapse
|
7
|
Hong H, Xu HX, Meng JZ, Zhu BM. Electroacupuncture altered expression of microRNAs in Stat5 knockout obese mice. Acupunct Med 2021; 40:249-257. [PMID: 34892984 DOI: 10.1177/09645284211056345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Increasing evidence shows that miRNAs contribute to the establishment and development of obesity by affecting many biological and pathological processes, such as adipocyte differentiation, hepatic lipid metabolism, insulin resistance, and neurological regulation of obesity. As a clinical intervention approach, acupuncture has been shown to be effective in the treatment of obesity and other metabolic diseases. Our previous whole genome study in central nervous system (CNS)-specific Stat5 knockout (NKO) obese mice found that electroacupuncture (EA) could reduce body weight and promote white browning. OBJECTIVE To clarify the effect of EA on miRNAs and understand how it regulates gene expression. METHODS Twelve-week-old male Stat5NKO mice with body weight 20% greater than that of Stat5fl/fl (control) mice were divided into a Stat5NKO (model) group and EA-treated Stat5NKO + EA group. A cohort of Stat5fl/fl mice of the same age were included as the control group. EA was administered under isoflurane anesthesia at unilateral ST36 and ST44 daily (left and right sides were treated every other day), 6 times per week for a total of 4 weeks. The miRNA profile was generated and miRNA regulatory networks were analyzed in the Stat5 nestin-cre mice before and after EA treatment. Autophagy-related proteins in adipocytes were detected after over-expression of miR27a. RESULTS EA altered abnormal miRNA expression, including miRNA27a expression, and reduced the autophagy-related proteins ATG5 and ATG12. CONCLUSION We found that EA could regulate miRNA27a-mediated autophagy-related proteins and promote white fat browning, which may contribute to weight loss. To our knowledge, this is the first report of miRNAs potentially driving the effect of EA on white fat browning through the autophagy process.
Collapse
Affiliation(s)
- Hao Hong
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hou-Xi Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian-Zhong Meng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Wu R, Niu Z, Ren G, Ruan L, Sun L. CircSMAD4 alleviates high glucose-induced inflammation, extracellular matrix deposition and apoptosis in mouse glomerulus mesangial cells by relieving miR-377-3p-mediated BMP7 inhibition. Diabetol Metab Syndr 2021; 13:137. [PMID: 34801077 PMCID: PMC8606083 DOI: 10.1186/s13098-021-00753-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is a common complication of diabetes mellitus. Accumulating studies suggest that the deregulation of circular RNA (circRNA) is involved in DN pathogenesis. This study aimed to investigate the role of circSMAD4 in DN models. METHODS Mice were treated with streptozotocin to establish DN models in vivo. Mouse glomerulus mesangial cells (SV40-MES13) were treated with high glucose to establish DN models in vitro. The expression of circSMAD4, miR-377-3p and bone morphogenetic protein 7 (BMP7) mRNA was measured by quantitative real-time PCR (qPCR). The releases of inflammatory factors were examined by ELISA. The protein levels of fibrosis-related markers, apoptosis-related markers and BMP7 were checked by western blot. Cell apoptosis was monitored by flow cytometry assay. The predicted relationship between miR-377-3p and circSMAD4 or BMP7 was validated by dual-luciferase reporter assay or pull-down assay. RESULTS CircSMAD4 was poorly expressed in DN mice and HG-treated SV40-MES13 cells. HG induced SV40-MES13 cell inflammation, extracellular matrix (ECM) deposition and apoptosis. CircSMAD4 overexpression alleviated, while circSMAD4 knockdown aggravated HG-induced SV40-MES13 cell injuries. MiR-377-3p was targeted by circSMAD4, and miR-377-3p enrichment partly reversed the effects of circSMAD4 overexpression. BMP7 was a target of miR-377-3p, and circSMAD4 regulated BMP7 expression by targeting miR-377-3p. MiR-377-3p overexpression aggravated HG-induced injuries by suppressing BMP7. CONCLUSION CircSMAD4 alleviates HG-induced SV40-MES13 cell inflammation, ECM deposition and apoptosis by relieving miR-377-3p-mediated inhibition on BMP7 in DN progression.
Collapse
Affiliation(s)
- Rina Wu
- Department of Endocrinology, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao, China
| | - Zheli Niu
- Department of Nephrology, The First Hospital of Hebei Medical University, 9 Donggang Road, Shijiazhuang City, 050030, Hebei Province, China
| | - Guangwei Ren
- Department of Nephrology, The First Hospital of Hebei Medical University, 9 Donggang Road, Shijiazhuang City, 050030, Hebei Province, China
| | - Lin Ruan
- Department of Nephrology, The First Hospital of Hebei Medical University, 9 Donggang Road, Shijiazhuang City, 050030, Hebei Province, China
| | - Lijun Sun
- Department of Nephrology, The First Hospital of Hebei Medical University, 9 Donggang Road, Shijiazhuang City, 050030, Hebei Province, China.
| |
Collapse
|
9
|
Ramzan F, Vickers MH, Mithen RF. Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22095047. [PMID: 34068765 PMCID: PMC8126218 DOI: 10.3390/ijms22095047] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetics refers to the DNA chemistry changes that result in the modification of gene transcription and translation independently of the underlying DNA coding sequence. Epigenetic modifications are reported to involve various molecular mechanisms, including classical epigenetic changes affecting DNA methylation and histone modifications and small RNA-mediated processes, particularly that of microRNAs. Epigenetic changes are reversible and are closely interconnected. They are recognised to play a critical role as mediators of gene regulation, and any alteration in these mechanisms has been identified to mediate various pathophysiological conditions. Moreover, genetic predisposition and environmental factors, including dietary alterations, lifestyle or metabolic status, are identified to interact with the human epigenome, highlighting the importance of epigenetic factors as underlying processes in the aetiology of various diseases such as MetS. This review will reflect on how both the classical and microRNA-regulated epigenetic changes are associated with the pathophysiology of metabolic syndrome. We will then focus on the various aspects of epigenetic-based strategies used to modify MetS outcomes, including epigenetic diet, epigenetic drugs, epigenome editing tools and miRNA-based therapies.
Collapse
|
10
|
Di Palo A, Siniscalchi C, Polito R, Nigro E, Russo A, Daniele A, Potenza N. microRNA-377-3p downregulates the oncosuppressor T-cadherin in colorectal adenocarcinoma cells. Cell Biol Int 2021; 45:1797-1803. [PMID: 33818827 PMCID: PMC8360034 DOI: 10.1002/cbin.11605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Colorectal cancer (CRC) is the second leading cause of death of malignant tumors worldwide. Recent studies point to a role for the adiponectin‐receptor axis in colorectal carcinogenesis, and in particular to the oncosuppressive properties of the T‐cadherin receptor. In addition, the loss of T‐cadherin expression in tumor tissues has been linked to cancer progression and attributed to aberrant methylation of its promoter. Recognizing the pivotal role of microRNAs in CRC, this study explores their possible contribution to the downregulation of T‐cadherin. A systematic bioinformatics analysis, restricted by microRNA expression data in the colon or in cultured colorectal cell lines, predicted twelve top‐ranking target miRNA sites within the 3ʹ UTR of T‐cadherin. Experimental validation analyses based on luciferase reporter constructs and miRNA mimic or miRNA inhibitor transfections toward colorectal adenocarcinoma cell lines indicated that miR‐377‐3p was able to directly bind to the T‐cadherin sequence, and thus downregulating its expression. Given the oncogenic activity of miR‐377 and the oncosuppressive activity of T‐cadherin in CRC, the regulatory circuit highlighted in this study may add new insights into molecular mechanisms driving colorectal carcinogenesis, and perspectively it could be exploited to identify novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Armando Di Palo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Chiara Siniscalchi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Rita Polito
- CEINGE-Biotecnologie avanzate, Napoli, Italy
| | | | - Aniello Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| | - Aurora Daniele
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy.,CEINGE-Biotecnologie avanzate, Napoli, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "L. Vanvitelli", Caserta, Italy
| |
Collapse
|
11
|
Dai SH, Chen LJ, Qi WH, Ye CL, Zou GW, Liu WC, Yu BT, Tang J. microRNA-145 Inhibition Upregulates SIRT1 and Attenuates Autophagy in a Mouse Model of Lung Ischemia/Reperfusion Injury via NF-κB-dependent Beclin 1. Transplantation 2021; 105:529-539. [PMID: 32852406 DOI: 10.1097/tp.0000000000003435] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND MicroRNA-145 (miR-145) has been shown to play a critical role in ischemia/reperfusion (I/R) injury; however, the expression and function of miR-145 in lung I/R injury have not been reported yet. This study aimed to elucidate the potential effects of miR-145 in lung I/R injury. METHODS Lung I/R mice models and hypoxia/reoxygenation (H/R) pulmonary microvascular endothelial cell models were established. The expression of miR-145 and sirtuin 1 (SIRT1) was measured with reverse transcription-quantitative polymerase chain reaction and Western blot analysis in mouse lung tissue and cells. Artificial modulation of miR-145 and SIRT1 (downregulation) was done in I/R mice and H/R cells. Additionally, Pao2/FiO2 ratio, wet weight-to-dry weight ratio, and cell apoptosis in mouse lung tissues were determined by blood gas analyzer, electronic balance, and deoxyuridine triphosphate-biotin nick end-labeling assay, respectively. Autophagy marker Beclin 1 and LC3 expression, NF-κB acetylation levels, and autophagy bodies were detected in cell H/R and mouse I/R models by Western blot analysis. pulmonary microvascular endothelial cell apoptosis was detected with flow cytometry. RESULTS miR-145 was abundantly expressed in the lung tissue of mice and PMVECs following I/R injury. In addition, miR-145 directly targeted SIRT1, which led to significantly decreased Pao2/FiO2 ratio and increased wet weight-to-dry weight ratio, elevated acetylation levels and transcriptional activity of NF-κB, upregulated expressions of tumor necrosis factor-α, interleukins-6, and Beclin 1, autophagy bodies, cell apoptosis, as well as LC3-II/LC3I ratio. CONCLUSIONS In summary, miR-145 enhances autophagy and aggravates lung I/R injury by promoting NF-κB transcriptional activity via SIRT1 expression.
Collapse
Affiliation(s)
- Shao-Hua Dai
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lu-Jie Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wang-Hong Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chun-Lin Ye
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guo-Wen Zou
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei-Cheng Liu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ben-Tong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Heyn GS, Corrêa LH, Magalhães KG. The Impact of Adipose Tissue-Derived miRNAs in Metabolic Syndrome, Obesity, and Cancer. Front Endocrinol (Lausanne) 2020; 11:563816. [PMID: 33123088 PMCID: PMC7573351 DOI: 10.3389/fendo.2020.563816] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is a multifactorial and complex condition that is characterized by abnormal and excessive white adipose tissue accumulation, which can lead to the development of metabolic diseases, such as type 2 diabetes mellitus, nonalcoholic fatty liver disease, cardiovascular diseases, and several types of cancer. Obesity is characterized by excessive adipose tissue accumulation and associated with alterations in immunity, displaying a chronic low-grade inflammation profile. Adipose tissue is a dynamic and complex endocrine organ composed not only by adipocytes, but several immunological cells, which can secrete hormones, cytokines and many other factors capable of regulating metabolic homeostasis and several critical biological pathways. Remarkably, adipose tissue is a major source of circulating microRNAs (miRNAs), recently described as a novel form of adipokines. Several adipose tissue-derived miRNAs are deeply associated with adipocytes differentiation and have been identified with an essential role in obesity-associated inflammation, insulin resistance, and tumor microenvironment. During obesity, adipose tissue can completely change the profile of the secreted miRNAs, influencing circulating miRNAs and impacting the development of different pathological conditions, such as obesity, metabolic syndrome, and cancer. In this review, we discuss how miRNAs can act as epigenetic regulators affecting adipogenesis, adipocyte differentiation, lipid metabolism, browning of the white adipose tissue, glucose homeostasis, and insulin resistance, impacting deeply obesity and metabolic diseases. Moreover, we characterize how miRNAs can often act as oncogenic and tumor suppressor molecules, significantly modulating cancer establishment and progression. Furthermore, we highlight in this manuscript how adipose tissue-derived miRNAs can function as important new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Kelly Grace Magalhães
- Laboratory of Immunology and Inflammation, Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
13
|
Włodarski A, Strycharz J, Wróblewski A, Kasznicki J, Drzewoski J, Śliwińska A. The Role of microRNAs in Metabolic Syndrome-Related Oxidative Stress. Int J Mol Sci 2020; 21:ijms21186902. [PMID: 32962281 PMCID: PMC7555602 DOI: 10.3390/ijms21186902] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress (OxS) is the cause and the consequence of metabolic syndrome (MetS), the incidence and economic burden of which is increasing each year. OxS triggers the dysregulation of signaling pathways associated with metabolism and epigenetics, including microRNAs, which are biomarkers of metabolic disorders. In this review, we aimed to summarize the current knowledge regarding the interplay between microRNAs and OxS in MetS and its components. We searched PubMed and Google Scholar to summarize the most relevant studies. Collected data suggested that different sources of OxS (e.g., hyperglycemia, insulin resistance (IR), hyperlipidemia, obesity, proinflammatory cytokines) change the expression of numerous microRNAs in organs involved in the regulation of glucose and lipid metabolism and endothelium. Dysregulated microRNAs either directly or indirectly affect the expression and/or activity of molecules of antioxidative signaling pathways (SIRT1, FOXOs, Keap1/Nrf2) along with effector enzymes (e.g., GPx-1, SOD1/2, HO-1), ROS producers (e.g., NOX4/5), as well as genes of numerous signaling pathways connected with inflammation, insulin sensitivity, and lipid metabolism, thus promoting the progression of metabolic imbalance. MicroRNAs appear to be important epigenetic modifiers in managing the delicate redox balance, mediating either pro- or antioxidant biological impacts. Summarizing, microRNAs may be promising therapeutic targets in ameliorating the repercussions of OxS in MetS.
Collapse
Affiliation(s)
- Adam Włodarski
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Justyna Strycharz
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| | - Adam Wróblewski
- Department of Medical Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Jacek Kasznicki
- Department of Internal Diseases, Diabetology and Clinical Pharmacology, Medical University of Lodz, 92-213 Lodz, Poland;
| | - Józef Drzewoski
- Central Teaching Hospital of the Medical University of Lodz, 92-213 Lodz, Poland;
| | - Agnieszka Śliwińska
- Department of Nucleic Acid Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland
- Correspondence: (A.W.); (J.S.); (A.Ś.)
| |
Collapse
|
14
|
Zhao Z, Sun W, Guo Z, Zhang J, Yu H, Liu B. Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci 2020; 254:116900. [DOI: 10.1016/j.lfs.2019.116900] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
|
15
|
Zhang Y, Guo X, Pei J, Chu M, Ding X, Wu X, Liang C, Yan P. CircRNA Expression Profile during Yak Adipocyte Differentiation and Screen Potential circRNAs for Adipocyte Differentiation. Genes (Basel) 2020; 11:E414. [PMID: 32290214 PMCID: PMC7230347 DOI: 10.3390/genes11040414] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/26/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022] Open
Abstract
The yak (Bos grunniens) is subjected to nutritional deficiency during the whole winter grazing season; deciphering the adipose metabolism and energy homeostasis under cold and nutrients stress conditions could be a novel way to understand the specific mechanism of energy metabolism. Circular RNAs (circRNAs) have elucidated that they play a key role in many biological events, but the regulatory function of adipose development remains mostly unknown. Therefore, the expression pattern of circRNAs were identified for the first time during yak adipocyte differentiation to gain insight into their potential functional involvement in bovine adipogenesis. We detected 7203 circRNA candidates, most of them contained at least two exons, and multiple circRNA isoforms could be generated from one parental gene. Analysis of differential expression circRNAs displayed that 136 circRNAs were differentially expressed at day 12 (Ad) after adipocyte differentiation, compared with the control at day 0 (Pread 0), while 7 circRNAs were detected on day 2. Sanger sequencing validated that six circRNAs had head-to-tail junction, and quantitative real-time PCR (qPCR) results revealed that the expression patterns of ten circRNAs were consistent with their expression levels from RNA-sequencing (RNA-seq) data. We further predicted the networks of circRNA-miRNA-gene based on miRNAs sponging by circRNAs, in which genes were participated in the adipocyte differentiation-related signaling pathways. After that, we constructed several adipocyte differentiation-related ceRNAs and revealed six circRNAs (novel_circ_0009127, novel_circ_0000628, novel_circ_0011513, novel_circ_0010775, novel_circ_0006981 and novel_circ_0001494) were related to adipogenesis. Furthermore, we analyzed the homology among yak, human and mouse circRNAs and found that 3536 yak circRNAs were homologous to human and mouse circRNAs. In conclusion, these findings provide a solid basis for the investigation of yak adipocyte differentiation-related circRNAs and serve as a great reference to study the energy metabolism of high-altitude animals.
Collapse
Affiliation(s)
- Yongfeng Zhang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
| | - Xian Guo
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Jie Pei
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Min Chu
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Xuezhi Ding
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Xiaoyun Wu
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Chunnina Liang
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| | - Ping Yan
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;
- Key laboratory of yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (X.G.); (J.P.); (M.C.); (X.D.); (X.W.); (C.L.)
| |
Collapse
|
16
|
Cheng F, Yuan G, He J, Shao Y, Zhang J, Guo X. Aberrant expression of miR-214 is associated with obesity-induced insulin resistance as a biomarker and therapeutic. Diagn Pathol 2020; 15:18. [PMID: 32093712 PMCID: PMC7041268 DOI: 10.1186/s13000-019-0914-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Insulin resistance (IR) in obesity is associated with the occurrence of metabolic and cardiovascular diseases. Dipepidyl peptidase 4 (DPP4) plays a pivotal role during the development of IR, and was found to be a target gene of microRNA-214 (miR-214) in our study. This study sought to assess the expression and clinical value of miR-214 in obese patients with IR, and investigate its therapeutic potential in obese rats and adipocytes with IR. METHODS Serum expression of miR-214 in obese patients with or without IR was estimated by quantitative real-time-PCR. A receiver operating characteristic curve was plotted to evaluate the diagnostic value of miR-214 in the patients. Obesity-induced IR animal and cell models were constructed, and the therapeutic ability of miR-214 was explored. RESULTS Serum expression of miR-214 was decreased in obese patients compared with the healthy controls, and the lowest expression was observed in the cases with IR. Downregulation of miR-214 was significantly correlated with the serum DPP4 levels and HOMA-IR of the patients upon IR conditions, and was demonstrated to perform diagnostic accuracy for distinguishing obese patients with IR from those without IR. In obesity-associated IR animal and cell models, the downregulation of miR-214 was also been detected. According to the measurement of glucose and insulin tolerance and glucose uptake abilities, we found that the overexpression of miR-214 could be used to alleviate IR in the IR models, especially when collaboratively used with DPP4 inhibitor vildagliptin. CONCLUSION All data revealed that miR-214, as a regulator of DPP4, is decreased in obese patients with IR and may serve as a diagnostic biomarker. The upregulation of miR-214 could improve IR in obese rats and adipocytes, indicating that miR-214 has the therapeutic potential for obesity and IR.
Collapse
Affiliation(s)
- Fangxiao Cheng
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Geheng Yuan
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| | - Jiao He
- Department of Endocrinology, Baoding First Central Hispital, Baoding, 071000, Hebei Province, China
| | - Yimin Shao
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Junqing Zhang
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Xiaohui Guo
- Department of Endocrinology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
17
|
Wei B, Liu YS, Guan HX. MicroRNA-145-5p attenuates high glucose-induced apoptosis by targeting the Notch signaling pathway in podocytes. Exp Ther Med 2020; 19:1915-1924. [PMID: 32104249 DOI: 10.3892/etm.2020.8427] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/12/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) are considered to serve essential roles in podocyte apoptosis, and to be critical in the development of diabetic nephropathy (DN). Activation of the Notch signaling pathway has been demonstrated to serve an important role in DN development; however, its regulatory mechanisms are not fully understood. The present study used a high glucose (HG)-induced in vitro apoptosis model using mouse podocytes. Expression levels of miR-145-5p and its target, Notch1, and other key factors involved in the apoptosis signaling pathway were detected and measured by reverse transcription-quantitative PCR and western blotting. A luciferase reporter assay was performed to elucidate the miRNA-target interactions. The functions of miR-145-5p in apoptosis were detected using flow cytometry and TUNEL staining. The present study demonstrated that in HG conditions, miR-145-5p overexpression inhibited Notch1, Notch intracellular domain, Hes1 and Hey1 expression at the mRNA and protein levels. Notch1 was identified as a direct target of miR-145-5p. Furthermore, cleaved caspase-3, Bcl-2 and Bax levels were reduced significantly by miR-145-5p overexpression. These results indicate that miR-145-5p overexpression inhibited the Notch signaling pathway and podocyte lesions induced by HG. In conclusion, the results of the present study suggested that miR-145-5p may be a regulator of DN. Additionally, miR-145-5p inhibited HG-induced apoptosis by directly targeting Notch1 and dysregulating apoptotic factors, including cleaved caspase-3, Bcl-2 and Bax. The results of the present study provided evidence that miR-145-5p may offer a novel approach for the treatment of DN.
Collapse
Affiliation(s)
- Bing Wei
- Department of Endocrinology, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163411, P.R. China
| | - Yi-Song Liu
- Dental Department, Daqing Oil Field General Hospital, Daqing, Heilongjiang 163411, P.R. China
| | - Hai-Xia Guan
- Department of Endocrinology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
18
|
Xin M, Liang H, Wang H, Wen D, Wang L, Zhao L, Sun M, Wang J. Mirt2 functions in synergy with miR-377 to participate in inflammatory pathophysiology of Sjögren's syndrome. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2019; 47:2473-2480. [PMID: 31198060 DOI: 10.1080/21691401.2019.1626413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 01/08/2023]
Abstract
Background: The interaction of long non-coding RNAs (lncRNAs)-microRNAs (miRs) exerts crucial functions in mediating inflammatory reaction. It is still unclear whether myocardial infarction associated transcript 2 (Mirt2)-miR-377 mediates the inflammatory pathogenesis in Sjögren's syndrome (SS). Methods: The inflammatory lesion model was established by stimulating salivary gland epithelial cells (SGECs) by interferon gamma (IFN-γ). Mirt2- and/or miR-377-transfected SGECs, as well as their negative controls, were applied to investigate the biological functions in inflammation. Cell viability and apoptosis were examined using commercial kits. Western blot was applied to quantify protein level, and enzyme-linked immuno sorbent assay (ELISA) was used to value the secretion of cytokines. Results: The up-regulation of Mirt2 was observed in IFN-γ-treated SGECs. Mirt2 overexpression restored the expression of miR-377 which was repressed by IFN-γ. However, miR-377 silence abolished the protective effect on cell viability, inhibitory effect on apoptosis and prohibitive role in pro-inflammatory factors. Mirt2 diminished the phosphorylated expression of crucial regulators while miR-377 silence restored the phosphorylation in IFN-γ-treated SGECs. Conclusion: Mirt2 was elevated in IFN-γ-treated SGECs and then up-regulated miR-377 in response to inflammatory lesions. Mechanically, in synergy with miR-377 Mirt2 blocked IFN-γ-evoked activation of NF-κB and JAK/STAT signalling pathway.
Collapse
Affiliation(s)
- Miaomiao Xin
- a Department of Rheumatology and Immunology, The Affiliated Hospital of Qingdao University , Shandong , China
| | - Hongda Liang
- a Department of Rheumatology and Immunology, The Affiliated Hospital of Qingdao University , Shandong , China
| | - Hongyue Wang
- a Department of Rheumatology and Immunology, The Affiliated Hospital of Qingdao University , Shandong , China
| | - Dawei Wen
- a Department of Rheumatology and Immunology, The Affiliated Hospital of Qingdao University , Shandong , China
| | - Liqin Wang
- a Department of Rheumatology and Immunology, The Affiliated Hospital of Qingdao University , Shandong , China
| | - Lei Zhao
- a Department of Rheumatology and Immunology, The Affiliated Hospital of Qingdao University , Shandong , China
| | - Mingshu Sun
- a Department of Rheumatology and Immunology, The Affiliated Hospital of Qingdao University , Shandong , China
| | - Jibo Wang
- a Department of Rheumatology and Immunology, The Affiliated Hospital of Qingdao University , Shandong , China
| |
Collapse
|
19
|
Li N, Wang LJ, Xu WL, Liu S, Yu JY. MicroRNA‑379‑5p suppresses renal fibrosis by regulating the LIN28/let‑7 axis in diabetic nephropathy. Int J Mol Med 2019; 44:1619-1628. [PMID: 31485601 PMCID: PMC6777678 DOI: 10.3892/ijmm.2019.4325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) play an important role in pathological processes in diabetic nephropathy (DN). This study aimed to explore whether miR‑379‑5p is associated with renal fibrosis in DN and to elucidate the underlying mechanisms. In vitro experiments indicated that miR‑379‑5p expression was downregulated by high glucose (HG) treatment in mouse mesangial cells (MMCs). Transfection with miR‑379‑5p mimics suppressed the proliferation and the accumulation of extracellular matrix (ECM) components, which were promoted by HG treatment. LIN28B was proven to be a direct target of miR‑379‑5p by luciferase report assay. In addition, the loss of expression of LIN28B, as well as the decrease in cell proliferation and in the accumulation of ECM components, which were induced by the knockdown of LIN28B, were attenuated in the MMCs following transfection with miR‑379‑5p inhibitors. Furthermore, type 2 diabetic db/db mice were used to examine the efficiency of miR‑379‑5p agomir in the alleviation of renal fibrosis. Consistent with the results of the in vitro experiments, miR‑379‑5p agomir suppressed mesangial cell proliferation and the accumulation of ECM components by regulating the LIN28B/let‑7 pathway. Taken together, the findings of this study suggest that miR‑379‑5p is highly involved in renal fibrosis in DN, and that it may be a potential effective therapeutic target for DN.
Collapse
Affiliation(s)
| | | | - Wei-Long Xu
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Su Liu
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| | - Jiang-Yi Yu
- Department of Endocrinology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
20
|
Lipidomic Analysis of the Protective Effects of Shenling Baizhu San on Non-Alcoholic Fatty Liver Disease in Rats. Molecules 2019; 24:molecules24213943. [PMID: 31683679 PMCID: PMC6864612 DOI: 10.3390/molecules24213943] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Shenling Baizhu San (SLBZS), a famous traditional Chinese medicine, has been demonstrated to exert protective effects against non-alcoholic fatty liver disease (NAFLD), but its exact mechanisms have not been well understood. The aim of this study was to investigate the mechanisms underlying the protective effects of SLBZS in a rat model of NAFLD using lipidomics and to evaluate the role of Sirtuin 1 (SIRT1) in the mechanism of SLBZS against NAFLD. The rat model of NAFLD was induced by high-fat feeding. An ultra-performance liquid chromatography-mass spectrometry (UHPLC-MS)-based untargeted lipidomics approach was applied to analyze hepatic lipid alterations, and the SIRT1-selective inhibitor EX 527 was used to inhibit SIRT expression in the liver. The results of body and biochemical parameters, as well as histological changes, indicated that SLBZS administration exerted protective effects against NAFLD. Lipidomic analysis showed that 30 lipid species were effectively regulated by SLBZS administration in rats fed a high-fat diet. Pathway analysis indicated that glycerophospholipid metabolism and glycerolipid metabolism were potential target pathways closely involved in the mechanism of SLBZS against NAFLD. Moreover, the beneficial effects of SLBZS on hepatic steatosis, some biochemical parameters and hepatic lipid species were partly diminished by SIRT1 inhibition. In conclusion, our results suggested that SLBZS administration could effectively alter some hepatic lipid species in rats fed a high-fat diet, which was mainly associated with the regulation of glycerophospholipid and glycerolipid metabolism. Furthermore, the beneficial effects of SLBZS on hepatic lipid metabolism may be at least partly attributed to SIRT1 activation in the liver.
Collapse
|
21
|
Peng J, Xiong J, Cui C, Huang N, Zhang H, Wu X, Yang Y, Zhou Y, Wei H, Peng J. Maternal Eicosapentaenoic Acid Feeding Decreases Placental Lipid Deposition and Improves the Homeostasis of Oxidative Stress Through a Sirtuin-1 (SIRT1) Independent Manner. Mol Nutr Food Res 2019; 63:e1900343. [PMID: 31408587 DOI: 10.1002/mnfr.201900343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/01/2019] [Indexed: 12/24/2022]
Abstract
SCOPE Maternal obesity has been associated with increased placental lipotoxicity and impaired mitochondrial function. Sirtuin-1 (SIRT1) is an important regulator of both lipid metabolism and mitochondrial biogenesis. The present study aims to determine whether supplementation of the maternal diet with eicosapentaenoic acid (EPA) can decrease placental lipid deposition and improve antioxidant ability, in a SIRT1-dependent manner. METHODS AND RESULTS Pregnant SIRT1+/- mice (mated with male SIRT1+/- ) are fed a high-fat diet consisting of 60% of the kcal from fat, or an equienergy EPA diet for 18.5 d. Supplementation with EPA significantly changes maternal plasma, placental and fetal fatty acid composition, and decreases placental and fetal lipid content. In addition, placental antioxidant capacity and lipid peroxidation products are increased, placental uncoupling protein 1 (UCP1) and PPARγ coactivator-1 α (PGC1α) expression are activated, and mitochondrial swelling decreases. While SIRT1 deficiency has little effect on placental fatty acid composition and lipid content, decreased fetal lipid deposition is observed, placental PGC1α expression decreases, mitochondrial swelling increases, and placental total superoxide dismutase (T-SOD) activity increases. Both EPA and SIRT1 have no effect on BODIPY-FL-C16 uptake. Interestingly, there is no significant interaction between diet and genotype. CONCLUSION Maternal EPA feeding decreases placental lipid deposition and improves placental oxidative stress homeostasis independent of SIRT1.
Collapse
Affiliation(s)
- Jie Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Jia Xiong
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Chenbin Cui
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Ningning Huang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Hong Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - XiaoYu Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yang Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, P. R. China
| |
Collapse
|
22
|
Engin AB, Engin A, Gonul II. The effect of adipocyte-macrophage crosstalk in obesity-related breast cancer. J Mol Endocrinol 2019; 62:R201-R222. [PMID: 30620711 DOI: 10.1530/jme-18-0252] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022]
Abstract
Adipose tissue is the primary source of many pro-inflammatory cytokines in obesity. Macrophage numbers and pro-inflammatory gene expression are positively associated with adipocyte size. Free fatty acid and tumor necrosis factor-α involve in a vicious cycle between adipocytes and macrophages aggravating inflammatory changes. Thereby, M1 macrophages form a characteristic 'crown-like structure (CLS)' around necrotic adipocytes in obese adipose tissue. In obese women, CLSs of breast adipose tissue are responsible for both increase in local aromatase activity and aggressive behavior of breast cancer cells. Interlinked molecular mechanisms between adipocyte-macrophage-breast cancer cells in obesity involve seven consecutive processes: Excessive release of adipocyte- and macrophage-derived inflammatory cytokines, TSC1-TSC2 complex-mTOR crosstalk, insulin resistance, endoplasmic reticulum (ER) stress and excessive oxidative stress generation, uncoupled respiration and hypoxia, SIRT1 controversy, the increased levels of aromatase activity and estrogen production. Considering elevated risks of estrogen receptor (E2R)-positive postmenopausal breast cancer growth in obesity, adipocyte-macrophage crosstalk is important in the aforementioned issues. Increased mTORC1 signaling in obesity ensures the strong activation of oncogenic signaling in E2Rα-positive breast cancer cells. Since insulin and insulin-like growth factors have been identified as tumor promoters, hyperinsulinemia is an independent risk factor for poor prognosis in breast cancer despite peripheral insulin resistance. The unpredictable effects of adipocyte-derived leptin-estrogen-macrophage axis, and sirtuin 1 (SIRT1)-adipose-resident macrophage axis in obese postmenopausal patients with breast cancer are unresolved mechanistic gaps in the molecular links between the tumor growth and adipocytokines.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Ipek Isik Gonul
- Department of Pathology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
23
|
Landers-Ramos RQ, Sapp RM, Shill DD, Hagberg JM, Prior SJ. Exercise and Cardiovascular Progenitor Cells. Compr Physiol 2019; 9:767-797. [PMID: 30892694 DOI: 10.1002/cphy.c180030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autologous stem/progenitor cell-based methods to restore blood flow and function to ischemic tissues are clinically appealing for the substantial proportion of the population with cardiovascular diseases. Early preclinical and case studies established the therapeutic potential of autologous cell therapies for neovascularization in ischemic tissues. However, trials over the past ∼15 years reveal the benefits of such therapies to be much smaller than originally estimated and a definitive clinical benefit is yet to be established. Recently, there has been an emphasis on improving the number and function of cells [herein generally referred to as circulating angiogenic cells (CACs)] used for autologous cell therapies. CACs include of several subsets of circulating cells, including endothelial progenitor cells, with proangiogenic potential that is largely exerted through paracrine functions. As exercise is known to improve CV outcomes such as angiogenesis and endothelial function, much attention is being given to exercise to improve the number and function of CACs. Accordingly, there is a growing body of evidence that acute, short-term, and chronic exercise have beneficial effects on the number and function of different subsets of CACs. In particular, recent studies show that aerobic exercise training can increase the number of CACs in circulation and enhance the function of isolated CACs as assessed in ex vivo assays. This review summarizes the roles of different subsets of CACs and the effects of acute and chronic exercise on CAC number and function, with a focus on the number and paracrine function of circulating CD34+ cells, CD31+ cells, and CD62E+ cells. © 2019 American Physiological Society. Compr Physiol 9:767-797, 2019.
Collapse
Affiliation(s)
- Rian Q Landers-Ramos
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA.,Education and Clinical Center, Baltimore Veterans Affairs Geriatric Research, Baltimore, Maryland, USA.,University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| | - Ryan M Sapp
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - Daniel D Shill
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - James M Hagberg
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA
| | - Steven J Prior
- University of Maryland School of Public Health, Department of Kinesiology, College Park, Maryland, USA.,Education and Clinical Center, Baltimore Veterans Affairs Geriatric Research, Baltimore, Maryland, USA.,University of Maryland School of Medicine, Department of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Quan M, Lv Y, Dai Y, Qi B, Fu L, Chen X, Qian Y. Tanshinone IIA protects against lipopolysaccharide-induced lung injury through targeting Sirt1. J Pharm Pharmacol 2019; 71:1142-1151. [PMID: 30868609 DOI: 10.1111/jphp.13087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/17/2019] [Indexed: 12/11/2022]
Abstract
Abstract
Objectives
This study was designed to investigate the effects and the mechanism of Tanshinone IIA (TIIA) on endotoxic shock-induced lung injury in a mouse model.
Methods
Mice were administered intraperitoneally with TIIA (10 mg/kg) 0.5 h before lipopolysaccharide (LPS) challenge and then received additional injections every 24 h during the 3-day experimental period. The physiological indexes, the survival rate and the parameters for lung injury were examined. The protein levels of Sirt1, and the acetylation and activation of NF-κB p65 were determined. The expression and secretion of pro-inflammatory factors were evaluated, respectively.
Key findings
Treatment with TIIA significantly improved physiological indexes and increased the survival rate of mice in response to LPS challenge. TIIA treatment displayed an obvious up-regulation of Sirt1 protein, in accompany with reduced acetylation and activation of NF-κB p65 following LPS stimulation. In addition, TIIA attenuated LPS-induced lung injury and prevented the expression and secretion of pro-inflammatory factors. However, the protective effects of TIIA were abolished by Sirt1 inhibitor.
Conclusions
Tanshinone IIA prevents LPS-induced secretion of pro-inflammatory cytokines thus exerts protective effects against acute lung injury, probably via modulation of Sirt1/NF-κB signalling pathway.
Collapse
Affiliation(s)
- Minxue Quan
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Yanni Lv
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Dai
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Biying Qi
- The Second Clinical Medical School, Nanchang University, Nanchang, China
| | - Longsheng Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuanying Chen
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yisong Qian
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
25
|
Wang W, Sun W, Cheng Y, Xu Z, Cai L. Role of sirtuin-1 in diabetic nephropathy. J Mol Med (Berl) 2019; 97:291-309. [PMID: 30707256 PMCID: PMC6394539 DOI: 10.1007/s00109-019-01743-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/29/2018] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
Diabetic nephropathy (DN) is a research priority for scientists around the world because of its high prevalence and poor prognosis. Although several mechanisms have been shown to be involved in its pathogenesis and many useful drugs have been developed, the management of DN remains challenging. Increasing amounts of evidence show that silent information regulator 2 homolog 1 (sirtuin-1), a nicotinamide adenine dinucleotide (NAD+)–dependent protein deacetylase, plays a crucial role in the pathogenesis and development of DN. Clinical data show that gene polymorphisms of sirtuin-1 affect patient vulnerability to DN. In addition, upregulation of sirtuin-1 attenuates DN in various experimental models of diabetes and in renal cells, including podocytes, mesangial cells, and renal proximal tubular cells, incubated with high concentrations of glucose or advanced glycation end products. Mechanistically, sirtuin-1 has its renoprotective effects by modulating metabolic homeostasis and autophagy, resisting apoptosis and oxidative stress, and inhibiting inflammation through deacetylation of histones and the transcription factors p53, forkhead box group O, nuclear factor-κB, hypoxia-inducible factor-1α, and others. Furthermore, some microRNAs have been implicated in the progression of DN because they target sirtuin-1 mRNA. Several synthetic drugs and natural compounds have been identified that upregulate the expression and activity of sirtuin-1, which protects against DN. The present review will summarize advances in knowledge regarding the role of sirtuin-1 in the pathogenesis of DN. The available evidence implies that sirtuin-1 has great potential as a clinical target for the prevention and treatment of diabetes.
Collapse
Affiliation(s)
- Wanning Wang
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021 Jilin Province China
- Pediatric Research Institute, Department of Pediatrics, The University of Louisville School of Medicine, Louisville, KY 40292 USA
| | - Weixia Sun
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021 Jilin Province China
| | - Yanli Cheng
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021 Jilin Province China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021 Jilin Province China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, The University of Louisville School of Medicine, Louisville, KY 40292 USA
- Departments of Radiation Oncology, Pharmacology and Toxicology, The University of Louisville School of Medicine, 570 S. Preston Str., Baxter I, Suite 304F, Louisville, KY 40292 USA
| |
Collapse
|
26
|
Jin Y, Wang J, Zhang M, Zhang S, Lei C, Chen H, Guo W, Lan X. Role of bta‐miR‐204 in the regulation of adipocyte proliferation, differentiation, and apoptosis. J Cell Physiol 2019; 234:11037-11046. [DOI: 10.1002/jcp.27928] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/25/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Yunyun Jin
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Jian Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Meng Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Sihuan Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| | - Wei Guo
- Department of Animal Science College of Agriculture and Natural Resources University of Wyoming Laramie Wyoming
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture College of Animal Science and Technology Northwest A&F University Yangling Shaanxi People's Republic of China
| |
Collapse
|
27
|
A New Insight into the Roles of MiRNAs in Metabolic Syndrome. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7372636. [PMID: 30648107 PMCID: PMC6311798 DOI: 10.1155/2018/7372636] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/28/2018] [Indexed: 12/13/2022]
Abstract
Metabolic syndrome (MetS), which includes several clinical components such as abdominal obesity, insulin resistance (IR), dyslipidemia, microalbuminuria, hypertension, proinflammatory state, and oxidative stress (OS), has become a global epidemic health issue contributing to a high risk of type 2 diabetes mellitus (T2DM). In recent years, microRNAs (miRNAs), used as noninvasive biomarkers for diagnosis and therapy, have aroused global interest in complex processes in health and diseases, including MetS and its components. MiRNAs can exist stably in serum, liver, skeletal muscle (SM), heart muscle, adipose tissue (AT), and βcells, because of their ability to escape the digestion of RNase. Here we first present an overall review on recent findings of the relationship between miRNAs and several main components of MetS, such as IR, obesity, diabetes, lipid metabolism, hypertension, hyperuricemia, and stress, to illustrate the targeting proteins or relevant pathways that are involved in the progress of MetS and also help us find promising novel diagnostic and therapeutic strategies.
Collapse
|
28
|
Peng J, Zhou Y, Hong Z, Wu Y, Cai A, Xia M, Deng Z, Yang Y, Song T, Xiong J, Wei H, Peng J. Maternal eicosapentaenoic acid feeding promotes placental angiogenesis through a Sirtuin-1 independent inflammatory pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:147-157. [PMID: 30445165 DOI: 10.1016/j.bbalip.2018.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/21/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022]
Abstract
Maternal overnutrition or obesity is associated with a wide range of metabolic disorders and may impair placental angiogenesis. Previous studies have shown that n-3 polyunsaturated fatty acids (PUFA) promote fetal growth in both rodents and humans. Whether n-3 PUFA impacts on placental angiogenesis in vivo remains unclear. Sirtuin-1 (SIRT1) is a protein deacetylase that plays an important role in regulating inflammation and endothelial function. Little information is available on a putative role of SIRT1 in placental angiogenesis. The goal of this study was to examine the capability of eicosapentaenoic acid (EPA) to regulate angiogenesis and inflammation in SIRT1-deficient placentas. In the present study, male and female SIRT1+/- mice were mated overnight, then primiparous SIRT1+/- mice were fed a 60% kcal HFD or equienergy EPA diet (4.4% EPA-ethyl ester). We found that the EPA diet significantly improved maternal insulin sensitivity and decreased plasma levels of inflammatory factors IL-6 and TNFα concentration. Moreover, EPA treatment promoted fetus growth and placental angiogenesis, and inhibited the hypoxia inducible factor-1α(HIF1α) pathway. SIRT1 deficiency exhibited an opposite effect, leading to decrease in placental angiogenesis and fetal weight. No significant effect was observed between diet and genotype. Here, we reported for the first time that EPA treatment increased the expression of placental inflammatory genes and promoted translocation of NFκB into the nucleus. On the contrary, SIRT1-deficient placentas showed a decreased inflammation state. Together, these data demonstrate a previously unknown role of EPA to promote placental angiogenesis through a SIRT1 independent inflammatory pathway.
Collapse
Affiliation(s)
- Jie Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhang Hong
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yinghui Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Anle Cai
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mao Xia
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhao Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yang Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jia Xiong
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China.
| |
Collapse
|
29
|
LncRNA NEAT1 facilitates survival and angiogenesis in oxygen-glucose deprivation (OGD)-induced brain microvascular endothelial cells (BMECs) via targeting miR-377 and upregulating SIRT1, VEGFA, and BCL-XL. Brain Res 2018; 1707:90-98. [PMID: 30408478 DOI: 10.1016/j.brainres.2018.10.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/25/2018] [Accepted: 10/28/2018] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The present study was designed to investigate the mechanism by which lncRNA NEAT1 regulates survival and angiogenesis in oxygen-glucose deprivation (OGD)-induced brain microvascular endothelial cells (BMECs). METHODS OGD-treated BMECs were used to mimic cerebral ischaemia in vitro. The expression of lncRNA NEAT1 and miR-377 and proteins including VEGFA, SIRT1, and BCL-XL were measured by real-time quantitative PCR (qRT-PCR) and western blot, respectively. Cell viability and caspase 3 activity of BMECs under different conditions were determined using MTT and caspase activity assays, respectively. Matrigel-based angiogenesis assays were employed to evaluate the effect of lncRNA NEAT1 on angiogenesis. A dual-luciferase reporter assay was used to validate direct binding of miR-377 to putative targets. RESULTS OGD exposure reduced the cell viability of BMECs. Upregulation of lncRNA NEAT1 and downregulation of miR-377 were also observed under OGD conditions. Knockdown of lncRNA NEAT1 inhibited angiogenesis and aggravated apoptosis in OGD-induced BMECs. Meanwhile, the expression level of miR-377 was upregulated while its downstream targets (VEGFA, SIRT1, and BCL-XL) were downregulated after lncRNA NEAT1 knockdown. Furthermore, miR-377 inhibited the angiogenesis and survival of OGD-induced BMECs. The expression of VEGFA, SIRT1, and BCL-XL were all attenuated by miR-377 overexpression. The dual-luciferase reporter assay proved miR-377 targeted the 3' UTR sequences of lncRNA NEAT1, VEGFA, SIRT1, and BCL-XL. CONCLUSION lncRNA NEAT1 facilitated the survival and angiogenesis of OGD-induced BMECs via targeting miR-377 and promoting the expression of VEGFA, SIRT1, and BCL-XL, suggesting that lncRNA NEAT1 could be a promising target for cerebral ischaemia treatment.
Collapse
|
30
|
Mafi A, Aghadavod E, Mirhosseini N, Mobini M, Asemi Z. The effects of expression of different microRNAs on insulin secretion and diabetic nephropathy progression. J Cell Physiol 2018; 234:42-50. [DOI: 10.1002/jcp.26895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Alireza Mafi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| | | | - Moein Mobini
- Kinesiology Department University of Calgary Calgary Alberta Canada
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases Kashan University of Medical Sciences Kashan Iran
| |
Collapse
|
31
|
Li X, Yang Y, Yan R, Xu X, Gao L, Mei J, Liu J, Wang X, Zhang J, Wu P, Li W, Zhao Z, Xiong J, Wang T. miR-377-3p regulates adipogenic differentiation of human bone marrow mesenchymal stem cells by regulating LIFR. Mol Cell Biochem 2018; 449:295-303. [DOI: 10.1007/s11010-018-3366-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/17/2018] [Indexed: 11/25/2022]
|
32
|
Peng J, Zhou Y, Deng Z, Zhang H, Wu Y, Song T, Yang Y, Wei H, Peng J. miR-221 negatively regulates inflammation and insulin sensitivity in white adipose tissue by repression of sirtuin-1 (SIRT1). J Cell Biochem 2018; 119:6418-6428. [PMID: 29236311 DOI: 10.1002/jcb.26589] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022]
Abstract
It is well known that obesity-induced white adipose tissue inflammation is an important reason for insulin-resistance and type 2 diabetes mellitus. Sirtuin-1 (SIRT1) is an important regulator of inflammtion response pathways in white adipose tissue. Here, we found that miR-221 negatively regulated SIRT1 in white adipose tissue during inflammation and HFD-induced obesity. MiR-221 is a putative oncogene which has been found overexpressed in a number of human tumors. Recently, it has also found that miR-221 was increased in obese adipose tissue and may be involved in inflammation and insulin-resistance. However the specific mechanism remains to be elucidated. In our present study, we found that overexpression of miR-221 decreased the protein abundance of SIRT1 and caused inflammation and insulin-resistance in differentiated 3T3-L1 cells. Conversely, miR-221 inhibition increased the protein levels, ameliorated inflammation, and improved insulin sensitivity. Moreover, inhibition of SIRT1 by EX527 significantly diminished the downregulation of the inflammation and insulin-resistance levels induced by the miR-221 inhibitor. In conclusion, our data suggest that miR-221 promotes white adipose tissue inflammation and decreases insulin sensitivity in obesity, at least in part, through suppressing SIRT1.
Collapse
Affiliation(s)
- Jie Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yuanfei Zhou
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Zhao Deng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Hong Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yinghui Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Yang Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, P. R. China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, P. R. China
| |
Collapse
|
33
|
Qian Y, Xin Z, Lv Y, Wang Z, Zuo L, Huang X, Li Y, Xin HB. Asiatic acid suppresses neuroinflammation in BV2 microgliaviamodulation of the Sirt1/NF-κB signaling pathway. Food Funct 2018; 9:1048-1057. [DOI: 10.1039/c7fo01442b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asiatic acid promotes Sirt1 expression and inhibits NF-κB-induced microglia activation.
Collapse
Affiliation(s)
- Yisong Qian
- Institute of Translational Medicine
- Nanchang University
- Nanchang 330031
- PR China
| | - Zhaochen Xin
- Institute of Translational Medicine
- Nanchang University
- Nanchang 330031
- PR China
| | - Yanni Lv
- Department of Pharmacy
- The First Affiliated Hospital of Nanchang University
- Nanchang 330006
- China
| | - Ziwei Wang
- Institute of Translational Medicine
- Nanchang University
- Nanchang 330031
- PR China
| | - Li Zuo
- Institute of Translational Medicine
- Nanchang University
- Nanchang 330031
- PR China
| | - Xiang Huang
- Institute of Translational Medicine
- Nanchang University
- Nanchang 330031
- PR China
| | - Yunman Li
- Department of Physiology
- China Pharmaceutical University
- Nanjing 210009
- PR China
| | - Hong-Bo Xin
- Institute of Translational Medicine
- Nanchang University
- Nanchang 330031
- PR China
| |
Collapse
|