1
|
Kharouf N, Flanagan TW, Alamodi AA, Al Hmada Y, Hassan SY, Shalaby H, Santourlidis S, Hassan SL, Haikel Y, Megahed M, Brodell RT, Hassan M. CD133-Dependent Activation of Phosphoinositide 3-Kinase /AKT/Mammalian Target of Rapamycin Signaling in Melanoma Progression and Drug Resistance. Cells 2024; 13:240. [PMID: 38334632 PMCID: PMC10854812 DOI: 10.3390/cells13030240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Melanoma frequently harbors genetic alterations in key molecules leading to the aberrant activation of PI3K and its downstream pathways. Although the role of PI3K/AKT/mTOR in melanoma progression and drug resistance is well documented, targeting the PI3K/AKT/mTOR pathway showed less efficiency in clinical trials than might have been expected, since the suppression of the PI3K/mTOR signaling pathway-induced feedback loops is mostly associated with the activation of compensatory pathways such as MAPK/MEK/ERK. Consequently, the development of intrinsic and acquired resistance can occur. As a solid tumor, melanoma is notorious for its heterogeneity. This can be expressed in the form of genetically divergent subpopulations including a small fraction of cancer stem-like cells (CSCs) and non-cancer stem cells (non-CSCs) that make the most of the tumor mass. Like other CSCs, melanoma stem-like cells (MSCs) are characterized by their unique cell surface proteins/stemness markers and aberrant signaling pathways. In addition to its function as a robust marker for stemness properties, CD133 is crucial for the maintenance of stemness properties and drug resistance. Herein, the role of CD133-dependent activation of PI3K/mTOR in the regulation of melanoma progression, drug resistance, and recurrence is reviewed.
Collapse
Affiliation(s)
- Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | | | - Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Hernandez-Lara MA, Yadav SK, Conaway S, Shah SD, Penn RB, Deshpande DA. Crosstalk between diacylglycerol kinase and protein kinase A in the regulation of airway smooth muscle cell proliferation. Respir Res 2023; 24:155. [PMID: 37301818 PMCID: PMC10257838 DOI: 10.1186/s12931-023-02465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Diacylglycerol kinase (DGK) regulates intracellular signaling and functions by converting diacylglycerol (DAG) into phosphatidic acid. We previously demonstrated that DGK inhibition attenuates airway smooth muscle (ASM) cell proliferation, however, the mechanisms mediating this effect are not well established. Given the capacity of protein kinase A (PKA) to effect inhibition of ASM cells growth in response to mitogens, we employed multiple molecular and pharmacological approaches to examine the putative role of PKA in the inhibition of mitogen-induced ASM cell proliferation by the small molecular DGK inhibitor I (DGK I). METHODS We assayed cell proliferation using CyQUANT™ NF assay, protein expression and phosphorylation using immunoblotting, and prostaglandin E2 (PGE2) secretion by ELISA. ASM cells stably expressing GFP or PKI-GFP (PKA inhibitory peptide-GFP chimera) were stimulated with platelet-derived growth factor (PDGF), or PDGF + DGK I, and cell proliferation was assessed. RESULTS DGK inhibition reduced ASM cell proliferation in cells expressing GFP, but not in cells expressing PKI-GFP. DGK inhibition increased cyclooxygenase II (COXII) expression and PGE2 secretion over time to promote PKA activation as demonstrated by increased phosphorylation of (PKA substrates) VASP and CREB. COXII expression and PKA activation were significantly decreased in cells pre-treated with pan-PKC (Bis I), MEK (U0126), or ERK2 (Vx11e) inhibitors suggesting a role for PKC and ERK in the COXII-PGE2-mediated activation of PKA signaling by DGK inhibition. CONCLUSIONS Our study provides insight into the molecular pathway (DAG-PKC/ERK-COXII-PGE2-PKA) regulated by DGK in ASM cells and identifies DGK as a potential therapeutic target for mitigating ASM cell proliferation that contributes to airway remodeling in asthma.
Collapse
Affiliation(s)
- Miguel A. Hernandez-Lara
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Santosh Kumar Yadav
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Stanley Conaway
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Sushrut D. Shah
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Raymond B. Penn
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Deepak A. Deshpande
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107 USA
| |
Collapse
|
3
|
Peng S, Fu Y. FYN: emerging biological roles and potential therapeutic targets in cancer. J Transl Med 2023; 21:84. [PMID: 36740671 PMCID: PMC9901160 DOI: 10.1186/s12967-023-03930-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/25/2023] [Indexed: 02/07/2023] Open
Abstract
Src family protein kinases (SFKs) play a key role in cell adhesion, invasion, proliferation, survival, apoptosis, and angiogenesis during tumor development. In humans, SFKs consists of eight family members with similar structure and function. There is a high level of overexpression or hyperactivity of SFKs in tumor, and they play an important role in multiple signaling pathways involved in tumorigenesis. FYN is a member of the SFKs that regulate normal cellular processes. Additionally, FYN is highly expressed in many cancers and promotes cancer growth and metastasis through diverse biological functions such as cell growth, apoptosis, and motility migration, as well as the development of drug resistance in many tumors. Moreover, FYN is involved in the regulation of multiple cancer-related signaling pathways, including interactions with ERK, COX-2, STAT5, MET and AKT. FYN is therefore an attractive therapeutic target for various tumor types, and suppressing FYN can improve the prognosis and prolong the life of patients. The purpose of this review is to provide an overview of FYN's structure, expression, upstream regulators, downstream substrate molecules, and biological functions in tumors.
Collapse
Affiliation(s)
- SanFei Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
4
|
Johnson CN, Arsenault RJ, Piva A, Grilli E, Swaggerty CL. A microencapsulated feed additive containing organic acids and botanicals has a distinct effect on proliferative and metabolic related signaling in the jejunum and ileum of broiler chickens. Front Physiol 2023; 14:1147483. [PMID: 37035681 PMCID: PMC10075360 DOI: 10.3389/fphys.2023.1147483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Well designed and formulated natural feed additives have the potential to provide many of the growth promoting and disease mitigating characteristics of in-feed antibiotics, particularly feed additives that elicit their effects on targeted areas of the gut. Here, we describe the mechanism of action of a microencapsulated feed additive containing organic acids and botanicals (AviPlus®P) on the jejunum and ileum of 15-day-old broiler-type chickens. Day-of-hatch chicks were provided ad libitum access to feed containing either 0 or 500 g/MT of the feed additive for the duration of the study. Fifteen days post-hatch, birds were humanely euthanized and necropsied. Jejunum and ileum tissue samples were collected and either flash frozen or stored in RNA-later as appropriate for downstream applications. Chicken-specific kinome peptide array analysis was conducted on the jejunum and ileum tissues, comparing the tissues from the treated birds to those from their respective controls. Detailed analysis of peptides representing individual kinase target sites revealed that in the ileum there was a broad increase in the signal transduction pathways centering on activation of HIF-1α, AMPK, mTOR, PI3K-Akt and NFκB. These signaling responses were largely decreased in the jejunum relative to control birds. Gene expression analysis agrees with the kinome data showing strong immune gene expression in the ileum and reduced expression in the jejunum. The microencapsulated blend of organic acids and botanicals elicit a more anti-inflammatory phenotype and reduced signaling in the jejunum while resulting in enhanced immunometabolic responses in the ileum.
Collapse
Affiliation(s)
- Casey N. Johnson
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Ryan J. Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | - Andrea Piva
- DIMEVET, University of Bologna, Bologna, Italy
- Vetagro S.p.A, Reggio Emilia, Italy
| | - Ester Grilli
- DIMEVET, University of Bologna, Bologna, Italy
- Vetagro Inc., Chicago, IL, United States
| | - Christina L. Swaggerty
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
- *Correspondence: Christina L. Swaggerty,
| |
Collapse
|
5
|
Martin Vázquez E, Cobo-Vuilleumier N, Araujo Legido R, Marín-Cañas S, Nola E, Dorronsoro A, López Bermudo L, Crespo A, Romero-Zerbo SY, García-Fernández M, Martin Montalvo A, Rojas A, Comaills V, Bérmudez-Silva FJ, Gannon M, Martin F, Eizirik D, Lorenzo PI, Gauthier BR. NR5A2/LRH-1 regulates the PTGS2-PGE 2-PTGER1 pathway contributing to pancreatic islet survival and function. iScience 2022; 25:104345. [PMID: 35602948 PMCID: PMC9117883 DOI: 10.1016/j.isci.2022.104345] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
LRH-1/NR5A2 is implicated in islet morphogenesis postnatally, and its activation using the agonist BL001 protects islets against apoptosis, reverting hyperglycemia in mouse models of Type 1 Diabetes Mellitus. Islet transcriptome profiling revealed that the expression of PTGS2/COX2 is increased by BL001. Herein, we sought to define the role of LRH-1 in postnatal islet morphogenesis and chart the BL001 mode of action conferring beta cell protection. LRH-1 ablation within developing beta cells impeded beta cell proliferation, correlating with mouse growth retardation, weight loss, and hypoglycemia leading to lethality. LRH-1 deletion in adult beta cells abolished the BL001 antidiabetic action, correlating with beta cell destruction and blunted Ptgs2 induction. Islet PTGS2 inactivation led to reduced PGE2 levels and loss of BL001 protection against cytokines as evidenced by increased cytochrome c release and cleaved-PARP. The PTGER1 antagonist-ONO-8130-negated BL001-mediated islet survival. Our results define the LRH-1/PTGS2/PGE2/PTGER1 signaling axis as a key pathway mediating BL001 survival properties.
Collapse
Affiliation(s)
- Eugenia Martin Vázquez
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Nadia Cobo-Vuilleumier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Raquel Araujo Legido
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Sandra Marín-Cañas
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Emanuele Nola
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Akaitz Dorronsoro
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Lucia López Bermudo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Alejandra Crespo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Silvana Y. Romero-Zerbo
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Facultad de Medicina, Departamento de Fisiología Humana, Anatomía Patológica y Educación Físico Deportiva, Universidad de Málaga, Málaga, Spain
| | - Maria García-Fernández
- Facultad de Medicina, Departamento de Fisiología Humana, Anatomía Patológica y Educación Físico Deportiva, Universidad de Málaga, Málaga, Spain
| | - Alejandro Martin Montalvo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Anabel Rojas
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Valentine Comaills
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Francisco J. Bérmudez-Silva
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición. Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville USA
| | - Franz Martin
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Decio Eizirik
- ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Petra I. Lorenzo
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
| | - Benoit R. Gauthier
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, Junta de Andalucía-University of Pablo de Olavide-University of Seville-CSIC, Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
6
|
Yeh SJ, Chung YC, Chen BS. Investigating the Role of Obesity in Prostate Cancer and Identifying Biomarkers for Drug Discovery: Systems Biology and Deep Learning Approaches. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030900. [PMID: 35164166 PMCID: PMC8840188 DOI: 10.3390/molecules27030900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 12/21/2022]
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed cancer for men and is viewed as the fifth leading cause of death worldwide. The body mass index (BMI) is taken as a vital criterion to elucidate the association between obesity and PCa. In this study, systematic methods are employed to investigate how obesity influences the noncutaneous malignancies of PCa. By comparing the core signaling pathways of lean and obese patients with PCa, we are able to investigate the relationships between obesity and pathogenic mechanisms and identify significant biomarkers as drug targets for drug discovery. Regarding drug design specifications, we take drug–target interaction, drug regulation ability, and drug toxicity into account. One deep neural network (DNN)-based drug–target interaction (DTI) model is trained in advance for predicting drug candidates based on the identified biomarkers. In terms of the application of the DNN-based DTI model and the consideration of drug design specifications, we suggest two potential multiple-molecule drugs to prevent PCa (covering lean and obese PCa) and obesity-specific PCa, respectively. The proposed multiple-molecule drugs (apigenin, digoxin, and orlistat) not only help to prevent PCa, suppressing malignant metastasis, but also result in lower production of fatty acids and cholesterol, especially for obesity-specific PCa.
Collapse
|
7
|
Keringer P, Furedi N, Gaszner B, Miko A, Pakai E, Fekete K, Olah E, Kelava L, Romanovsky AA, Rumbus Z, Garami A. The hyperthermic effect of central cholecystokinin is mediated by the cyclooxygenase-2 pathway. Am J Physiol Endocrinol Metab 2022; 322:E10-E23. [PMID: 34779255 DOI: 10.1152/ajpendo.00223.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholecystokinin (CCK) increases core body temperature via CCK2 receptors when administered intracerebroventricularly (icv). The mechanisms of CCK-induced hyperthermia are unknown, and it is also unknown whether CCK contributes to the fever response to systemic inflammation. We studied the interaction between central CCK signaling and the cyclooxygenase (COX) pathway. Body temperature was measured in adult male Wistar rats pretreated with intraperitoneal infusion of the nonselective COX enzyme inhibitor metamizol (120 mg/kg) or a selective COX-2 inhibitor, meloxicam, or etoricoxib (10 mg/kg for both) and, 30 min later, treated with intracerebroventricular CCK (1.7 µg/kg). In separate experiments, CCK-induced neuronal activation (with and without COX inhibition) was studied in thermoregulation- and feeding-related nuclei with c-Fos immunohistochemistry. CCK increased body temperature by ∼0.4°C from 10 min postinfusion, which was attenuated by metamizol. CCK reduced the number of c-Fos-positive cells in the median preoptic area (by ∼70%) but increased it in the dorsal hypothalamic area and in the rostral raphe pallidus (by ∼50% in both); all these changes were completely blocked with metamizol. In contrast, CCK-induced satiety and neuronal activation in the ventromedial hypothalamus were not influenced by metamizol. CCK-induced hyperthermia was also completely blocked with both selective COX-2 inhibitors studied. Finally, the CCK2 receptor antagonist YM022 (10 µg/kg icv) attenuated the late phases of fever induced by bacterial lipopolysaccharide (10 µg/kg; intravenously). We conclude that centrally administered CCK causes hyperthermia through changes in the activity of "classical" thermoeffector pathways and that the activation of COX-2 is required for the development of this response.NEW & NOTEWORTHY An association between central cholecystokinin signaling and the cyclooxygenase-prostaglandin E pathway has been proposed but remained poorly understood. We show that the hyperthermic response to the central administration of cholecystokinin alters the neuronal activity within efferent thermoeffector pathways and that these effects are fully blocked by the inhibition of cyclooxygenase. We also show that the activation of cyclooxygenase-2 is required for the hyperthermic effect of cholecystokinin and that cholecystokinin is a modulator of endotoxin-induced fever.
Collapse
Affiliation(s)
- Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Nora Furedi
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Balazs Gaszner
- Department of Anatomy, Research Group for Mood Disorders, Centre for Neuroscience, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alexandra Miko
- Institute for Translational Medicine, Medical School and Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Kata Fekete
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Emoke Olah
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | | | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
8
|
Yadav SK, Sharma P, Shah SD, Panettieri RA, Kambayashi T, Penn RB, Deshpande DA. Autocrine regulation of airway smooth muscle contraction by diacylglycerol kinase. J Cell Physiol 2022; 237:603-616. [PMID: 34278583 PMCID: PMC8763953 DOI: 10.1002/jcp.30528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 01/03/2023]
Abstract
Diacylglycerol kinase (DGK), a lipid kinase, catalyzes the conversion of diacylglycerol (DAG) to phosphatidic acid, thereby terminating DAG-mediated signaling by Gq-coupled receptors that regulate contraction of airway smooth muscle (ASM). A previous study from our laboratory demonstrated that DGK inhibition or genetic ablation leads to reduced ASM contraction and provides protection for allergen-induced airway hyperresponsiveness. However, the mechanism by which DGK regulates contractile signaling in ASM is not well established. Herein, we investigated the role of prorelaxant cAMP-protein kinase A (PKA) signaling in DGK-mediated regulation of ASM contraction. Pretreatment of human ASM cells with DGK inhibitor I activated PKA as demonstrated by the phosphorylation of PKA substrates, VASP, Hsp20, and CREB, which was abrogated when PKA was inhibited pharmacologically or molecularly using overexpression of the PKA inhibitor peptide, PKI. Furthermore, inhibition of DGK resulted in induction of cyclooxygenase (COX) and generation of prostaglandin E2 (PGE2 ) with concomitant activation of Gs-cAMP-PKA signaling in ASM cells in an autocrine/paracrine fashion. Inhibition of protein kinase C (PKC) or extracellular-signal-regulated kinase (ERK) attenuated DGK-mediated production of PGE2 and activation of cAMP-PKA signaling in human ASM cells, suggesting that inhibition of DGK activates the COX-PGE2 pathway in a PKC-ERK-dependent manner. Finally, DGK inhibition-mediated attenuation of contractile agonist-induced phosphorylation of myosin light chain 20 (MLC-20), a marker of ASM contraction, involves COX-mediated cAMP production and PKA activation in ASM cells. Collectively these findings establish a novel mechanism by which DGK regulates ASM contraction and further advances DGK as a potential therapeutic target to provide effective bronchoprotection in asthma.
Collapse
Affiliation(s)
- Santosh K. Yadav
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA 19107
| | - Pawan Sharma
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA 19107
| | - Sushrut D. Shah
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA 19107
| | - Reynold A. Panettieri
- Rutgers Institute for Translational Medicine & Science, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Raymond B. Penn
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA 19107
| | - Deepak A. Deshpande
- Center for Translational Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA 19107.,Corresponding author Deepak Deshpande, PhD, Professor, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA 19107,
| |
Collapse
|
9
|
Zheng Y, Liu Y, Li H, Wang X, Zhang M, Shen X, Cheng H, Xu J, Wang X, Liu H, Ding Z, Zhao X. Novel insights into the immune regulatory effects of Megalobrama amblycephala intelectin on the phagocytosis and killing activity of macrophages. Mol Immunol 2021; 137:145-154. [PMID: 34247100 DOI: 10.1016/j.molimm.2021.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/31/2021] [Accepted: 06/14/2021] [Indexed: 12/18/2022]
Abstract
Previous studies have found that the expression level of Megalobrama amblycephala intelectin (MaINTL) increased significantly post Aeromonas hydrophila infection, and recombinant MaINTL (rMaINTL) protein could activate macrophages and enhance the phagocytosis and killing activity of macrophages. In order to reveal the immune regulatory mechanisms of MaINTL, primary M. amblycephala macrophages were treated with endotoxin-removed rMaINTL and GST-tag proteins, then total RNA were extracted and used for comparative Digital Gene Expression Profiling (DGE). 1247 differentially expressed genes were identified by comparing rMaINTL and GST-tag treated macrophage groups, including 482 up-regulated unigenes and 765 down-regulated unigenes. In addition, eleven randomly selected differentially expressed genes were verified by qRT-PCR, and most of them shared the similar expression patterns as that of DGE results. GO enrichment revealed that the differentially expressed genes were mainly concentrated in the membrane part and cytoskeleton of cellular component, the binding and signal transducer activity of molecular function, the cellular process, regulation of biological process, signaling and localization of biological process, most of which might related with the phagocytosis and killing activity of macrophages. KEGG analysis revealed the activation and involvement of differentially expressed genes in immune related pathways, such as Tumor necrosis factor (TNF) signaling pathway, Interleukin 17 (IL-17) signaling pathway, Toll-like receptor signaling pathway, and NOD like receptor signaling pathway, etc. In these pathways, TNF-ɑ, Activator protein-1 (AP-1), Myeloid differentiation primary response protein MyD88 (MyD88), NF-kappa-B inhibitor alpha (ikBɑ) and other key signaling factors were significantly up-regulated. These results will be helpful to clarify the immune regulatory mechanisms of fish intelectin on macrophages, thus providing a theoretical basis for the prevention and control of fish bacterial diseases.
Collapse
Affiliation(s)
- Yancui Zheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yunlong Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hongping Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xu Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Minying Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xingqiang Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hong Liu
- College of Fisheries, Key Lab of Freshwater Animal Breeding of Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China.
| | - Xiaoheng Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China; School of Marine Science and Fisheries, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, 222005, China.
| |
Collapse
|
10
|
The rise and fall of anandamide: processes that control synthesis, degradation, and storage. Mol Cell Biochem 2021; 476:2753-2775. [PMID: 33713246 DOI: 10.1007/s11010-021-04121-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Anandamide is an endocannabinoid derived from arachidonic acid-containing membrane lipids and has numerous biological functions. Its effects are primarily mediated by the cannabinoid receptors CB1 and CB2, and the vanilloid TRPV1 receptor. Anandamide is known to be involved in sleeping and eating patterns as well as pleasure enhancement and pain relief. This manuscript provides a review of anandamide synthesis, degradation, and storage and hence the homeostasis of the anandamide signaling system.
Collapse
|
11
|
Wu G, Xu Y, Han C, Wang Z, Li J, Wang Q, Che X. Identification of a Prognostic Risk Signature of Kidney Renal Clear Cell Carcinoma Based on Regulating the Immune Response Pathway Exploration. JOURNAL OF ONCOLOGY 2020; 2020:6657013. [PMID: 33456463 PMCID: PMC7787716 DOI: 10.1155/2020/6657013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To construct a survival model for predicting the prognosis of patients with kidney renal clear cell carcinoma (KIRC) based on gene expression related to immune response regulation. MATERIALS AND METHODS KIRC mRNA sequencing data and patient clinical data were downloaded from the TCGA database. The pathways and genes involved in the regulation of the immune response were identified from the GSEA database. A single factor Cox analysis was used to determine the association of mRNA in relation to patient prognosis (P < 0.05). The prognostic risk model was further established using the LASSO regression curve. The survival prognosis model was constructed, and the sensitivity and specificity of the model were evaluated using the ROC curve. RESULTS Compared with normal kidney tissues, there were 28 dysregulated mRNA expressions in KIRC tissues (P < 0.05). Univariate Cox regression analysis revealed that 12 mRNAs were related to the prognosis of patients with renal cell carcinoma. The LASSO regression curve drew a risk signature consisting of six genes: TRAF6, FYN, IKBKG, LAT2, C2, IL4, EREG, TRAF2, and IL12A. The five-year ROC area analysis (AUC) showed that the model has good sensitivity and specificity (AUC >0.712). CONCLUSION We constructed a risk prediction model based on the regulated immune response-related genes, which can effectively predict the survival of patients with KIRC.
Collapse
Affiliation(s)
- Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiayi Li
- School of Business, Hanyang University, Seoul, Republic of Korea
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Sadoughi A, Mansouri R, Nazeri S, Mirshafiey A. Evaluation of the oral administration of α-l-guluronic acid on COX-1 and COX-2 gene expression profile in ankylosing spondylitis patients. Drug Dev Res 2020; 82:296-301. [PMID: 33140463 DOI: 10.1002/ddr.21756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 09/09/2020] [Accepted: 10/22/2020] [Indexed: 11/10/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic autoimmune arthritis disease with a genetic background, affecting the skeletal axis, sacroiliac, and peripheral joints. Nonsteroidal anti-inflammatory drugs (NSAIDs) are the first-line treatment for AS to alleviate the inflammation and pain. Despite the beneficial effect, their use is accompanied by a wide variety of possible side effects in the gastrointestinal and kidneys. The α-l-guluronic acid (G2013) is a new nonsteroidal anti-inflammatory patented (PCT/EP2017/067920) drug, which has shown its anti-inflammatory properties in the previous investigations. The present study revealed the oral administration effect of G2013 on COX-1 and COX-2 gene expression in AS patients. The blood samples of twelve 18-45 years old patients suffering AS and BASDAI >4, and BASFI >4, before and after 12 weeks of treatment with G2013 and 12 blood samples of healthy volunteers were collected and the effect of G2013 on the gene expression of COX-1 and COX-2 enzymes were assessed by Real-Time PCR. The results indicate that G2013 is able to reduce the gene expression level of COX-1 and COX-2 enzymes in treated AS patients compared to healthy control. Statistically significant differences were not observed between the treatment and the healthy control groups. According to the findings, G2013 might be categorized and introduced as a novel NSAID for the treatment of AS.
Collapse
Affiliation(s)
- Arezoo Sadoughi
- Department of Immunology, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reza Mansouri
- Department of Immunology, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sepideh Nazeri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Research center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Tyagi A, Kamal MA, Poddar NK. Integrated Pathways of COX-2 and mTOR: Roles in Cell Sensing and Alzheimer's Disease. Front Neurosci 2020; 14:693. [PMID: 32742252 PMCID: PMC7364283 DOI: 10.3389/fnins.2020.00693] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Cyclooxygenases (COX) are enzymes catalyzing arachidonic acid into prostanoids. COX exists in three isoforms: COX-1, 2, and 3. COX-1 and COX-2 have been widely studied in order to explore and understand their involvement in Alzheimer’s disease (AD), a progressive neuroinflammatory dementia. COX-2 was traditionally viewed to be expressed only under pathological conditions and to have detrimental effects in AD pathophysiology and neurodegeneration. However, an increasing number of reports point to much more complex roles of COX-2 in AD. Mammalian/mechanistic target of rapamycin (mTOR) has been considered as a hub which integrates multiple signaling cascades, some of which are also involved in AD progression. COX-2 and mTOR are both involved in environmental sensing, growth, and metabolic processes of the cell. They are also known to act in cooperation in many different cancers and thus, their role together in normal cellular functions as well as AD has been explored in this review. Some of the therapeutic approaches targeting COX-2 and mTOR in AD and cancer are also discussed.
Collapse
Affiliation(s)
- Arti Tyagi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Mohammad A Kamal
- King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Enzymoics, Hebersham, NSW, Australia
| | | |
Collapse
|
14
|
N-AS-triggered SPMs are direct regulators of microglia in a model of Alzheimer's disease. Nat Commun 2020; 11:2358. [PMID: 32398649 PMCID: PMC7217877 DOI: 10.1038/s41467-020-16080-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Sphingosine kinase1 (SphK1) is an acetyl-CoA dependent acetyltransferase which acts on cyclooxygenase2 (COX2) in neurons in a model of Alzheimer’s disease (AD). However, the mechanism underlying this activity was unexplored. Here we show that N-acetyl sphingosine (N-AS) is first generated by acetyl-CoA and sphingosine through SphK1. N-AS then acetylates serine 565 (S565) of COX2, and the N-AS-acetylated COX2 induces the production of specialized pro-resolving mediators (SPMs). In a mouse model of AD, microglia show a reduction in N-AS generation, leading to decreased acetyl-S565 COX2 and SPM production. Treatment with N-AS increases acetylated COX2 and N-AS-triggered SPMs in microglia of AD mice, leading to resolution of neuroinflammation, an increase in microglial phagocytosis, and improved memory. Taken together, these results identify a role of N-AS in the dysfunction of microglia in AD. Neuronal sphingosine kinase 1 (SphK1) acetylates COX2 which is needed for microglial phagocytosis activity, and release of pro-resolving mediators (SPMs) from neurons. Here the authors examine how SphK1-mediates COX2 acetylation, and how this leads to increased secretion of SPMs from neurons in the context of Alzheimer’s disease models.
Collapse
|
15
|
Protective potential of miR-146a-5p and its underlying molecular mechanism in diverse cancers: a comprehensive meta-analysis and bioinformatics analysis. Cancer Cell Int 2019; 19:167. [PMID: 31285693 PMCID: PMC6592002 DOI: 10.1186/s12935-019-0886-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 06/17/2019] [Indexed: 12/16/2022] Open
Abstract
Background/aims Studies have shown that miR-146a-5p was differentially expressed in diverse cancers, but the associations between miR-146a-5p expression and prognosis across multiple types of cancer as well its potential targets and downstream pathways have not been comprehensively analyzed. In this study, we performed the first meta-analysis of the prognostic value of miR-146a-5p expression in diverse malignancies and explored prospective targets of miR-146a-5p and related signaling pathways. Methods A thorough search for articles related to miR-146a-5p was performed, and RNA-seq data from The Cancer Genome Atlas (TCGA) and microarray data from gene expression omnibus profiles were used to collect information about the prognostic value of miR-146a-5p. A comprehensive meta-analysis was conducted. Twelve platforms in miRWalk 2.0 were applied to predict targets of miR-146a-5p. TCGA RNA-seq data were used to validate the inverse relationships between miR-146a-5p and its likely targets. Subsequently, gene ontology and pathway analyses were conducted using Funrich version 3.1.3. Potential protein–protein interaction (PPI) networks were constructed. Potential target genes of miR-146a-5p in lung cancer were validated by RT-qPCR. Results We included 10 articles in the meta-analysis. In a pooled analysis, the high miR-146a-5p expression group showed a better overall survival in solid cancers, particularly in reproductive system cancers and digestive system cancers. A total of 120 predicted target genes were included in a bioinformatics analysis. Five pathways involving phospholipase C (PLC) and aquaporins (AQPs) were the most significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways. Moreover, the PPI network displayed the related signaling pathways and interactions among proteins. AQP1 and FYN were validated by RT-qPCR to be potential targets of miR-146a-5p in lung cancer. Conclusion There is a close link between high miR-146a-5p expression and better overall survival in 21 types of solid cancer, especially in reproductive system and digestive system cancers. Furthermore, miR-146a-5p could inhibit diverse malignancies by modulating pathways linked to PLC or AQPs. In summary, miR-146a-5p is a potential prognostic biomarker and therapeutic target for various cancers.
Collapse
|
16
|
Jiang J, Shihan MH, Wang Y, Duncan MK. Lens Epithelial Cells Initiate an Inflammatory Response Following Cataract Surgery. Invest Ophthalmol Vis Sci 2019; 59:4986-4997. [PMID: 30326070 PMCID: PMC6188467 DOI: 10.1167/iovs.18-25067] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Purpose Lens epithelial cell (LEC) conversion to myofibroblast is responsible for fibrotic cataract surgery complications including posterior capsular opacification. While transforming growth factor beta (TGFβ) signaling is important, the mechanisms by which the TGFβ pathway is activated post cataract surgery (PCS) are not well understood. Methods RNA-seq was performed on LECs obtained from a mouse cataract surgery model at the time of surgery and 24 hours later. Bioinformatic analysis was performed with iPathwayGuide. Expression dynamics were determined by immunofluorescence. Results The LEC transcriptome is massively altered by 24 hours PCS. The differentially expressed genes included those important for lens biology, and fibrotic markers. However, the most dramatic changes were in the expression of genes regulating the innate immune response, with the top three altered genes exhibiting greater than 1000-fold upregulation. Immunolocalization revealed that CXCL1, S100a9, CSF3, COX-2, CCL2, LCN2, and HMOX1 protein levels upregulate in LECs between 1 hour and 6 hours PCS and peak at 24 hours PCS, while their levels sharply attenuate by 3 days PCS. This massive upregulation of known inflammatory mediators precedes the infiltration of neutrophils into the eye at 18 hours PCS, the upregulation of canonical TGFβ signaling at 48 hours PCS, and the infiltration of macrophages at 3 days PCS. Conclusions These data demonstrate that LECs produce proinflammatory cytokines immediately following lens injury that could drive postsurgical flare, and suggest that inflammation may be a major player in the onset of lens-associated fibrotic disease PCS.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Mahbubul H Shihan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
| |
Collapse
|
17
|
Li H, Jin F, Jiang K, Ji S, Wang L, Ni Z, Chen X, Hu Z, Zhang H, Liu Y, Qin Y, Zha X. mTORC1-mediated downregulation of COX2 restrains tumor growth caused by TSC2 deficiency. Oncotarget 2017; 7:28435-47. [PMID: 27078846 PMCID: PMC5053737 DOI: 10.18632/oncotarget.8633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 03/28/2016] [Indexed: 12/30/2022] Open
Abstract
Tuberous sclerosis complex (TSC), caused by loss-of-function mutations in the TSC1 or TSC2 gene, is characterized by benign tumor formation in multiple organs. Hyperactivation of mammalian target of rapamycin complex 1 (mTORC1) is the primary alteration underlying TSC tumors. By analyzing Tsc2-null mouse embryonic fibroblasts (MEFs) and rat uterine leiomyoma-derived Tsc2-null ELT3 cells, we detected evidence for the involvement of cyclooxygenase 2 (COX2) as a downstream target of mTORC1 in the development of TSC tumors. We showed that loss of TSC2 led to decreased COX2 expression through activation of an mTORC1/signal transducer and activator of transcription 3 (STAT3) signaling pathway. Overexpression of COX2 promoted proliferation and tumoral growth of Tsc2-null cells. COX2 knockdown inhibited the proliferation of the control cells. COX2 enhanced Tsc2-null cell growth through upregulation of interleukin-6 (IL-6). In addition, rapamycin in combination with celecoxib, a COX2 inhibitor, strongly inhibited Tsc2-deficient cell growth. We conclude that downregulation of COX2 exerts a protective effect against hyperactivated mTORC1-mediated tumorigenesis caused by the loss of TSC2, and the combination of rapamycin and celecoxib may be an effective new approach to treating TSC.
Collapse
Affiliation(s)
- Hongwu Li
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Otorhinolaryngology, Head & Neck Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fuquan Jin
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.,School of Pharmacy, Anhui Medical University, Hefei, China
| | - Keguo Jiang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Department of Nephrology, The Third Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuang Ji
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Li Wang
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhaofei Ni
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology & Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yehai Liu
- Department of Otorhinolaryngology, Head & Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yide Qin
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China.,State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology, Hefei, China
| |
Collapse
|
18
|
Alexanian A, Sorokin A. Cyclooxygenase 2: protein-protein interactions and posttranslational modifications. Physiol Genomics 2017; 49:667-681. [PMID: 28939645 DOI: 10.1152/physiolgenomics.00086.2017] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Numerous studies implicate the cyclooxygenase 2 (COX2) enzyme and COX2-derived prostanoids in various human diseases, and thus, much effort has been made to uncover the regulatory mechanisms of this enzyme. COX2 has been shown to be regulated at both the transcriptional and posttranscriptional levels, leading to the development of nonsteroidal anti-inflammatory drugs (NSAIDs) and selective COX2 inhibitors (COXIBs), which inhibit the COX2 enzyme through direct targeting. Recently, evidence of posttranslational regulation of COX2 enzymatic activity by s-nitrosylation, glycosylation, and phosphorylation has also been presented. Additionally, posttranslational regulators that actively downregulate COX2 expression by facilitating increased proteasome degradation of this enzyme have also been reported. Moreover, recent data identified proteins, located in close proximity to COX2 enzyme, that serve as posttranslational modulators of COX2 function, upregulating its enzymatic activity. While the precise mechanisms of the protein-protein interaction between COX2 and these regulatory proteins still need to be addressed, it is likely these interactions could regulate COX2 activity either as a result of conformational changes of the enzyme or by impacting subcellular localization of COX2 and thus affecting its interactions with regulatory proteins, which further modulate its activity. It is possible that posttranslational regulation of COX2 enzyme by such proteins could contribute to manifestation of different diseases. The uncovering of posttranslational regulation of COX2 enzyme will promote the development of more efficient therapeutic strategies of indirectly targeting the COX2 enzyme, as well as provide the basis for the generation of novel diagnostic tools as biomarkers of disease.
Collapse
Affiliation(s)
- Anna Alexanian
- Cardiovascular Center and Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrey Sorokin
- Cardiovascular Center and Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
19
|
Tong D, Liu Q, Liu G, Xu J, Lan W, Jiang Y, Xiao H, Zhang D, Jiang J. Metformin inhibits castration-induced EMT in prostate cancer by repressing COX2/PGE2/STAT3 axis. Cancer Lett 2016; 389:23-32. [PMID: 28043910 DOI: 10.1016/j.canlet.2016.12.031] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022]
Abstract
Castration is the standard therapeutic treatment for advanced prostate cancer but with limited benefit due to the profound relapse and metastasis. Activation of inflammatory signaling pathway and initiation of epithelial-mesenchymal transition (EMT) are closely related to drug resistance, tumor relapseas well as metastasis. In this study, we demonstrated that metformin is capable of inhibiting prostate cancer cell migration and invasion by repressing EMT evidenced by downregulating the mesenchymal markers N-cadherin, Vimentin, and Twist and upregulating the epithelium E-cadherin. These effects have also been observed in our animal model as well as prostate cancer patients. In addition, we showed the effects of metformin on the expression of genes involved in EMT through repressing the levels of COX2, PGE2 and phosphorylated STAT3. Furthermore, inactivating COX2 abolishes metformin's regulatory effects and exogenously administered PGE2 is capable of enhancing STAT3 phosphorylation and expression of EMT biomarker. We propose that metformin represses prostate cancer EMT and metastasis through targeting the COX2/PGE2/STAT3 axis. These findings suggest that metformin by itself or in combination with other anticancer drugs could be used as an anti-metastasis therapy.
Collapse
Affiliation(s)
- Dali Tong
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Qiuli Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Gaolei Liu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Jing Xu
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Weihua Lan
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Yao Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Hualiang Xiao
- Department of Pathology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, PR China.
| |
Collapse
|
20
|
Ben-Batalla I, Cubas-Cordova M, Udonta F, Wroblewski M, Waizenegger JS, Janning M, Sawall S, Gensch V, Zhao L, Martinez-Zubiaurre I, Riecken K, Fehse B, Pantel K, Bokemeyer C, Loges S. Cyclooxygenase-2 blockade can improve efficacy of VEGF-targeting drugs. Oncotarget 2016; 6:6341-58. [PMID: 25849942 PMCID: PMC4467441 DOI: 10.18632/oncotarget.3437] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/21/2015] [Indexed: 01/05/2023] Open
Abstract
Anti-angiogenic therapies were approved for different cancers. However, significant primary and secondary resistance hampers efficacy in several tumor types including breast cancer. Thus, we need to develop clinically applicable strategies to enhance efficacy of anti-angiogenic drugs. We report that anti-angiogenic therapies can induce upregulation of cyclooxygenase-2 (Cox-2) and of its product prostaglandin E2 (PGE2) in breast cancer models. Upon Cox-2 inhibition PGE2 levels were normalized and efficacy of anti-vascular endothelial growth factor receptor 2 (anti-VEGFR-2) antibodies and sunitinib was enhanced. Interestingly, both treatments exerted additive anti-angiogenic effects. Following Cox-2 inhibition, we observed reduced infiltration of tumors with cancer-associated fibroblasts (CAFs) and lower levels of pro-angiogenic factors active besides the VEGF axis including hepatocyte growth factor (HGF) and basic fibroblast growth factor (FGF2). Mechanistic studies indicated that Cox-2 inhibition reduced PGE2-induced migration and proliferation of CAFs via inhibiting phosphorylation of Akt. Hence, Cox-2 inhibition can increase efficacy of anti-angiogenic treatments and our findings might pave the road for clinical investigations of concomitant blockade of Cox-2 and VEGF-signaling.
Collapse
Affiliation(s)
- Isabel Ben-Batalla
- Department of Hematology and Oncology, BMT with Section of Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miguel Cubas-Cordova
- Department of Hematology and Oncology, BMT with Section of Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Udonta
- Department of Hematology and Oncology, BMT with Section of Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark Wroblewski
- Department of Hematology and Oncology, BMT with Section of Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas S Waizenegger
- Department of Hematology and Oncology, BMT with Section of Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Janning
- Department of Hematology and Oncology, BMT with Section of Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefanie Sawall
- Department of Hematology and Oncology, BMT with Section of Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Victoria Gensch
- Department of Hematology and Oncology, BMT with Section of Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lin Zhao
- Department of Hematology and Oncology, BMT with Section of Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Kristoffer Riecken
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Clinic for Stem Cell Transplantation, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Hematology and Oncology, BMT with Section of Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Loges
- Department of Hematology and Oncology, BMT with Section of Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Vanadium Compounds as Pro-Inflammatory Agents: Effects on Cyclooxygenases. Int J Mol Sci 2015; 16:12648-68. [PMID: 26053397 PMCID: PMC4490466 DOI: 10.3390/ijms160612648] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 01/30/2023] Open
Abstract
This paper discusses how the activity and expression of cyclooxygenases are influenced by vanadium compounds at anticancer concentrations and recorded in inorganic vanadium poisonings. We refer mainly to the effects of vanadate (orthovanadate), vanadyl and pervanadate ions; the main focus is placed on their impact on intracellular signaling. We describe the exact mechanism of the effect of vanadium compounds on protein tyrosine phosphatases (PTP), epidermal growth factor receptor (EGFR), PLCγ, Src, mitogen-activated protein kinase (MAPK) cascades, transcription factor NF-κB, the effect on the proteolysis of COX-2 and the activity of cPLA2. For a better understanding of these processes, a lot of space is devoted to the transformation of vanadium compounds within the cell and the molecular influence on the direct targets of the discussed vanadium compounds.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland.
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland.
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University, Broniewskiego 24 Str., 71-460 Szczecin, Poland.
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstańców Wlkp. 72 Av., 70-111 Szczecin, Poland.
| |
Collapse
|