1
|
Qian K, Li W, Ren S, Peng W, Qing B, Liu X, Wei X, Zhu L, Wang Y, Jin X. HDAC8 Enhances the Function of HIF-2α by Deacetylating ETS1 to Decrease the Sensitivity of TKIs in ccRCC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401142. [PMID: 39073752 PMCID: PMC11423204 DOI: 10.1002/advs.202401142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/03/2024] [Indexed: 07/30/2024]
Abstract
Drug resistance after long-term use of Tyrosine kinase inhibitors (TKIs) has become an obstacle for prolonging the survival time of patients with clear cell renal cell carcinoma (ccRCC). Here, genome-wide CRISPR-based screening to reveal that HDAC8 is involved in decreasing the sensitivity of ccRCC cells to sunitinib is applied. Mechanically, HDAC8 deacetylated ETS1 at the K245 site to promote the interaction between ETS1 and HIF-2α and enhance the transcriptional activity of the ETS1/HIF-2α complex. However, the antitumor effect of inhibiting HDAC8 on sensitized TKI is not very satisfactory. Subsequently, inhibition of HDAC8 increased the expression of NEK1, and up-regulated NEK1 phosphorylated ETS1 at the T241 site to promote the interaction between ETS1 and HIF-2α by impeded acetylation at ETS1-K245 site is showed. Moreover, TKI treatment increased the expression of HDAC8 by inhibiting STAT3 phosphorylation in ccRCC cells is also found. These 2 findings highlight a potential mechanism of acquired resistance to TKIs and HDAC8 inhibitors in ccRCC. Finally, HDAC8-in-PROTACs to optimize the effects of HDAC8 inhibitors through degrading HDAC8 and overcoming the resistance of ccRCC to TKIs are synthesized. Collectively, the results revealed HDAC8 as a potential therapeutic candidate for resistance to ccRCC-targeted therapies.
Collapse
Affiliation(s)
- Kang Qian
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Shangqing Ren
- Robotic Minimally Invasive Surgery Center, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Bei Qing
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xinlin Liu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Xiong Wei
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Liang Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| | - Yapeng Wang
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, 410011, China
| |
Collapse
|
2
|
Zhu Y, Lin J, Li Y, Luo Z. Prognostic value and immune infiltration of the NEK family in clear cell renal cell carcinoma. Medicine (Baltimore) 2024; 103:e38961. [PMID: 39029088 PMCID: PMC11398795 DOI: 10.1097/md.0000000000038961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a fatal urological malignancy. Members of the never-in mitosis gene A (NIMA)-related kinase (NEK) family have been found to participate in the progression of several cancers and could be used as target genes to treat corresponding diseases. Nonetheless, the prognostic value and immune infiltration levels of NEK family genes in ccRCC remain unknown. The GSCA, TIMER, and GEPIA databases were utilized to examine the differential expression of NEK family members in ccRCC, and the Kaplan-Meier plotter was utilized to analyze the prognosis. The STRING database was used to construct a protein-protein interaction network. Analysis of function was performed by the Sangerbox tool. In addition, the relationship between NEK family genes and immune cells was explored using the TIMER and TISIDB databases. Finally, we used quantitative real-time PCR (qPCR) and immunohistochemistry (IHC) for experimental verification. Transcriptional levels of NEK2, NEK3, NEK5, NEK6, and NEK11 significantly differed between ccRCC and normal tissues. Moreover, there was a significant correlation between NEK1, NEK2, NEK4, NEK8, NEK9, and NEK10 and their clinicopathological stages in patients with ccRCC. Based on survival analysis, ccRCC patients with high transcriptional levels of NEK2, NEK3, NEK8, and NEK10 and low transcriptional levels of NEK1, NEK4, NEK5, NEK6, NEK7, NEK9, NEK11 had shorter survival times. Additionally, a significant relationship was observed between NEK family members and immune cell infiltration, immune cell markers, and immune subtypes. These results indicate that NEK family members are significantly differentially expressed in ccRCC, and a significant correlation exists between the NEK family and prognosis and immune infiltration. NEK family members may act as therapeutic targets and prognostic indicators in ccRCC.
Collapse
Affiliation(s)
- Yingli Zhu
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | | | | | | |
Collapse
|
3
|
Basei FL, E Silva IR, Dias PRF, Ferezin CC, Peres de Oliveira A, Issayama LK, Moura LAR, da Silva FR, Kobarg J. The Mitochondrial Connection: The Nek Kinases' New Functional Axis in Mitochondrial Homeostasis. Cells 2024; 13:473. [PMID: 38534317 DOI: 10.3390/cells13060473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
Mitochondria provide energy for all cellular processes, including reactions associated with cell cycle progression, DNA damage repair, and cilia formation. Moreover, mitochondria participate in cell fate decisions between death and survival. Nek family members have already been implicated in DNA damage response, cilia formation, cell death, and cell cycle control. Here, we discuss the role of several Nek family members, namely Nek1, Nek4, Nek5, Nek6, and Nek10, which are not exclusively dedicated to cell cycle-related functions, in controlling mitochondrial functions. Specifically, we review the function of these Neks in mitochondrial respiration and dynamics, mtDNA maintenance, stress response, and cell death. Finally, we discuss the interplay of other cell cycle kinases in mitochondrial function and vice versa. Nek1, Nek5, and Nek6 are connected to the stress response, including ROS control, mtDNA repair, autophagy, and apoptosis. Nek4, in turn, seems to be related to mitochondrial dynamics, while Nek10 is involved with mitochondrial metabolism. Here, we propose that the participation of Neks in mitochondrial roles is a new functional axis for the Nek family.
Collapse
Affiliation(s)
- Fernanda L Basei
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
| | - Ivan Rosa E Silva
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
| | - Pedro R Firmino Dias
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
| | - Camila C Ferezin
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
| | | | - Luidy K Issayama
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
| | - Livia A R Moura
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
| | | | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
| |
Collapse
|
4
|
Chen L, Ballout F, Lu H, Hu T, Zhu S, Chen Z, Peng D. Differential Expression of NEK Kinase Family Members in Esophageal Adenocarcinoma and Barrett's Esophagus. Cancers (Basel) 2023; 15:4821. [PMID: 37835513 PMCID: PMC10571661 DOI: 10.3390/cancers15194821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The incidence of esophageal adenocarcinoma (EAC) has risen rapidly during the past four decades, making it the most common type of esophageal cancer in the USA and Western countries. The NEK (Never in mitosis A (NIMA) related kinase) gene family is a group of serine/threonine kinases with 11 members. Aberrant expression of NEKs has been recently found in a variety of human cancers and plays important roles in tumorigenesis, progression, and drug-resistance. However, the expression of the NEKs in EAC and its precancerous condition (Barrett's esophagus, BE) has not been investigated. In the present study, we first analyzed the TCGA and 9 GEO databases (a total of 10 databases in which 8 contain EAC and 6 contain BE) using bioinformatic approaches for NEKs expression in EAC and BE. We identified that several NEK members, such as NEK2 (7/8), NEK3 (6/8), and NEK6 (6/8), were significantly upregulated in EAC as compared to normal esophagus samples. Alternatively, NEK1 was downregulated in EAC as compared to the normal esophagus. On the contrary, genomic alterations of these NEKs are not frequent in EAC. We validated the above findings using qRT-PCR and the protein expression of NEKs in EAC cell lines using Western blotting and in primary EAC tissues using immunohistochemistry and immunofluorescence. Our data suggest that frequent upregulation of NEK2, NEK3, and NEK7 may be important in EAC.
Collapse
Affiliation(s)
- Lei Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
| | - Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Tianling Hu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
| | - Shoumin Zhu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
| | - Zheng Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (L.C.); (F.B.); (H.L.); (T.H.); (S.Z.); (Z.C.)
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| |
Collapse
|
5
|
Acharya N, Singh KP. Recent advances in the molecular basis of chemotherapy resistance and potential application of epigenetic therapeutics in chemorefractory renal cell carcinoma. WIREs Mech Dis 2022; 14:e1575. [DOI: 10.1002/wsbm.1575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 06/11/2022] [Accepted: 06/22/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Narayan Acharya
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) Texas Tech University Lubbock Texas USA
| | - Kamaleshwar P. Singh
- Department of Environmental Toxicology, The Institute of Environmental and Human Health (TIEHH) Texas Tech University Lubbock Texas USA
| |
Collapse
|
6
|
Steffens Reinhardt L, Moira Morás A, Gustavo Henn J, Ricardo Arantes P, Bernardes Ferro M, Braganhol E, Oliveira de Souza P, de Oliveira Merib J, Ramos Borges G, Silveira Dalanhol C, Cox Holanda de Barros Dias M, Nugent M, Jaqueline Moura D. Nek1-inhibitor and temozolomide-loaded microfibers as a co-therapy strategy for glioblastoma treatment. Int J Pharm 2022; 617:121584. [PMID: 35202726 DOI: 10.1016/j.ijpharm.2022.121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022]
Abstract
Malignant glioblastoma (GB) is the predominant primary brain tumour in adults, but despite the efforts towards novel therapies, the median survival of GB patients has not significantly improved in the last decades. Therefore, localised approaches that treat GB straight into the tumour site provide an alternative to enhance chemotherapy bioavailability and efficacy, reducing systemic toxicity. Likewise, the discovery of protein targets, such as the NIMA-related kinase 1 (Nek1), which was previously shown to be associated with temozolomide (TMZ) resistance in GB, has stimulated the clinical development of target therapy approaches to treat GB patients. In this study, we report an electrospun polyvinyl alcohol (PVA) microfiber (MF) brain-implant prepared for the controlled release of Nek1 protein inhibitor (iNek1) and TMZ or TMZ-loaded nanoparticles. The formulations revealed adequate stability and drug loading, which prolonged the drugs' release allowing a sustained exposure of the GB cells to the treatment and enhancing the drugs' therapeutic effects. TMZ-loaded MF provided the highest concentration of TMZ within the brain of tumour-bearing rats, and it was statistically significant when compared to TMZ via intraperitoneal (IP). All animals treated with either co-therapy formulation (TMZ + iNek1 MF or TMZ nanoparticles + iNek1 MF) survived until the endpoint (60 days), whereas the Blank MF (drug-unloaded), TMZ MF and TMZ IP-treated rats' median survival was found to be 16, 31 and 25 days, respectively. The tumour/brain area ratio of the rats implanted with either MF co-therapy was found to be reduced by 5-fold when compared to Blank MF-implanted rats. Taken together, our results strongly suggest that Nek1 is an important GB oncotarget and the inhibition of Nek1's activity significantly decreases GB cells' viability and tumour size when combined with TMZ treatment.
Collapse
Affiliation(s)
- Luiza Steffens Reinhardt
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Biosciences Graduation Course, UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Ana Moira Morás
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Biosciences Graduation Course, UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Jeferson Gustavo Henn
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil; Biosciences Graduation Course, UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | - Matheus Bernardes Ferro
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| | - Elizandra Braganhol
- Biosciences Graduation Course, UFCSPA, Porto Alegre, Rio Grande do Sul, Brazil.
| | | | | | | | | | | | - Michael Nugent
- Materials Research Institute, TUS, Athlone, Co. Westmeath, Ireland.
| | - Dinara Jaqueline Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
7
|
Li Y, Gao X. LINC00883 Promotes Drug Resistance of Glioma Through a microRNA-136/NEK1-Dependent Mechanism. Front Oncol 2022; 11:692265. [PMID: 35083134 PMCID: PMC8785904 DOI: 10.3389/fonc.2021.692265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Objective Accumulating evidence has highlighted the roles of long noncoding RNAs (lncRNAs) as competing endogenous RNAs (ceRNAs) of microRNAs (miRNAs) through their binding sites in the progression of glioma. Hereby, we aim to explore the role of LINC00883 as a regulator of miR-136 and its target, NIMA-related kinase 1 (NEK1), thus, its involvement in the drug resistance of glioma cells. Methods and Results Mechanistic investigations by dual-luciferase reporter, RNA pull-down, and RNA-binding protein immunoprecipitation (RIP) assays indicated that LINC00883 bound to miR-136, thereby blocking miR-136-induced downregulation of NEK1. Through gain-of-function experiments in U251 cells that presented a high drug resistance, we found that ectopic expression of LINC00883 resulted in increased MRP (encoding multidrug resistance-associated protein), limited cell apoptosis, and increased proliferation. Expectedly, depleting LINC00883 yielded tumor-suppressive and anti-chemoresistance effects on U251 cells by increasing miR-136 and inhibiting NEK1. Next, drug-resistant glioma cell line SOWZ1, drug-sensitive glioma cell line SOWZ2, and drug-resistant glioma cell line SOWZ2-BCNU (SOWZ2 cultured in BCNU) were applied to validate the roles of LINC00883 in the regulation of multidrug resistance. LINC00883 knockdown suppressed the viability of SWOZ1, SWOZ2, and SWOZ2-BCNU cells. Conclusion In conclusion, LINC00883 knockdown reduces drug resistance in glioma. Hence, our study provides a future strategy to prevent drug resistance-induced therapeutic failure in glioma.
Collapse
Affiliation(s)
- Yongzhe Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Martins MB, Perez AM, Bohr VA, Wilson DM, Kobarg J. NEK1 deficiency affects mitochondrial functions and the transcriptome of key DNA repair pathways. Mutagenesis 2021; 36:223-236. [PMID: 33740813 DOI: 10.1093/mutage/geab011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/17/2021] [Indexed: 12/16/2022] Open
Abstract
Previous studies have indicated important roles for NIMA-related kinase 1 (NEK1) in modulating DNA damage checkpoints and DNA repair capacity. To broadly assess the contributions of NEK1 to genotoxic stress and mitochondrial functions, we characterised several relevant phenotypes of NEK1 CRISPR knockout (KO) and wild-type (WT) HAP1 cells. Our studies revealed that NEK1 KO cells resulted in increased apoptosis and hypersensitivity to the alkylator methyl methanesulfonate, the radiomimetic bleomycin and UVC light, yet increased resistance to the crosslinker cisplatin. Mitochondrial functionalities were also altered in NEK1 KO cells, with phenotypes of reduced mitophagy, increased total mitochondria, elevated levels of reactive oxygen species, impaired complex I activity and higher amounts of mitochondrial DNA damage. RNA-seq transcriptome analysis coupled with quantitative real-time PCR studies comparing NEK1 KO cells with NEK1 overexpressing cells revealed that the expression of genes involved in DNA repair pathways, such as base excision repair, nucleotide excision repair and double-strand break repair, are altered in a way that might influence genotoxin resistance. Together, our studies underline and further support that NEK1 serves as a hub signalling kinase in response to DNA damage, modulating DNA repair capacity, mitochondrial activity and cell fate determination.
Collapse
Affiliation(s)
- Mariana Bonjiorno Martins
- Departamento de Bioquímica e de Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Arina Marina Perez
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | - David M Wilson
- Neurosciences Group, Biomedical Research Institute, Hasselt University, 3590 Diepenbeek, Belgium
| | - Jörg Kobarg
- Departamento de Bioquímica e de Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.,Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
Baumann G, Meckel T, Böhm K, Shih YH, Dickhaut M, Reichardt T, Pilakowski J, Pehl U, Schmidt B. Illuminating a Dark Kinase: Structure-Guided Design, Synthesis, and Evaluation of a Potent Nek1 Inhibitor and Its Effects on the Embryonic Zebrafish Pronephros. J Med Chem 2021; 65:1265-1282. [DOI: 10.1021/acs.jmedchem.0c02118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Georg Baumann
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Tobias Meckel
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Kevin Böhm
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Yung-Hsin Shih
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Mirco Dickhaut
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Torben Reichardt
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Johannes Pilakowski
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Ulrich Pehl
- Merck Healthcare KGaA, Biopharma R&D, Discovery and Development Technologies, 64293 Darmstadt, Germany
| | - Boris Schmidt
- Clemens Schöpf−Institute of Organic Chemistry and Biochemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
10
|
Khalil MI, Ghosh I, Singh V, Chen J, Zhu H, De Benedetti A. NEK1 Phosphorylation of YAP Promotes Its Stabilization and Transcriptional Output. Cancers (Basel) 2020; 12:cancers12123666. [PMID: 33297404 PMCID: PMC7762262 DOI: 10.3390/cancers12123666] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary We earlier described the involvement of the TLK1>NEK1>ATR>Chk1 axis as a key determinant of cell cycle arrest in androgen-dependent prostate cancer (PCa) cells after androgen deprivation. We now report that the TLK1>NEK1 axis is also involved in stabilization of yes-associated protein 1 (YAP1), the transcriptional co-activator in the Hippo pathway, presumably facilitating reprogramming of the cells toward castration-resistant PCa (CRPC). NEK1 interacts with YAP1 physically resulting in its phosphorylation of 6 residues, which enhance its stability and activity. Analyses of cancer Protein Atlas and TCGA expression panels revealed a link between activated NEK1 and YAP1 expression and several YAP transcription targets. Abstract Most prostate cancer (PCa) deaths result from progressive failure in standard androgen deprivation therapy (ADT), leading to metastatic castration-resistant PCa (mCRPC); however, the mechanism and key players leading to this are not fully understood. While studying the role of tousled-like kinase 1 (TLK1) and never in mitosis gene A (NIMA)-related kinase 1 (NEK1) in a DNA damage response (DDR)-mediated cell cycle arrest in LNCaP cells treated with bicalutamide, we uncovered that overexpression of wt-NEK1 resulted in a rapid conversion to androgen-independent (AI) growth, analogous to what has been observed when YAP1 is overexpressed. We now report that overexpression of wt-NEK1 results in accumulation of YAP1, suggesting the existence of a TLK1>NEK1>YAP1 axis that leads to adaptation to AI growth. Further, YAP1 is co-immunoprecipitated with NEK1. Importantly, NEK1 was able to phosphorylate YAP1 on six residues in vitro, which we believe are important for stabilization of the protein, possibly by increasing its interaction with transcriptional partners. In fact, knockout (KO) of NEK1 in NT1 PCa cells resulted in a parallel decrease of YAP1 level and reduced expression of typical YAP-regulated target genes. In terms of cancer potential implications, the expression of NEK1 and YAP1 proteins was found to be increased and correlated in several cancers. These include PCa stages according to Gleason score, head and neck squamous cell carcinoma, and glioblastoma, suggesting that this co-regulation is imparted by increased YAP1 stability when NEK1 is overexpressed or activated by TLK1, and not through transcriptional co-expression. We propose that the TLK1>NEK1>YAP1 axis is a key determinant for cancer progression, particularly during the process of androgen-sensitive to -independent conversion during progression to mCRPC.
Collapse
Affiliation(s)
- Md Imtiaz Khalil
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71130, USA; (M.I.K.); (I.G.); (V.S.)
| | - Ishita Ghosh
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71130, USA; (M.I.K.); (I.G.); (V.S.)
| | - Vibha Singh
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71130, USA; (M.I.K.); (I.G.); (V.S.)
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry and Proteomics Core, Center for Structural Biology, University of Kentucky, Lexington, KY 40506, USA; (J.C.); (H.Z.)
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry and Proteomics Core, Center for Structural Biology, University of Kentucky, Lexington, KY 40506, USA; (J.C.); (H.Z.)
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA 71130, USA; (M.I.K.); (I.G.); (V.S.)
- Correspondence: ; Tel.: +1-31-8675-5668
| |
Collapse
|
11
|
Fractionation-Dependent Radiosensitization by Molecular Targeting of Nek1. Cells 2020; 9:cells9051235. [PMID: 32429458 PMCID: PMC7291120 DOI: 10.3390/cells9051235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/13/2023] Open
Abstract
NIMA (never-in-mitosis gene A)-related kinase 1 (Nek1) is shown to impact on different cellular pathways such as DNA repair, checkpoint activation, and apoptosis. Its role as a molecular target for radiation sensitization of malignant cells, however, remains elusive. Stably transduced doxycycline (Dox)-inducible Nek1 shRNA HeLa cervix and siRNA-transfected HCT-15 colorectal carcinoma cells were irradiated in vitro and 3D clonogenic radiation survival, residual DNA damage, cell cycle distribution, and apoptosis were analyzed. Nek1 knockdown (KD) sensitized both cell lines to ionizing radiation following a single dose irradiation and more pronounced in combination with a 6 h fractionation (3 × 2 Gy) regime. For preclinical analyses we focused on cervical cancer. Nek1 shRNA HeLa cells were grafted into NOD/SCID/IL-2Rγc−/− (NSG) mice and Nek1 KD was induced by Dox-infused drinking water resulting in a significant cytostatic effect if combined with a 6 h fractionation (3 × 2 Gy) regime. In addition, we correlated Nek1 expression in biopsies of patients with cervical cancer with histopathological parameters and clinical follow-up. Our results indicate that elevated levels of Nek1 were associated with an increased rate of local or distant failure, as well as with impaired cancer-specific and overall survival in univariate analyses and for most endpoints in multivariable analyses. Finally, findings from The Cancer Genome Atlas (TCGA) validation cohort confirmed a significant association of high Nek1 expression with a reduced disease-free survival. In conclusion, we consider Nek1 to represent a novel biomarker and potential therapeutic target for drug development in the context of optimized fractionation intervals.
Collapse
|
12
|
Singh V, Khalil MI, De Benedetti A. The TLK1/Nek1 axis contributes to mitochondrial integrity and apoptosis prevention via phosphorylation of VDAC1. Cell Cycle 2020; 19:363-375. [PMID: 31914854 PMCID: PMC7028156 DOI: 10.1080/15384101.2019.1711317] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The TLK1/Nek1 axis contributes to cell cycle arrest and implementation of the DDR to mediate survival upon DNA damage. However, when the damage is too severe, the cells typically are forced into apoptosis, and the contribution of TLKs in this process has not been investigated. In contrast, it is known that Nek1 may play a role by phosphorylating VDAC1 maintaining proper opening and closure of the channel and thus mitochondrial integrity. We now show that the activating phosphorylation of Nek1-T141 by TLK1 contributes to the phosphorylation and stability of VDAC1 and thereby to mitochondrial permeability and integrity. Treatment of three different cell lines model that overexpress Nek1-T141A mutant with doxorubicin showed exquisite sensitivity to the drug, with implementation of rapid accumulation of cells with subG1 DNA content (apoptotic) and other alterations in the cell cycle. In addition, these cells displayed reduced oxygen consumption under normal conditions and less reliance on mitochondria and more dependence on glycolysis for energy production. Consistent with greater apoptosis, upon treatment with low doses of doxorubicin, cells overexpressing Nek1-T141A displayed leakage of Cyt-C into the cytoplasmic fraction. This suggests that inhibiting the TLK1/Nek1/VDAC1 nexus could sensitize cancer cells to apoptotic killing in combination with an appropriate DNA damaging agent. We in fact have previously reported that Nek1 expression is elevated in advanced Prostate Cancer (PCa) and we now report that VDAC1 expression is elevated and correlated with disease stage, thereby making the TLK1/Nek1/VDAC1 nexus a very attractive target for PCa.
Collapse
Affiliation(s)
- Vibha Singh
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Md Imtiaz Khalil
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Arrigo De Benedetti
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| |
Collapse
|
13
|
Zhong A, Chang M, Yu T, Gau R, Riley DJ, Chen Y, Chen PL. Aberrant DNA damage response and DNA repair pathway in high glucose conditions. JOURNAL OF CANCER RESEARCH UPDATES 2018; 7:64-74. [PMID: 30498558 PMCID: PMC6258084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
BACKGROUND Higher cancer rates and more aggressive behavior of certain cancers have been reported in populations with diabetes mellitus. This association has been attributed in part to the excessive reactive oxygen species generated in diabetic conditions and to the resulting oxidative DNA damage. It is not known, however, whether oxidative stress is the only contributing factor to genomic instability in patients with diabetes or whether high glucose directly also affects DNA damage and repair pathways. RESULTS Normal renal epithelial cells and renal cell carcinoma cells are more chemo- and radiation resistant when cultured in high concentrations of glucose. In high glucose conditions, the CHK1-mediated DNA damage response is not activated properly. Cells in high glucose also have slower DNA repair rates and accumulate more mutations than cells grown in normal glucose concentrations. Ultimately, these cells develop a transforming phenotype. CONCLUSIONS In high glucose conditions, defective DNA damage responses most likely contribute to the higher mutation rate in renal epithelial cells, in addition to oxidative DNA damage. The DNA damage and repair are normal enzyme dependent mechanisms requiring euglycemic environments. Aberrant DNA damage response and repair in cells grown in high glucose conditions underscore the importance of maintaining good glycemic control in patients with diabetes mellitus and cancer.
Collapse
Affiliation(s)
- Amy Zhong
- Department of Medicine, Division of Endocrinology, University of California at Irvine
| | - Melissa Chang
- Department of Medicine, Division of Endocrinology, University of California at Irvine
| | - Theresa Yu
- Department of Medicine, Division of Endocrinology, University of California at Irvine
| | - Raymond Gau
- Department of Medicine, Division of Endocrinology, University of California at Irvine
| | - Daniel J. Riley
- Department of Medicine, Division of Nephrology, University of Texas Health San Antonio
| | - Yumay Chen
- Department of Medicine, Division of Endocrinology, University of California at Irvine
- Diabetic Center, University of California at Irvine
| | - Phang-Lang Chen
- Department of Biological Chemistry, University of California at Irvine
| |
Collapse
|
14
|
Dang TT, Westcott JM, Maine EA, Kanchwala M, Xing C, Pearson GW. ΔNp63α induces the expression of FAT2 and Slug to promote tumor invasion. Oncotarget 2017; 7:28592-611. [PMID: 27081041 PMCID: PMC5053748 DOI: 10.18632/oncotarget.8696] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 01/29/2023] Open
Abstract
Tumor invasion can be induced by changes in gene expression that alter cell phenotype. The transcription factor ΔNp63α promotes basal-like breast cancer (BLBC) migration by inducing the expression of the mesenchymal genes Slug and Axl, which confers cells with a hybrid epithelial/mesenchymal state. However, the extent of the ΔNp63α regulated genes that support invasive behavior is not known. Here, using gene expression analysis, ChIP-seq, and functional testing, we find that ΔNp63α promotes BLBC motility by inducing the expression of the atypical cadherin FAT2, the vesicular binding protein SNCA, the carbonic anhydrase CA12, the lipid binding protein CPNE8 and the kinase NEK1, along with Slug and Axl. Notably, lung squamous cell carcinoma migration also required ΔNp63α dependent FAT2 and Slug expression, demonstrating that ΔNp63α promotes migration in multiple tumor types by inducing mesenchymal and non-mesenchymal genes. ΔNp63α activation of FAT2 and Slug influenced E-cadherin localization to cell-cell contacts, which can restrict spontaneous cell movement. Moreover, live-imaging of spheroids in organotypic culture demonstrated that ΔNp63α, FAT2 and Slug were essential for the extension of cellular protrusions that initiate collective invasion. Importantly, ΔNp63α is co-expressed with FAT2 and Slug in patient tumors and the elevated expression of ΔNp63α, FAT2 and Slug correlated with poor patient outcome. Together, these results reveal how ΔNp63α promotes cell migration by directly inducing the expression of a cohort of genes with distinct cellular functions and suggest that FAT2 is a new regulator of collective invasion that may influence patient outcome.
Collapse
Affiliation(s)
- Tuyen T Dang
- Harold C. Simmons Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | - Jill M Westcott
- Harold C. Simmons Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | - Erin A Maine
- Harold C. Simmons Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | - Mohammed Kanchwala
- McDermott Center for Human Growth and Disease, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | - Chao Xing
- McDermott Center for Human Growth and Disease, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | - Gray W Pearson
- Harold C. Simmons Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA.,Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| |
Collapse
|
15
|
NEK1 kinase domain structure and its dynamic protein interactome after exposure to Cisplatin. Sci Rep 2017; 7:5445. [PMID: 28710492 PMCID: PMC5511132 DOI: 10.1038/s41598-017-05325-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/02/2017] [Indexed: 11/11/2022] Open
Abstract
NEK family kinases are serine/threonine kinases that have been functionally implicated in the regulation of the disjunction of the centrosome, the assembly of the mitotic spindle, the function of the primary cilium and the DNA damage response. NEK1 shows pleiotropic functions and has been found to be mutated in cancer cells, ciliopathies such as the polycystic kidney disease, as well as in the genetic diseases short-rib thoracic dysplasia, Mohr-syndrome and amyotrophic lateral sclerosis. NEK1 is essential for the ionizing radiation DNA damage response and priming of the ATR kinase and of Rad54 through phosphorylation. Here we report on the structure of the kinase domain of human NEK1 in its apo- and ATP-mimetic inhibitor bound forms. The inhibitor bound structure may allow the design of NEK specific chemo-sensitizing agents to act in conjunction with chemo- or radiation therapy of cancer cells. Furthermore, we characterized the dynamic protein interactome of NEK1 after DNA damage challenge with cisplatin. Our data suggest that NEK1 and its interaction partners trigger the DNA damage pathways responsible for correcting DNA crosslinks.
Collapse
|
16
|
Spies J, Waizenegger A, Barton O, Sürder M, Wright WD, Heyer WD, Löbrich M. Nek1 Regulates Rad54 to Orchestrate Homologous Recombination and Replication Fork Stability. Mol Cell 2016; 62:903-917. [PMID: 27264870 DOI: 10.1016/j.molcel.2016.04.032] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 03/23/2016] [Accepted: 04/26/2016] [Indexed: 11/17/2022]
Abstract
Never-in-mitosis A-related kinase 1 (Nek1) has established roles in apoptosis and cell cycle regulation. We show that human Nek1 regulates homologous recombination (HR) by phosphorylating Rad54 at Ser572 in late G2 phase. Nek1 deficiency as well as expression of unphosphorylatable Rad54 (Rad54-S572A) cause unresolved Rad51 foci and confer a defect in HR. Phospho-mimic Rad54 (Rad54-S572E), in contrast, promotes HR and rescues the HR defect associated with Nek1 loss. Although expression of phospho-mimic Rad54 is beneficial for HR, it causes Rad51 removal from chromatin and degradation of stalled replication forks in S phase. Thus, G2-specific phosphorylation of Rad54 by Nek1 promotes Rad51 chromatin removal during HR in G2 phase, and its absence in S phase is required for replication fork stability. In summary, Nek1 regulates Rad51 removal to orchestrate HR and replication fork stability.
Collapse
Affiliation(s)
- Julian Spies
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Anja Waizenegger
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Olivia Barton
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Michael Sürder
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - William D Wright
- Section of Microbiology, University of California, Davis, Davis, CA 95616-8665, USA
| | - Wolf-Dietrich Heyer
- Section of Microbiology, University of California, Davis, Davis, CA 95616-8665, USA
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany.
| |
Collapse
|
17
|
Cabral de Almeida Cardoso L, Rodriguez-Laguna L, del Carmen Crespo M, Vallespín E, Palomares-Bralo M, Martin-Arenas R, Rueda-Arenas I, Silvestre de Faria PA, García-Miguel P, Lapunzina P, Regla Vargas F, Seuanez HN, Martínez-Glez V. Array CGH Analysis of Paired Blood and Tumor Samples from Patients with Sporadic Wilms Tumor. PLoS One 2015; 10:e0136812. [PMID: 26317783 PMCID: PMC4552764 DOI: 10.1371/journal.pone.0136812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/07/2015] [Indexed: 11/24/2022] Open
Abstract
Wilms tumor (WT), the most common cancer of the kidney in infants and children, has a complex etiology that is still poorly understood. Identification of genomic copy number variants (CNV) in tumor genomes provides a better understanding of cancer development which may be useful for diagnosis and therapeutic targets. In paired blood and tumor DNA samples from 14 patients with sporadic WT, analyzed by aCGH, 22% of chromosome abnormalities were novel. All constitutional alterations identified in blood were segmental (in 28.6% of patients) and were also present in the paired tumor samples. Two segmental gains (2p21 and 20q13.3) and one loss (19q13.31) present in blood had not been previously described in WT. We also describe, for the first time, a small, constitutive partial gain of 3p22.1 comprising 2 exons of CTNNB1, a gene associated to WT. Among somatic alterations, novel structural chromosomal abnormalities were found, like gain of 19p13.3 and 20p12.3, and losses of 2p16.1-p15, 4q32.5-q35.1, 4q35.2-q28.1 and 19p13.3. Candidate genes included in these regions might be constitutively (SIX3, SALL4) or somatically (NEK1, PIAS4, BMP2) operational in the development and progression of WT. To our knowledge this is the first report of CNV in paired blood and tumor samples in sporadic WT.
Collapse
Affiliation(s)
| | - Lara Rodriguez-Laguna
- Section of Functional and Structural Genomics, Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - María del Carmen Crespo
- Section of Functional and Structural Genomics, Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Elena Vallespín
- Section of Functional and Structural Genomics, Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - María Palomares-Bralo
- Section of Functional and Structural Genomics, Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
| | - Rubén Martin-Arenas
- Section of Functional and Structural Genomics, Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Inmaculada Rueda-Arenas
- Section of Functional and Structural Genomics, Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | | | | | | | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- Section of Clinical Genetics, Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Fernando Regla Vargas
- Genetics Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Birth Defects Epidemiology Laboratory, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Hector N. Seuanez
- Genetics Division, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
- Genetics Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Víctor Martínez-Glez
- Section of Functional and Structural Genomics, Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- * E-mail:
| |
Collapse
|
18
|
Chen Y, Chiang HC, Litchfield P, Pena M, Juang C, Riley DJ. Expression of Nek1 during kidney development and cyst formation in multiple nephron segments in the Nek1-deficient kat2J mouse model of polycystic kidney disease. J Biomed Sci 2014; 21:63. [PMID: 25030234 PMCID: PMC4422189 DOI: 10.1186/s12929-014-0063-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/03/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neks, mammalian orthologs of the fungal protein kinase never-in-mitosis A, have been implicated in the pathogenesis of polycystic kidney disease. Among them, Nek1 is the primary protein inactivated in kat2J mouse models of PKD. RESULT We report the expression pattern of Nek1 and characterize the renal cysts that develop in kat2J mice. Nek1 is detectable in all murine tissues but its expression in wild type and kat2J heterozygous kidneys decrease as the kidneys mature, especially in tubular epithelial cells. In the embryonic kidney, Nek1 expression is most prominent in cells that will become podocytes and proximal tubules. Kidney development in kat2J homozygous mice is aberrant early, before the appearance of gross cysts: developing cortical zones are thin, populated by immature glomeruli, and characterized by excessive apoptosis of several cell types. Cysts in kat2J homozygous mice form postnatally in Bowman's space as well as different tubular subtypes. Late in life, kat2J heterozygous mice form renal cysts and the cells lining these cysts lack staining for Nek1. The primary cilia of cells lining cysts in kat2J homozygous mice are morphologically diverse: in some cells they are unusually long and in others there are multiple cilia of varying lengths. CONCLUSION Our studies indicate that Nek1 deficiency leads to disordered kidney maturation, and cysts throughout the nephron.
Collapse
Affiliation(s)
- Yumay Chen
- Department of Medicine, Division of Endocrinology, University of California, Gross Hall 1130, Mail Code, 4086, Irvine, CA, 92697, USA.
| | - Huai-Chin Chiang
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, USA.
| | - Patricia Litchfield
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, USA.
| | - Michelle Pena
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, USA.
| | - Charity Juang
- Department of Medicine, Division of Endocrinology, University of California, Gross Hall 1130, Mail Code, 4086, Irvine, CA, 92697, USA.
| | - Daniel J Riley
- Department of Medicine, Division of Nephrology, The University of Texas Health Science Center at San Antonio, San Antonio, USA.
- University Transplant Center, The University of Texas Health Science Center at San Antonio, Medicine/Nephrology, MC 7882, 7703 Floyd Curl Dr, San Antonio, TX, 78229-3900, USA.
- Renal Research Division, South Texas Veterans Health Care System, Audie L. Murphy Division, 7703 Floyd Curl Dr, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|