1
|
Zhao W, Ye J, Yang X, Wang J, Cong L, Zhang Q, Li J. Rynchopeterine inhibits the formation of hypertrophic scars by regulating the miR-21/HIF1AN axis. Exp Cell Res 2024; 440:114114. [PMID: 38823472 DOI: 10.1016/j.yexcr.2024.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Hypertrophic scar (HS) is a fibroproliferative skin disease characterized by abnormal wound healing and pathological excessive fibrosis of the skin. Currently, the molecular mechanism of the disease is still largely unknown, and there is no effective drug treatment. In this study, we explored the effect of Rynchopeterine on the formation of HS. HS fibroblasts (HSFs) were isolated from the HS tissues of patients recovering from severe burns. After treating HSFs with different concentrations of Rynchopeterine, CCK-8, EdU, and Annexin V-FITC/PI assays were used to detect the proliferation, apoptosis, and contractile ability of HSFs. RT-qPCR and Western blotting were performed to evaluate the effect of Rynchopeterine on the expression of miR-21 and hypoxia-inducible factor 1-alpha subunit suppressor (HIF1AN). The dual-luciferase reporter gene was used to verify the targeting relationship between miR-21 and HIF1AN. Rynchopeterine reduced the expression of Col1a2, Col3a1, and α-SMA, inhibited proliferation and contraction of HSFs, and increased apoptosis in a dose-dependent manner. miR-21 was highly expressed in HS tissues and HSFs, and Rynchopeterine could inhibit miR-21 expression. Overexpression of miR-21 and knockdown of HIF1AN increased proliferation, activation, contraction, and collagen synthesis of HSFs, and inhibited their apoptosis. In vivo, Rynchopeterine could reduce the collagen content of the dermis and the positive ratio of PCNA and α-SMA. Rynchopeterine is a good therapeutic agent for HS, which up-regulates the expression of HIF1AN by inhibiting miR-21, thereby inhibiting the formation of HS.
Collapse
Affiliation(s)
- Wenbin Zhao
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, Yunnan, China.
| | - Jianzhou Ye
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, Yunnan, China
| | - Xuesong Yang
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, Yunnan, China
| | - Jialan Wang
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, Yunnan, China
| | - Lin Cong
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, Yunnan, China
| | - Qiongyu Zhang
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, Yunnan, China
| | - Jiaqi Li
- Department of Dermatology, First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming 650021, Yunnan, China
| |
Collapse
|
2
|
Dai S, Xu M, Pang Q, Sun J, Lin X, Chu X, Guo C, Xu J. Hypoxia macrophage-derived exosomal miR-26b-5p targeting PTEN promotes the development of keloids. BURNS & TRAUMA 2024; 12:tkad036. [PMID: 38434721 PMCID: PMC10905499 DOI: 10.1093/burnst/tkad036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 05/11/2023] [Accepted: 06/21/2023] [Indexed: 03/05/2024]
Abstract
Background Hypoxia is the typical characteristic of keloids. The development of keloids is closely related to the abnormal phenotypic transition of macrophages. However, the role of exosomal microRNAs (miRNAs) derived from hypoxic macrophages in keloids remains unclear. This study aimed to explore the role of hypoxic macrophage-derived exosomes (HMDE) in the occurrence and development of keloids and identify the critical miRNA. Methods The expression of CD206+ M2 macrophage in keloids and normal skin tissues was examined through immunofluorescence. The polarization of macrophages under a hypoxia environment was detected through flow cytometry. The internalization of macrophage-derived exosomes in human keloid fibroblasts (HKFs) was detected using a confocal microscope. miRNA sequencing was used to explore the differentially expressed miRNAs in exosomes derived from the normoxic and hypoxic macrophage. Subsequently, the dual-luciferase reporter assay verified that phosphatase and tension homolog (PTEN) was miR-26b-5p's target. The biological function of macrophage-derived exosomes, miR-26b-5p and PTEN were detected using the CCK-8, wound-healing and Transwell assays. Western blot assay was used to confirm the miR-26b-5p's underlying mechanisms and PTEN-PI3K/AKT pathway. Results We demonstrated that M2-type macrophages were enriched in keloids and that hypoxia treatment could polarize macrophages toward M2-type. Compared with normoxic macrophages-derived exosomes (NMDE), HMDE promote the proliferation, migration and invasion of HKFs. A total of 38 differential miRNAs (18 upregulated and 20 downregulated) were found between the NMDE and HMDE. miR-26b-5p was enriched in HMDE, which could be transmitted to HKFs. According to the results of the functional assay, exosomal miR-26b-5p produced by macrophages facilitated HKFs' migration, invasion and proliferation via the PTEN-PI3K/AKT pathway. Conclusions The highly expressed miR-26b-5p in HMDE promotes the development of keloids via the PTEN-PI3K/AKT pathway.
Collapse
Affiliation(s)
- Siya Dai
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Mingyuan Xu
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Qianqian Pang
- Department of Plastic Surgery, Ningbo Second Hospital, 41 Xibei Street, Ningbo, China
| | - Jiaqi Sun
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Xiaohu Lin
- Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, 158 Shangtang Road, Gongshu District, Hangzhou, China
| | - Xi Chu
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Chunyi Guo
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| | - Jinghong Xu
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Shangcheng District, Hangzhou, China
| |
Collapse
|
3
|
Guo Y, Wang H, Lyu R, Wang J, Wang T, Shi J, Lyu L. Nanocarrier-Mediated Delivery of MicroRNAs for Fibrotic Diseases. Mol Diagn Ther 2024; 28:53-67. [PMID: 37897655 DOI: 10.1007/s40291-023-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/30/2023]
Abstract
MicroRNAs (miRNAs) are endogenous noncoding RNAs that mediate the fibrotic process by regulating multiple targets. MicroRNA-based therapy can restore or inhibit miRNA expression and is expected to become an effective approach to prevent and alleviate fibrotic diseases. However, the safe, targeted, and effective delivery of miRNAs is a major challenge in translating miRNA therapy from bench to bedside. In this review, we briefly describe the pathophysiological process of fibrosis and the mechanism by which miRNAs regulate the progression of fibrosis. Additionally, we summarize the miRNA nanodelivery tools for fibrotic diseases, including chemical modifications and polymer-based, lipid-based, and exosome-based delivery systems. Further clarification of the role of miRNAs in fibrosis and the development of a novel nanodelivery system may facilitate the prevention and alleviation of fibrotic diseases in the future.
Collapse
Affiliation(s)
- Yanfang Guo
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Hanying Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Rumin Lyu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Juan Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Ting Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China
| | - Jingpei Shi
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Kunming Medical University, Kunming, 650106, Yunnan, China.
| | - Lechun Lyu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, 1168 West Chunrong Road, Yuhua Avenue, Chenggong District, Kunming, 650500, Yunnan, China.
| |
Collapse
|
4
|
Mason W, Levin AM, Buhl K, Ouchi T, Parker B, Tan J, Ashammakhi N, Jones LR. Translational Research Techniques for the Facial Plastic Surgeon: An Overview. Facial Plast Surg 2023; 39:466-473. [PMID: 37339663 DOI: 10.1055/a-2113-5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023] Open
Abstract
The field of facial plastic and reconstructive surgery (FPRS) is an incredibly diverse, multispecialty field that seeks innovative and novel solutions for the management of physical defects on the head and neck. To aid in the advancement of medical and surgical treatments for these defects, there has been a recent emphasis on the importance of translational research. With recent technological advancements, there are now a myriad of research techniques that are widely accessible for physician and scientist use in translational research. Such techniques include integrated multiomics, advanced cell culture and microfluidic tissue models, established animal models, and emerging computer models generated using bioinformatics. This study discusses these various research techniques and how they have and can be used for research in the context of various important diseases within the field of FPRS.
Collapse
Affiliation(s)
- William Mason
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Albert M Levin
- Department of Public Health Science, Henry Ford Health, Detroit, Michigan
- Center for Bioinformatics, Henry Ford Health, Detroit, Michigan
| | - Katherine Buhl
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Takahiro Ouchi
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Bianca Parker
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Jessica Tan
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| | - Nureddin Ashammakhi
- Institute for Quantitative Health Science and Engineering, Michigan State University, Michigan
- Department of Biomedical Engineering, College of Engineering, Michigan State University, Michigan
- College of Human Medicine, Michigan State University, Michigan
| | - Lamont R Jones
- Department of Otolaryngology, Henry Ford Hospital, Detroit, Michigan
| |
Collapse
|
5
|
Zheng Y, Huang Q, Zhang Y, Geng L, Wang W, Zhang H, He X, Li Q. Multimodal roles of transient receptor potential channel activation in inducing pathological tissue scarification. Front Immunol 2023; 14:1237992. [PMID: 37705977 PMCID: PMC10497121 DOI: 10.3389/fimmu.2023.1237992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Transient receptor potential (TRP) channels are a class of transmembrane proteins that can sense a variety of physical/chemical stimuli, participate in the pathological processes of various diseases and have attracted increasing attention from researchers. Recent studies have shown that some TRP channels are involved in the development of pathological scarification (PS) and directly participate in PS fibrosis and re-epithelialization or indirectly activate immune cells to release cytokines and neuropeptides, which is subdivided into immune inflammation, fibrosis, pruritus and mechanical forces increased. This review elaborates on the characteristics of TRP channels, the mechanism of PS and how TRP channels mediate the development of PS, summarizes the important role of TRP channels in the different pathogenesis of PS and proposes that therapeutic strategies targeting TRP will be important for the prevention and treatment of PS. TRP channels are expected to become new targets for PS, which will make further breakthroughs and provide potential pharmacological targets and directions for the in-depth study of PS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiang He
- Department of Dermatology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiannan Li
- Department of Dermatology, Shuguang Hospital Affiliated with Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Zhang M, Chen H, Qian H, Wang C. Characterization of the skin keloid microenvironment. Cell Commun Signal 2023; 21:207. [PMID: 37587491 PMCID: PMC10428592 DOI: 10.1186/s12964-023-01214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/02/2023] [Indexed: 08/18/2023] Open
Abstract
Keloids are a fibroproliferative skin disorder that develops in people of all ages. Keloids exhibit some cancer-like behaviors, with similar genetic and epigenetic modifications in the keloid microenvironment. The keloid microenvironment is composed of keratinocytes, fibroblasts, myofibroblasts, vascular endothelial cells, immune cells, stem cells and collagen fibers. Recent advances in the study of keloids have led to novel insights into cellular communication among components of the keloid microenvironment as well as potential therapeutic targets for treating keloids. In this review, we summarized the nature of genetic and epigenetic regulation in keloid-derived fibroblasts, epithelial-to-mesenchymal transition of keratinocytes, immune cell infiltration into keloids, the differentiation of keloid-derived stem cells, endothelial-to-mesenchymal transition of vascular endothelial cells, extracellular matrix synthesis and remodeling, and uncontrolled angiogenesis in keloids with the aim of identifying new targets for therapeutic benefit. Video Abstract.
Collapse
Affiliation(s)
- Mengwen Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Hailong Chen
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Huan Qian
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Chen Wang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
7
|
Ma Y, Liu Z, Miao L, Jiang X, Ruan H, Xuan R, Xu S. Mechanisms underlying pathological scarring by fibroblasts during wound healing. Int Wound J 2023. [PMID: 36726192 DOI: 10.1111/iwj.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Pathological scarring is an abnormal outcome of wound healing, which often manifests as excessive proliferation and transdifferentiation of fibroblasts (FBs), and excessive deposition of the extracellular matrix. FBs are the most important effector cells involved in wound healing and scar formation. The factors that promote pathological scar formation often act on the proliferation and function of FB. In this study, we describe the factors that lead to abnormal FB formation in pathological scarring in terms of the microenvironment, signalling pathways, epigenetics, and autophagy. These findings suggest that understanding the causes of abnormal FB formation may aid in the development of precise and effective preventive and treatment strategies for pathological scarring that are associated with improved quality of life of patients.
Collapse
Affiliation(s)
- Yizhao Ma
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Zhifang Liu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - LinLin Miao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Xinyu Jiang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Hongyu Ruan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Rongrong Xuan
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| | - Suling Xu
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
8
|
Volkova YL, Pickel C, Jucht AE, Wenger RH, Scholz CC. The Asparagine Hydroxylase FIH: A Unique Oxygen Sensor. Antioxid Redox Signal 2022; 37:913-935. [PMID: 35166119 DOI: 10.1089/ars.2022.0003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Limited oxygen availability (hypoxia) commonly occurs in a range of physiological and pathophysiological conditions, including embryonic development, physical exercise, inflammation, and ischemia. It is thus vital for cells and tissues to monitor their local oxygen availability to be able to adjust in case the oxygen supply is decreased. The cellular oxygen sensor factor inhibiting hypoxia-inducible factor (FIH) is the only known asparagine hydroxylase with hypoxia sensitivity. FIH uniquely combines oxygen and peroxide sensitivity, serving as an oxygen and oxidant sensor. Recent Advances: FIH was first discovered in the hypoxia-inducible factor (HIF) pathway as a modulator of HIF transactivation activity. Several other FIH substrates have now been identified outside the HIF pathway. Moreover, FIH enzymatic activity is highly promiscuous and not limited to asparagine hydroxylation. This includes the FIH-mediated catalysis of an oxygen-dependent stable (likely covalent) bond formation between FIH and selected substrate proteins (called oxomers [oxygen-dependent stable protein oligomers]). Critical Issues: The (patho-)physiological function of FIH is only beginning to be understood and appears to be complex. Selective pharmacologic inhibition of FIH over other oxygen sensors is possible, opening new avenues for therapeutic targeting of hypoxia-associated diseases, increasing the interest in its (patho-)physiological relevance. Future Directions: The contribution of FIH enzymatic activity to disease development and progression should be analyzed in more detail, including the assessment of underlying molecular mechanisms and relevant FIH substrate proteins. Also, the molecular mechanism(s) involved in the physiological functions of FIH remain(s) to be determined. Furthermore, the therapeutic potential of recently developed FIH-selective pharmacologic inhibitors will need detailed assessment. Antioxid. Redox Signal. 37, 913-935.
Collapse
Affiliation(s)
- Yulia L Volkova
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Christina Pickel
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Roland H Wenger
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Carsten C Scholz
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Xia Y, Wang Y, Shan M, Hao Y, Liu H, Chen Q, Liang Z. Advances in the pathogenesis and clinical application prospects of tumor biomolecules in keloid. BURNS & TRAUMA 2022; 10:tkac025. [PMID: 35769828 PMCID: PMC9233200 DOI: 10.1093/burnst/tkac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/13/2022] [Indexed: 12/29/2022]
Abstract
Keloid scarring is a kind of pathological healing manifestation after skin injury and possesses various tumor properties, such as the Warburg effect, epithelial-mesenchymal transition (EMT), expression imbalances of apoptosis-related genes and the presence of stem cells. Abnormal expression of tumor signatures is critical to the initiation and operation of these effects. Although previous experimental studies have recognized the potential value of a single or several tumor biomolecules in keloids, a comprehensive evaluation system for multiple tumor signatures in keloid scarring is still lacking. This paper aims to summarize tumor biomolecules in keloids from the perspectives of liquid biopsy, genetics, proteomics and epigenetics and to investigate their mechanisms of action and feasibility from bench to bedside. Liquid biopsy is suitable for the early screening of people with keloids due to its noninvasive and accurate performance. Epigenetic biomarkers do not require changes in the gene sequence and their reversibility and tissue specificity make them ideal therapeutic targets. Nonetheless, given the ethnic specificity and genetic predisposition of keloids, more large-sample multicenter studies are indispensable for determining the prevalence of these signatures and for establishing diagnostic criteria and therapeutic efficacy estimations based on these molecules.
Collapse
Affiliation(s)
- Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiao Chen
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Zhengyun Liang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
10
|
Amjadian S, Moradi S, Mohammadi P. The emerging therapeutic targets for scar management: genetic and epigenetic landscapes. Skin Pharmacol Physiol 2022; 35:247-265. [PMID: 35696989 PMCID: PMC9533440 DOI: 10.1159/000524990] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022]
Abstract
Background Wound healing is a complex process including hemostasis, inflammation, proliferation, and remodeling during which an orchestrated array of biological and molecular events occurs to promote skin regeneration. Abnormalities in each step of the wound healing process lead to reparative rather than regenerative responses, thereby driving the formation of cutaneous scar. Patients suffering from scars represent serious health problems such as contractures, functional and esthetic concerns as well as painful, thick, and itchy complications, which generally decrease the quality of life and impose high medical costs. Therefore, therapies reducing cutaneous scarring are necessary to improve patients' rehabilitation. Summary Current approaches to remove scars, including surgical and nonsurgical methods, are not efficient enough, which is in principle due to our limited knowledge about underlying mechanisms of pathological as well as the physiological wound healing process. Thus, therapeutic interventions focused on basic science including genetic and epigenetic knowledge are recently taken into consideration as promising approaches for scar management since they have the potential to provide targeted therapies and improve the conventional treatments as well as present opportunities for combination therapy. In this review, we highlight the recent advances in skin regenerative medicine through genetic and epigenetic approaches to achieve novel insights for the development of safe, efficient, and reproducible therapies and discuss promising approaches for scar management. Key Message Genetic and epigenetic regulatory switches are promising targets for scar management, provided the associated challenges are to be addressed.
Collapse
Affiliation(s)
- Sara Amjadian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Parvaneh Mohammadi
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- *Parvaneh Mohammadi,
| |
Collapse
|
11
|
CircSLC8A1 targets miR-181a-5p/HIF1AN pathway to inhibit the growth, migration and extracellular matrix deposition of human keloid fibroblasts. Burns 2022; 49:622-632. [PMID: 35610079 DOI: 10.1016/j.burns.2022.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/28/2021] [Accepted: 04/15/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) are identified as important regulators in human diseases, including keloid. The purpose of this study is to reveal the role and molecular mechanism of circSLC8A1 in keloid formation. METHODS Expression of circSLC8A1, microRNA (miR)-181a-5p, and hypoxia inducible factor 1 alpha inhibitor (HIF1AN) were detected by quantitative real-time PCR. Protein expression of extracellular matrix (ECM) deposition markers and HIF1AN was detected by western blot analysis. Furthermore, the interaction between miR-181a-5p and circSLC8A1 or HIF1AN was confirmed by dual-luciferase reporter assay, RIP assay and RNA pull-down assay. RESULTS Expression of circSLC8A1 was downregulated in keloid tissues and HKFs. Overexpression of circSLC8A1 suppressed HKFs proliferation, migration, ECM deposition, and promoted apoptosis. MiR-181a-5p is targeted by circSLC8A1, and its mimic reversed the effect of circSLC8A1 on the biological function of HKFs. HIF1AN was a target of miR-181a-5p, and it was positively regulated by circSLC8A1. Knockdown of HIF1AN also reversed the negatively regulation of circSLC8A1 on the biological functions of HKFs. CONCLUSION Our data showed that circSLC8A1 regulates the miR-181a-5p/HIF1AN axis to restrain HKFs biological functions, confirming that circSLC8A1 might serve as a novel therapeutic target for keloids.
Collapse
|
12
|
Stevenson AW, Deng Z, Allahham A, Prêle CM, Wood FM, Fear MW. The epigenetics of keloids. Exp Dermatol 2021; 30:1099-1114. [PMID: 34152651 DOI: 10.1111/exd.14414] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022]
Abstract
Keloid scarring is a fibroproliferative disorder of the skin with unknown pathophysiology, characterised by fibrotic tissue that extends beyond the boundaries of the original wound. Therapeutic options are few and commonly ineffective, with keloids very commonly recurring even after surgery and adjunct treatments. Epigenetics, defined as alterations to the DNA not involving the base-pair sequence, is a key regulator of cell functions, and aberrant epigenetic modifications have been found to contribute to many pathologies. Multiple studies have examined many different epigenetic modifications in keloids, including DNA methylation, histone modification, microRNAs and long non-coding RNAs. These studies have established that epigenetic dysregulation exists in keloid scars, and successful future treatment of keloids may involve reverting these aberrant modifications back to those found in normal skin. Here we summarise the clinical and experimental studies available on the epigenetics of keloids, discuss the major open questions and future perspectives on the treatment of this disease.
Collapse
Affiliation(s)
- Andrew W Stevenson
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Cecilia M Prêle
- Ear Science Centre, Medical School, The University of Western Australia, Perth, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Burns Service of Western Australia, Princess Margaret Hospital for Children and Fiona Stanley Hospital, Perth, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, WA, Australia.,Institute for Respiratory Health, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
13
|
Su X, Ma Y, Wang Q, Gao Y. LncRNA HOXA11-AS Aggravates Keloid Progression by the Regulation of HOXA11-AS-miR-205-5p-FOXM1 Pathway. J Surg Res 2020; 259:284-295. [PMID: 33261854 DOI: 10.1016/j.jss.2020.09.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/28/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Keloid is troublesome for patients' skin appearance and mental health, although it is a benign tumor. Long noncoding RNA (lncRNA) troubling keloid is frequently reported. The purpose of this study was to investigate the role of lncRNA homeobox (HOX) A11 antisense (HOXA11-AS) and related action mechanisms during the development of keloid. METHODS The expression of HOXA11-AS, miR-205-5p, and forkhead box M1 (FOXM1) was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation or apoptosis was assessed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium (MTT) assay or flow cytometry assay. Cell migration and invasion were monitored by transwell assay. The protein levels of extracellular matrix (ECM) proteins (collagen I and collagen III), fibronectin, glucose transporter 1 (GLUT1), lactate dehydrogenase A (LDHA), and FOXM1 were quantified by Western blot. Glycolysis processes were investigated by the glycolysis stress test, glucose consumption, and lactate production. The relationship between miR-205-5p and HOXA11-AS or FOXM1 was predicted by the online tool MIRcode or starBase v2.0 and verified by dual-luciferase reporter assay or RNA immunoprecipitation (RIP). RESULTS HOXA11-AS and FOXM1 were significantly upregulated in keloid tissues and keloid fibroblasts, while miR-205-5p was downregulated. HOXA11-AS knockdown or miR-205-5p enrichment inhibited proliferation, migration, invasion, ECM accumulation, and glycolysis but accelerated apoptosis of keloid fibroblasts. MiR-205-5p was targeted by HOXA11-AS, and its inhibition overturned the effects of HOXA11-AS knockdown. Moreover, FOXM1 was a target of miR-205-5p, and HOXA11-AS regulated the expression of FOXM1 by adsorbing miR-205-5p. FOXM1 overexpression abolished the role of miR-205-5p enrichment. CONCLUSIONS The HOXA11-AS-miR-205-5p-FOXM1 pathway may be an active mode in which HOXA11-AS participates in the progression of keloid.
Collapse
Affiliation(s)
- Xiaoguang Su
- Department of Plastic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Yaohui Ma
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Qing Wang
- Department of Dermatology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yanjun Gao
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
14
|
Lv W, Ren Y, Hou K, Hu W, Yi Y, Xiong M, Wu M, Wu Y, Zhang Q. Epigenetic modification mechanisms involved in keloid: current status and prospect. Clin Epigenetics 2020; 12:183. [PMID: 33243301 PMCID: PMC7690154 DOI: 10.1186/s13148-020-00981-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
Keloid, a common dermal fibroproliferative disorder, is benign skin tumors characterized by the aggressive fibroblasts proliferation and excessive accumulation of extracellular matrix. However, common therapeutic approaches of keloid have limited effectiveness, emphasizing the momentousness of developing innovative mechanisms and therapeutic strategies. Epigenetics, representing the potential link of complex interactions between genetics and external risk factors, is currently under intense scrutiny. Accumulating evidence has demonstrated that multiple diverse and reversible epigenetic modifications, represented by DNA methylation, histone modification, and non-coding RNAs (ncRNAs), play a critical role in gene regulation and downstream fibroblastic function in keloid. Importantly, abnormal epigenetic modification manipulates multiple behaviors of keloid-derived fibroblasts, which served as the main cellular components in keloid skin tissue, including proliferation, migration, apoptosis, and differentiation. Here, we have reviewed and summarized the present available clinical and experimental studies to deeply investigate the expression profiles and clarify the mechanisms of epigenetic modification in the progression of keloid, mainly including DNA methylation, histone modification, and ncRNAs (miRNA, lncRNA, and circRNA). Besides, we also provide the challenges and future perspectives associated with epigenetics modification in keloid. Deciphering the complicated epigenetic modification in keloid is hopeful to bring novel insights into the pathogenesis etiology and diagnostic/therapeutic targets in keloid, laying a foundation for optimal keloid ending.
Collapse
Affiliation(s)
- Wenchang Lv
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Yuping Ren
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Kai Hou
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Weijie Hu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Yi Yi
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Mingchen Xiong
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China
| | - Min Wu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| | - Yiping Wu
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| | - Qi Zhang
- Department of Plastic and Aesthetic Surgery, NO 1095 Jiefang Avenue, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, 430000, Hubei, China.
| |
Collapse
|
15
|
Li Y, Zhang H, Zhang S, Yan X, Shao Y, Jiang Y. Egg White peptide KPHAEVVLR promotes skin fibroblasts migration and mice skin wound healing by stimulating cell membrane Hsp90α secretion. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Penke LR, Peters-Golden M. Molecular determinants of mesenchymal cell activation in fibroproliferative diseases. Cell Mol Life Sci 2019; 76:4179-4201. [PMID: 31563998 PMCID: PMC6858579 DOI: 10.1007/s00018-019-03212-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/01/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Uncontrolled scarring, or fibrosis, can interfere with the normal function of virtually all tissues of the body, ultimately leading to organ failure and death. Fibrotic diseases represent a major cause of death in industrialized countries. Unfortunately, no curative treatments for these conditions are yet available, highlighting the critical need for a better fundamental understanding of molecular mechanisms that may be therapeutically tractable. The ultimate indispensable effector cells responsible for deposition of extracellular matrix proteins that comprise scars are mesenchymal cells, namely fibroblasts and myofibroblasts. In this review, we focus on the biology of these cells and the molecular mechanisms that regulate their pertinent functions. We discuss key pro-fibrotic mediators, signaling pathways, and transcription factors that dictate their activation and persistence. Because of their possible clinical and therapeutic relevance, we also consider potential brakes on mesenchymal cell activation and cellular processes that may facilitate myofibroblast clearance from fibrotic tissue-topics that have in general been understudied.
Collapse
Affiliation(s)
- Loka R Penke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA.
| |
Collapse
|
17
|
The integrative regulatory network of circRNA and microRNA in keloid scarring. Mol Biol Rep 2019; 47:201-209. [PMID: 31612410 DOI: 10.1007/s11033-019-05120-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/09/2019] [Indexed: 12/11/2022]
Abstract
Circular RNA (circRNA), a novel type of non-coding RNA that consists of a circular loop, has been demonstrated to act as a "sponge" for microRNAs (miRNAs). However, the role of circRNAs in keloid remains unknown. In this study, we investigated circRNA expression profiles in keloid to identify potential diagnostic and therapeutic circRNAs. We performed a circRNA microarray assay to determine circRNA expression in keloid and paired normal skin tissues. Quantitative reverse transcription polymerase chain reaction was used to evaluate the expression levels of candidate circRNAs. The most significantly over-expressed circRNA was used to predict putative miRNA targets and the binding sites of miRNAs with this circRNA. Finally, we constructed a circRNA-miRNA interaction network and carried out gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. We found 52 significantly upregulated and 24 downregulated circRNAs in keloid compared with normal skin tissue. We confirmed that hsa_circ_0057452, hsa_circ_0007482, hsa_circ_0020792, hsa_circ_0057342, and hsa_circ_0043688 were significantly upregulated in keloid tissues. Analysis of the circRNA-miRNA interaction network revealed that circRNAs could interact with miRNAs, including miRNA-29a, miRNA-23a-5p and miRNA-1976. GO and KEGG analyses indicated that these target genes were involved in biological functions and signaling pathways that may play vital roles in the pathogenesis of keloid. This study revealed that circRNAs are potentially implicated in the development of keloid and could serve as novel diagnostic and therapeutic targets.
Collapse
|
18
|
Wang R, Bai Z, Wen X, Du H, Zhou L, Tang Z, Yang Z, Ma W. MiR-152-3p regulates cell proliferation, invasion and extracellular matrix expression through by targeting FOXF1 in keloid fibroblasts. Life Sci 2019; 234:116779. [PMID: 31430452 DOI: 10.1016/j.lfs.2019.116779] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 10/26/2022]
Abstract
Emerging evidence has revealed that microRNAs (miRNAs) play critical roles in keloid pathogenesis. However, potential molecular mechanism of keloid formation remains unclear. In the present study, our findings showed that miR-152-3p mRNA expression level was notably up-regulated in keloid tissues and keloid fibroblasts compared with that of normal skin tissues and normal skin fibroblasts, respectively. Furthermore, miR-152-3p inhibition remarkably suppressed cell proliferation, which was increased by miR-152-3p overexpression. Cell invasion was also significantly decreased by miR-152-3p inhibition, whereas was increased by miR-152-3p overexpression. The mRNA and protein expression levels of extracellular matrix components including type I collagen, type III collagen and fibronectin were decreased by miR-152-3p inhibition, but were increased by miR-152-3p overexpression. In addition, results of dual-luciferase reporter assay indicated that FOXF1 is a direct target of miR-152-3p. FOXF1 overexpression significantly inhibits cell proliferation, invasion, and extracellular matrix in keloid fibroblasts, and the suppressive effects of miR-152-3p mimic on these functions were notably partly reversed by FOXF1 overexpression. Taken together, these findings indicated that miR-152-3p regulates cell proliferation, invasion and extracellular matrix expression through targeting FOXF1 in keloid fibroblasts, suggesting that miR-152-3p is a novel and promising molecular target for keloid treatment.
Collapse
Affiliation(s)
- Rui Wang
- Department of Plastic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhuanli Bai
- Department of Plastic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xiulin Wen
- Department of Plastic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Huicong Du
- Department of Plastic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lin Zhou
- Department of Plastic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhishui Tang
- Department of Plastic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhuangqun Yang
- Department of Plastic and Maxillofacial Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | - Wei Ma
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
19
|
Garg N, Kumar P, Gadhave K, Giri R. The dark proteome of cancer: Intrinsic disorderedness and functionality of HIF-1α along with its interacting proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:371-403. [PMID: 31521236 DOI: 10.1016/bs.pmbts.2019.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dark side of protein is the region (s) where molecular conformation is unknown. Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are the dark matter of biology due to inability to visualize them using standard structure elucidation technique such as X-ray crystallography due to lack in diffraction signal. IDPs are the functionally important class of proteins with entire protein or its parts lack ordered three-dimensional structure. Computational studies have predicted that nearly one-third of the human proteome is disordered, which gives the enormous flexibility and functional diversity to proteins. The conserved residues and elements in disordered proteins are critical for function and might be parts of peptide motifs or protein-protein interaction interfaces. For example, regions of proteins that are involved in disorder-based molecular recognition are known as molecular recognition features (MoRFs). Generally, MoRFs could undergo disorder to order transition or vice versa at interaction with specific partners. Hypoxia inducible factor 1α (HIF-1α) is a master transcriptional regulator involved in response to hypoxia, which is associated with many pathological conditions. Importantly, HIF-1α regulates various steps of cancer progression such as cell survival, tumor cell invasion, and metastasis. In this chapter, we have extensively analyzed the molecular recognition features and their relationship with disordered regions and associated structural islands of HIF-1α. We had also analyzed the disorderness and MoRFs of HIF-1α primary interaction partners that are enriched in IDPRs and MoRFs giving their role in protein-protein interaction and cancer regulation.
Collapse
Affiliation(s)
- Neha Garg
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, India.
| |
Collapse
|
20
|
|
21
|
Zhang Y, Guo B, Hui Q, Li W, Chang P, Tao K. Downregulation of miR‑637 promotes proliferation and metastasis by targeting Smad3 in keloids. Mol Med Rep 2018; 18:1628-1636. [PMID: 29845237 PMCID: PMC6072149 DOI: 10.3892/mmr.2018.9099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 05/23/2018] [Indexed: 12/22/2022] Open
Abstract
Keloids are a type of abnormal scar tissue. MicroRNAs (miRNAs) exhibit a pivotal role in the regulation of cell proliferation and metastasis of keloids. miRNA microarray revealed that miR‑637 was one of the most frequently altered miRNAs in keloids. Furthermore, up-regulation of miR‑637 inhibited cell proliferation and metastasis by targeting mothers against decapentaplegic homolog (Smad)3, one of the important proteins that affects the formation of keloids. Further studies demonstrated that miR‑637 regulated the proliferation and metastasis of human keloid fibroblast (HKF) cells by mediating the Smad3 signaling pathway. Overall, the present findings suggest that miR‑637 may be a promising therapeutic target in keloids.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Bingyu Guo
- Department of Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Qiang Hui
- Department of Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Wei Li
- Department of Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Peng Chang
- Department of Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| | - Kai Tao
- Department of Reconstructive and Plastic Surgery, The General Hospital of Shenyang Military Region, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
22
|
Zhong L, Bian L, Lyu J, Jin H, Liu Z, Lyu L, Lu D. Identification and integrated analysis of microRNA expression profiles in keloid. J Cosmet Dermatol 2018; 17:917-924. [PMID: 30030902 DOI: 10.1111/jocd.12706] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 05/17/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Lianmei Zhong
- Technology Transfer Center; Kunming Medical University; Kunming China
- Department of Neurology, the First Affiliated Hospital; Kunming Medical University; Kunming China
| | - Ligong Bian
- Department of Anatomy; Kunming Medical University; Kunming China
| | - Jing Lyu
- Department of Physiology; Kunming Medical University; Kunming China
| | - Huiyan Jin
- Functional Experimental Center; Kunming Medical University; Kunming China
| | - Zijie Liu
- Kunming Medical UniversityThe first affiliated hospital of Kunming Medical university; Kunming China
| | - Lechun Lyu
- Technology Transfer Center; Kunming Medical University; Kunming China
| | - Di Lu
- Technology Transfer Center; Kunming Medical University; Kunming China
| |
Collapse
|
23
|
Liu Z, Su D, Qi X, Ma J. MiR‑500a‑5p promotes glioblastoma cell proliferation, migration and invasion by targeting chromodomain helicase DNA binding protein 5. Mol Med Rep 2018; 18:2689-2696. [PMID: 30015879 PMCID: PMC6102694 DOI: 10.3892/mmr.2018.9259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma is one of the most common malignant primary tumors and develops in brain. The molecular mechanism that regulates glioblastoma occurrence still remains unknown. MicroRNA (miR)-500a-5p has been reported to be involved in hepatocellular carcinoma and breast cancer. Whether miR-500a-5p regulates glioblastoma progression requires further investigation. In the present study, miR-500a-5p was highly expressed in malignant glioblastoma tissues and cell lines. Overexpression of miR-500a-5p promoted glioblastoma cell proliferation, migration and invasion in vitro. In addition, knockdown of miR-500a-5p accelerated cell apoptosis. Furthermore, miR-500a-5p inhibition significantly impaired tumor growth in vivo. The present study further explored the downstream mechanism. The luciferase reporter assay revealed that miR-500a-5p directly binds the 3′-untranslated region of chromodomain helicase DNA binding protein 5 (CHD5) mRNA. MiR-500a-5p markedly inhibited CHD5 expression in glioblastoma cells. Furthermore, CHD5 was downregulated in glioblastoma tissues, and the expression levels of miR-500a-5p and CHD5 were inversely correlated. In addition, knockdown of CHD5 restored the inhibition of cell proliferation and migration triggered by miR-500a-5p silence. Finally, it was demonstrated that miR-500a-5p can serve as a novel biomarker for the diagnosis and prognosis of glioblastoma patients. Taken together, the results of the present study indicated that miR-500a-5p may have promoted glioblastoma development and progression by targeting CHD5.
Collapse
Affiliation(s)
- Zhiyong Liu
- Laboratory of Neurology, The Class of 2014 Outstanding Physician, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Danying Su
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Xiuying Qi
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Jing Ma
- Department of Anatomy, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
24
|
Lee HJ, Jang YJ. Recent Understandings of Biology, Prophylaxis and Treatment Strategies for Hypertrophic Scars and Keloids. Int J Mol Sci 2018; 19:ijms19030711. [PMID: 29498630 PMCID: PMC5877572 DOI: 10.3390/ijms19030711] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 02/06/2023] Open
Abstract
Hypertrophic scars and keloids are fibroproliferative disorders that may arise after any deep cutaneous injury caused by trauma, burns, surgery, etc. Hypertrophic scars and keloids are cosmetically problematic, and in combination with functional problems such as contractures and subjective symptoms including pruritus, these significantly affect patients’ quality of life. There have been many studies on hypertrophic scars and keloids; but the mechanisms underlying scar formation have not yet been well established, and prophylactic and treatment strategies remain unsatisfactory. In this review, the authors introduce and summarize classical concepts surrounding wound healing and review recent understandings of the biology, prevention and treatment strategies for hypertrophic scars and keloids.
Collapse
Affiliation(s)
- Ho Jun Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University, Chuncheon 24253, Korea.
| | - Yong Ju Jang
- Department of Otolaryngology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|