1
|
Ataei A, Azizi M, Hajisadeghi S, Madani M, Khorami M, Hassantash S, Saeidpour Masouleh S, Barati G. The Therapeutic Effects of Mesenchymal Stem Cells and their Secretome on Oral Squamous Cell Carcinoma. Curr Mol Med 2024; 24:1195-1207. [PMID: 37366360 DOI: 10.2174/1566524023666230627151809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Oral cancers are prevalent in the human population, particularly in unindustrialized countries. In 90 % of oral cancers, the tumors arise from squamous cells, which is called oral squamous cell carcinoma (OSCC). Despite new treatment strategies, the morbidity and mortality rates are still high. Current treatment options including surgery, chemotherapy, and radiotherapy are not effective in the treatment of the tumor. Cell therapy with mesenchymal stem cells (MSCs) is considered one of the leading strategies in cancer treatment. However, the field of MSC therapy in OSCC is immature and ongoing studies are being conducted in experimental and pre-clinical studies. Here, we reviewed these studies to figure out whether the use of MSCs could be worthwhile in OSCC therapy or not. Both native and engineered MSCs as well as their secretome have been used in the treatment of OSCC. It seems that genetically modified MSCs or their secretome could inhibit the tumorigenesis of OSCC. However, further pre-clinical studies are required to come to a conclusion.
Collapse
Affiliation(s)
- Atefe Ataei
- Department of Periodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Azizi
- Department of Periodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Samira Hajisadeghi
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mojan Madani
- Orthodontics Department, Dental Faculty, Arak UNDUniversity of Medical Sciences, Arak, Iran
| | - Mozhgan Khorami
- Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Hassantash
- Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ghasem Barati
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Stem Cell Technology Research Center, Tehran, Iran
| |
Collapse
|
2
|
CD109 Is a Critical Determinant of EGFR Expression and Signaling, and Tumorigenicity in Squamous Cell Carcinoma Cells. Cancers (Basel) 2022; 14:cancers14153672. [PMID: 35954339 PMCID: PMC9367592 DOI: 10.3390/cancers14153672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Squamous cell carcinoma (SCC) is one of the leading causes of cancer-related deaths worldwide. CD109 is overexpressed in many cancers including SCC. Although a pro-tumorigenic role for CD109 has been shown in non-SCC cancers, and in one type of SCC, the mechanisms and signaling pathways reported are discrepant. (2) Methods: The CD109-EGFR interaction and CD109-mediated regulation of EGFR expression, signaling, and stemness were studied using microarray, immunoblot, immunoprecipitation, qPCR, immunofluorescence, and/or spheroid formation assays. The role of CD109 in tumor progression and metastasis was studied using xenograft tumor growth and metastatic models. (3) Results: We establish the in vivo tumorigenicity of CD109 in vulvar SCC cells and demonstrate that CD109 is an essential regulator of EGFR expression at the mRNA and protein levels and of EGFR/AKT signaling in vulvar and hypopharyngeal SCC cells. Furthermore, we show that the mechanism involves EGFR-CD109 heteromerization and colocalization, leading to the stabilization of EGFR levels. Additionally, we demonstrate that the maintenance of epithelial morphology and in vitro tumorigenicity of SCC cells require CD109 localization to the cell surface. (4) Conclusions: Our study identifies an essential role for CD109 in vulvar SCC progression. We demonstrate that CD109 regulates SCC cellular stemness and epithelial morphology via a cell-surface CD109-EGFR interaction, stabilization of EGFR levels and EGFR/AKT signaling.
Collapse
|
3
|
Pawlak JB, Blobe GC. TGF-β superfamily co-receptors in cancer. Dev Dyn 2022; 251:137-163. [PMID: 33797167 PMCID: PMC8484463 DOI: 10.1002/dvdy.338] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 01/03/2023] Open
Abstract
Transforming growth factor-β (TGF-β) superfamily signaling via their cognate receptors is frequently modified by TGF-β superfamily co-receptors. Signaling through SMAD-mediated pathways may be enhanced or depressed depending on the specific co-receptor and cell context. This dynamic effect on signaling is further modified by the release of many of the co-receptors from the membrane to generate soluble forms that are often antagonistic to the membrane-bound receptors. The co-receptors discussed here include TβRIII (betaglycan), endoglin, BAMBI, CD109, SCUBE proteins, neuropilins, Cripto-1, MuSK, and RGMs. Dysregulation of these co-receptors can lead to altered TGF-β superfamily signaling that contributes to the pathophysiology of many cancers through regulation of growth, metastatic potential, and the tumor microenvironment. Here we describe the role of several TGF-β superfamily co-receptors on TGF-β superfamily signaling and the impact on cellular and physiological functions with a particular focus on cancer, including a discussion on recent pharmacological advances and potential clinical applications targeting these co-receptors.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center,Department of Pharmacology and Cancer Biology, Duke University Medical Center,Corresponding author: Gerard Blobe, B354 LSRC, Box 91004 DUMC, Durham, NC 27708, , 919-668-1352
| |
Collapse
|
4
|
Merckx G, Lo Monaco M, Lambrichts I, Himmelreich U, Bronckaers A, Wolfs E. Safety and Homing of Human Dental Pulp Stromal Cells in Head and Neck Cancer. Stem Cell Rev Rep 2021; 17:1619-1634. [PMID: 33822326 DOI: 10.1007/s12015-021-10159-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Head and neck cancer (HNC) is one of the most common cancers, associated with a huge mortality and morbidity. In order to improve patient outcomes, more efficient and targeted therapies are essential. Bone marrow-derived mesenchymal stromal cells (BM-MSCs) express tumour homing capacity, which could be exploited to target anti-cancer drug delivery to the tumour region and reduce adverse side-effects. Nevertheless, dental pulp stromal cells (DPSCs), an MSC-like population present in teeth, could offer important clinical benefits because of their easy isolation and superior proliferation compared to BM-MSCs. Therefore, we aimed to elucidate the tumour homing and safe usage of DPSCs to treat HNC. METHODS The in vivo survival as well as the effect of intratumourally administered DPSCs on tumour aggressiveness was tested in a HNC xenograft mouse model by using bioluminescence imaging (BLI), (immuno)histology and qRT-PCR. Furthermore, the in vitro and in vivo tumour homing capacity of DPSCs towards a HNC cell line were evaluated by a transwell migration assay and BLI, respectively. RESULTS Intratumourally injected DPSCs survived for at least two weeks in the tumour micro-environment and had no significant influence on tumour morphology, growth, angiogenesis and epithelial-to-mesenchymal transition. In addition, DPSCs migrated towards tumour cells in vitro, which could not be confirmed after their in vivo intravenous, intraperitoneal or peritumoural injection under the tested experimental conditions. CONCLUSIONS Our research suggests that intratumourally delivered DPSCs might be used as safe factories for the continuous delivery of anti-cancer drugs in HNC. Nevertheless, further optimization as well as efficacy studies are necessary to understand and improve in vivo tumour homing and determine the optimal experimental set-up of stem cell-based cancer therapies, including dosing and timing.
Collapse
Affiliation(s)
- Greet Merckx
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Group of Cardio & Organ Systems (COS), UHasselt - Hasselt University, Agoralaan, 3590, Diepenbeek, Belgium
| | - Melissa Lo Monaco
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Group of Cardio & Organ Systems (COS), UHasselt - Hasselt University, Agoralaan, 3590, Diepenbeek, Belgium.,Faculty of Sciences, Department of Veterinary Medicine, Integrated Veterinary Research Unit-Namur Research Institute for Life Science (IVRU-NARILIS), UNamur - University of Namur, Rue de Bruxelles, 5000, Namur, Belgium
| | - Ivo Lambrichts
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Group of Cardio & Organ Systems (COS), UHasselt - Hasselt University, Agoralaan, 3590, Diepenbeek, Belgium
| | - Uwe Himmelreich
- Department of Imaging and Pathology, Biomedical MRI Unit/MoSAIC, KU Leuven, Herestraat, 3000, Leuven, Belgium
| | - Annelies Bronckaers
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Group of Cardio & Organ Systems (COS), UHasselt - Hasselt University, Agoralaan, 3590, Diepenbeek, Belgium.
| | - Esther Wolfs
- Faculty of Medicine and Life Sciences, Biomedical Research Institute (BIOMED), Group of Cardio & Organ Systems (COS), UHasselt - Hasselt University, Agoralaan, 3590, Diepenbeek, Belgium
| |
Collapse
|
5
|
Hagiwara S, Sasaki E, Hasegawa Y, Suzuki H, Nishikawa D, Beppu S, Terada H, Sawabe M, Takahashi M, Hanai N. Serum CD109 levels reflect the node metastasis status in head and neck squamous cell carcinoma. Cancer Med 2021; 10:1335-1346. [PMID: 33565282 PMCID: PMC7926025 DOI: 10.1002/cam4.3737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background Various biomarkers are being developed for the early diagnosis of cancer and for predicting its prognosis. The aim of this study is to evaluate the diagnostic significance of serum CD109 in head and neck squamous cell carcinoma (HNSCC). Methods The serum CD109 levels in a total of 112 serum samples collected before and after surgery from 56 HNSCC patients were analyzed with an enzyme‐linked immunosorbent assay (ELISA). The clinical factor that showed a statistically significant association with both the preoperative serum CD109 level, and the CD109 index: which was defined as the ratio of the preoperative serum CD109 level to the postoperative serum CD109 level, were assessed. The correlations between the serum CD109 levels and lymph node density (LND), pathological features such as lymphatic invasion, and serum SCC antigen levels were also assessed. Results The ELISA measurement revealed that preoperative serum CD109 levels were elevated in patients with node metastasis‐positive and stage IV disease, in comparison to those with node metastasis‐negative and Stage I+II+III disease, respectively. A multiple regression analysis indicated that serum CD109 level was significantly associated with the node metastasis status. A Spearman's rank correlation analysis also revealed a positive correlation between the preoperative serum CD109 level and LND. Furthermore, the probabilities of the overall and relapse‐free survival were significantly lower in patients with a preoperative serum CD109 level of ≥38.0 ng/ml and a CD109 index of ≥1.6, respectively, than in others. There was no significant correlation between the serum CD109 and SCC antigen levels. Conclusions The serum CD109 levels were elevated in patients with advanced stage disease, reflecting the node metastasis status. CD109 in sera could be a novel prognostic marker for HNSCC involving lymph node metastasis.
Collapse
Affiliation(s)
- Sumitaka Hagiwara
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Eiichi Sasaki
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Yasuhisa Hasegawa
- Department of Head and Neck Surgery - Otolaryngology, Asahi University Hospital, Gifu, Japan
| | - Hidenori Suzuki
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Daisuke Nishikawa
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Shintaro Beppu
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Hoshino Terada
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Michi Sawabe
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| | - Masahide Takahashi
- International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Nobuhiro Hanai
- Department of Head and Neck Surgery, Aichi Cancer Center Hospital, Nagoya, Japan
| |
Collapse
|
6
|
Liu C, Billet S, Choudhury D, Cheng R, Haldar S, Fernandez A, Biondi S, Liu Z, Zhou H, Bhowmick NA. Bone marrow mesenchymal stem cells interact with head and neck squamous cell carcinoma cells to promote cancer progression and drug resistance. Neoplasia 2021; 23:118-128. [PMID: 33310208 PMCID: PMC7732973 DOI: 10.1016/j.neo.2020.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 02/05/2023]
Abstract
Head and neck cancers are often diagnosed at later stages with poor outcomes. Mesenchymal stem cells (MSC) are recruited to primary tumor sites where they can have pro- and antitumorigenic influence. In trying to better understand the dynamics between MSC and cancer cells, we found that head and neck cancer-MSC exposure resulted in mesenchymal features, elevated proliferation rate, and were more motile, like the same cells that fused with MSC. We orthotopically grafted the parental head and neck cancer cells, those fused with MSC, or those exposed to MSC into the tongues of mice. The cancer cells originally incubated with MSC developed larger more aggressive tumors compared to the parental cell line. RNA sequencing analysis revealed the expression of genes associated with drug resistance in the cancer cells exposed to MSC compared to parental cancer cells. Strikingly, MSC exposed cancer cell lines developed paclitaxel resistance that could be maintained up to 30 d after the initial co-incubation period. The secretory profile of the MSC suggested IL-6 to be a potential mediator of epigenetic imprinting on the head and neck cancer cells. When the MSC-imprinted cancer cells were exposed to the demethylation agent, 5-aza-2'deoxycytidine, it restored the expression of the drug resistance genes to that of parental cells. This study demonstrated that the recognized recruitment of MSC to tumors could impart multiple protumorigenic properties including chemotherapy resistance like that observed in the relatively rare event of cancer/MSC cell fusion.
Collapse
Affiliation(s)
- Chuanxia Liu
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; The Affiliated Stomatology Hospital, Zhejiang University School of Medical, Hangzhou, China
| | - Sandrine Billet
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Diptiman Choudhury
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ran Cheng
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Subhash Haldar
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ana Fernandez
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Shea Biondi
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Zhenqiu Liu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA.
| |
Collapse
|
7
|
CD109 acts as a gatekeeper of the epithelial trait by suppressing epithelial to mesenchymal transition in squamous cell carcinoma cells in vitro. Sci Rep 2019; 9:16317. [PMID: 31695056 PMCID: PMC6834570 DOI: 10.1038/s41598-019-50694-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/31/2019] [Indexed: 02/07/2023] Open
Abstract
There is increasing evidence that the expression of CD109, a GPI-anchored cell surface protein is dysregulated in squamous cell carcinoma (SCC). However, the functional role of CD109 in SCC progression is poorly understood. In current study, we demonstrate that CD109 is a critical regulator of epithelial phenotype in SSC cells. CD109 levels inversely correlate with TGF-β signaling, EMT, migration, and invasion in cultured SCC cells. CRISPR/Cas9-mediated knockout CD109 (CD109 KO) in SCC cells represses epithelial traits and promotes the mesenchymal phenotype, as evidenced by elevated expression of mesenchymal proteins and markers of epithelial to mesenchymal transition. Treatment with recombinant CD109 protein causes CD109 KO cells to regain their epithelial traits. CD109 loss results in pronounced alterations of gene expression as detected by microarray analysis and in dysregulation of 15 important signalling pathways as shown by KEGG pathway cluster analysis. Validation using 52 human oral SCC tumor samples show that CD109 levels inversely correlate with tumor grade and the activation state of one such pathway, the TGF-β signaling pathway. Taken together, our findings highlight a novel role for CD109 as a gatekeeper of the epithelial phenotype by regulating TGF-β pathway in SCC cells.
Collapse
|
8
|
Solé C, Tramonti D, Schramm M, Goicoechea I, Armesto M, Hernandez LI, Manterola L, Fernandez-Mercado M, Mujika K, Tuneu A, Jaka A, Tellaetxe M, Friedländer MR, Estivill X, Piazza P, Ortiz-Romero PL, Middleton MR, Lawrie CH. The Circulating Transcriptome as a Source of Biomarkers for Melanoma. Cancers (Basel) 2019; 11:cancers11010070. [PMID: 30634628 PMCID: PMC6356785 DOI: 10.3390/cancers11010070] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/18/2022] Open
Abstract
The circulating transcriptome is a valuable source of cancer biomarkers, which, with the exception of microRNAs (miRNAs), remains relatively unexplored. To elucidate which RNAs are present in plasma from melanoma patients and which could be used to distinguish cancer patients from healthy individuals, we used next generation sequencing (NGS), and validation was carried out by qPCR and/or ddPCR. We identified 442 different microRNAs in samples, eleven of which were differentially expressed (p < 0.05). Levels of miR-134-5p and miR-320a-3p were significantly down-regulated (p < 0.001) in melanoma samples (n = 96) compared to healthy controls (n = 28). Differentially expressed protein-encoding mRNA 5'-fragments were enriched for the angiopoietin, p21-activated kinase (PAK), and EIF2 pathways. Levels of ATM1, AMFR, SOS1, and CD109 gene fragments were up-regulated (p < 0.001) in melanoma samples (n = 144) compared to healthy controls (n = 41) (AUC = 0.825). Over 40% of mapped reads were YRNAs, a class of non-coding RNAs that to date has been little explored. Expression levels of RNY3P1, RNY4P1, and RNY4P25 were significantly higher in patients with stage 0 disease than either healthy controls or more advanced stage disease (p < 0.001). In conclusion, we have identified a number of novel RNA biomarkers, which, most importantly, we validated in multi-center retrospective and prospective cohorts, suggesting potential diagnostic use of these RNA species.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián 20012, Spain.
| | - Daniela Tramonti
- Department of Oncology, University of Oxford, Oxford OX3 9DU, UK.
| | - Maike Schramm
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián 20012, Spain.
- Faculty of Biosciences, University of Heidelberg, Heidelberg 69120, Germany.
| | - Ibai Goicoechea
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián 20012, Spain.
| | - María Armesto
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián 20012, Spain.
| | - Luiza I Hernandez
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián 20012, Spain.
| | - Lorea Manterola
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián 20012, Spain.
| | | | - Karmele Mujika
- Onkologikoa-Oncology Institute Gipuzkoa, Gipuzkoa 20012, Spain.
| | - Anna Tuneu
- Department of Dermatology, Hospital Universitario de Donostia, San Sebastian 20012, Spain.
| | - Ane Jaka
- Department of Dermatology, Hospital Universitario de Donostia, San Sebastian 20012, Spain.
| | - Maitena Tellaetxe
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián 20012, Spain.
| | - Marc R Friedländer
- Genomics and Disease group, Centre for Genomic Regulation (CRG), Barcelona 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Barcelona 08002, Spain.
- Hospital del Mar Research Institute (IMIM), Barcelona 08003, Spain.
- Science for Life Laboratory, The Wenner-Gren Institute, Stockholm University, Stockholm SE-106 9, Sweden.
| | - Xavier Estivill
- Genomics and Disease group, Centre for Genomic Regulation (CRG), Barcelona 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Barcelona 08002, Spain.
- Hospital del Mar Research Institute (IMIM), Barcelona 08003, Spain.
| | - Paolo Piazza
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
- Imperial BRC Genomics Facility, Imperial College London, London SW7 2AZ, UK.
| | - Pablo L Ortiz-Romero
- Department of Dermatology, 12 de Octubre Hospital, Madrid 28041, Spain.
- Medical School, Universidad Complutense, Institute i+12, Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid 28040, Spain.
| | - Mark R Middleton
- Department of Oncology, University of Oxford, Oxford OX3 9DU, UK.
| | - Charles H Lawrie
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián 20012, Spain.
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK.
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain.
| |
Collapse
|
9
|
Bundgaard L, Stensballe A, Elbæk KJ, Berg LC. Mapping of equine mesenchymal stromal cell surface proteomes for identification of specific markers using proteomics and gene expression analysis: an in vitro cross-sectional study. Stem Cell Res Ther 2018; 9:288. [PMID: 30359315 PMCID: PMC6202851 DOI: 10.1186/s13287-018-1041-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
Background Stem cells have great potential for tissue regeneration, but before stem cell populations can be used in the clinic, it is crucial that the stem cells have been definitely characterized by a set of specific markers. Although there have been attempts to identify a set of immunophenotypic markers to characterize equine mesenchymal stromal cells (MSCs), immunophenotyping of equine MSCs is still challenging due to the limited availability of suitable antibodies of high quality and consistent performance across different laboratories. The aim of this study was to evaluate a strategy for mapping the equine MSCs surface proteome by use of biotin-enrichment and mass spectrometry (MS) analysis and mine the proteome for potential equine MSCs surface markers belonging to the cluster of differentiation protein group. Gene expression analysis was used for verification. Methods Equine MSCs derived from bone marrow (BM) (n = 3) and adipose tissue (AT) (n = 3) were expanded to P3 and either used for (1) cell differentiation into mesodermal lineages (chondrogenic and osteogenic), (2) enrichment of the MSCs surface proteins by biotinylation followed by in-gel digest of the isolated proteins and nanoLC-MS/MS analysis to unravel the enriched cell surface proteome, and (3) RNA isolation and quantitative real-time reverse transcriptase PCR analysis of the CD29, CD44, CD90, CD105, CD166, CD34, CD45, and CD79a gene expression. Results A total of 1239 proteins at 1% FDR were identified by MS analysis of the enriched MSCs surface protein samples. Of these proteins, 939 were identified in all six biological samples. The identified proteins included 19 proteins appointed to the cluster of differentiation classification system as potential cell surface targets. The protein and gene expression pattern was positive for the commonly used positive MSCs markers CD29, CD44, CD90, CD105, and CD166, and lacked the negative MSCs markers CD34, CD45, and CD79a. Conclusions The findings of this study show that enrichment of the MSCs surface proteome by biotinylation followed by MS analysis is a valuable alternative to immunophenotyping of surface markers, when suitable antibodies are not available. Further, they support gene expression analysis as a valuable control analysis to verify the data.
Collapse
Affiliation(s)
- Louise Bundgaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, DK-2630, Taastrup, Denmark.
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220, Aalborg Ø, Denmark
| | - Kirstine Juul Elbæk
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220, Aalborg Ø, Denmark
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, DK-2630, Taastrup, Denmark
| |
Collapse
|