1
|
Park J, Purushothaman B, Hong S, Choi M, Jegal KH, Park M, Song JM, Kang KW. GRP78 blockade overcomes acquired resistance to EGFR-tyrosine kinase inhibitors in non-small cell lung cancer. Life Sci 2024; 348:122681. [PMID: 38697281 DOI: 10.1016/j.lfs.2024.122681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/22/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
AIMS While significant upregulation of GRP78 has been documented in lung cancer patients, its association with resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) remains underexamined. Our study aimed to elucidate the functional importance of GRP78 in acquired resistance to EGFR-TKIs in non-small cell lung cancer (NSCLC) and to evaluate its potential as a therapeutic target. MAIN METHODS Immunoblot analysis or flow cytometry was employed to assess several markers for endoplasmic reticulum (ER) stress and apoptosis. Ru(II) complex I and HA15, two known GRP78 inhibitors, were used to evaluate the functional role of GRP78. A Xenograft assay was performed to evaluate the in vivo anti-cancer effects of the GRP78 inhibitors. KEY FINDINGS We validated a significant increase in GRP78 protein levels in HCC827-GR, H1993-GR, and H1993-ER cells. The EGFR-TKI-resistant cells overexpressing GRP78 exhibited significantly higher cell proliferation rates than did their parental counterparts. Notably, GRP78 inhibition resulted in a more profound anti-proliferative and apoptotic response via heightened ER stress and subsequent reactive oxygen species (ROS) production in EGFR-TKI-resistant cell lines compared with their parental cells. In xenograft models implanted with HCC827-GR, both Ru(II) complex I and HA15 significantly suppressed tumor growth and reduced tumor weight. Additionally, we confirmed that GRP78 plays a critical role in the proliferation of H1975, an EGFR-TKI-resistant T790M-mutant cell line, relative to other NSCLC cell lines. SIGNIFICANCE Our findings strongly support targeting of GRP78 as a promising therapeutic strategy for NSCLC patients with acquired resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Jaewoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Baskaran Purushothaman
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sera Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Munkyung Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyung Hwan Jegal
- Department of Korean Medical Classics, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Miso Park
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Joon Myong Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
2
|
Hsu CY, Faisal Mutee A, Porras S, Pineda I, Ahmed Mustafa M, J Saadh M, Adil M, H A Z. Amphiregulin in infectious diseases: Role, mechanism, and potential therapeutic targets. Microb Pathog 2024; 186:106463. [PMID: 38036111 DOI: 10.1016/j.micpath.2023.106463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
Amphiregulin (AREG) serves as a ligand for the epidermal growth factor receptor (EGFR) and is involved in vital biological functions, including inflammatory responses, tissue regeneration, and immune system function. Upon interaction with the EGFR, AREG initiates a series of signaling cascades necessary for several physiological activities, such as metabolism, cell cycle regulation, and cellular proliferation. Recent findings have provided evidence for the substantial role of AREG in maintaining the equilibrium of homeostasis in damaged tissues and preserving epithelial cell structure in the context of viral infections affecting the lungs. The development of resistance to influenza virus infection depends on the presence of type 1 cytokine responses. Following the eradication of the pathogen, the lungs are subsequently colonized by several cell types that are linked with type 2 immune responses. These cells contribute to the process of repairing and resolving the tissue injury and inflammation caused by infections. Following influenza infection, the activation of AREG promotes the regeneration of bronchial epithelial cells, enhancing the tissue's structural integrity and increasing the survival rate of infected mice. In the same manner, mice afflicted with influenza experience rapid mortality due to a subsequent bacterial infection in the pulmonary region when both bacterial and viral infections manifest concurrently inside the same host. The involvement of AREG in bacterial infections has been demonstrated. The gene AREG experiences increased transcriptional activity inside host cells in response to bacterial infections caused by pathogens such as Escherichia coli and Neisseria gonorrhea. In addition, AREG has been extensively studied as a mitogenic stimulus in epithelial cell layers. Consequently, it is regarded as a prospective contender that might potentially contribute to the observed epithelial cell reactions in helminth infection. Consistent with this finding, mice that lack the AREG gene exhibit a delay in the eradication of the intestinal parasite Trichuris muris. The observed delay is associated with a reduction in the proliferation rate of colonic epithelial cells compared to the infected animals in the control group. The aforementioned findings indicate that AREG plays a pivotal role in facilitating the activation of defensive mechanisms inside the epithelial cells of the intestinal tissue. The precise cellular sources of AREG in this specific context have not yet been determined. However, it is evident that the increased proliferation of the epithelial cell layer in infected mice is reliant on CD4+ T cells. The significance of this finding lies in its demonstration of the crucial role played by the interaction between immunological and epithelial cells in regulating the AREG-EGFR pathway. Additional research is necessary to delve into the cellular origins and signaling mechanisms that govern the synthesis of AREG and its tissue-protective properties, independent of infection.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan
| | | | - Sandra Porras
- Facultad de Mecánica, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Indira Pineda
- Facultad de Salud Pública, Escuela Superior Politécnica de Chimborazo (ESPOCH), Panamericana Sur km 1 1/2, Riobamba, 060155, Ecuador
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, Imam Jaafar AL-Sadiq University, Iraq; Department of Pathological Analyzes, College of Applied Sciences, University of Samarra, Iraq.
| | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman, Jordan
| | | | - Zainab H A
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| |
Collapse
|
3
|
Liu Y, Peng H, Shen Y, Da R, Tian A, Guo X. Downregulation of Long Noncoding RNA Myocardial Infarction Associated Transcript Suppresses Cell Proliferation, Migration, Invasion, and Glycolysis by Regulation of miR-488-3p/IGF1R Pathway in Colorectal Cancer. Cancer Biother Radiopharm 2022; 37:927-938. [PMID: 33085926 DOI: 10.1089/cbr.2020.3671] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Colorectal cancer (CRC) is a significant public problem and the third cause of cancer-induced death all over the world. Long noncoding RNA (lncRNA) has been reported as a vital mediator in human cancer. However, the precise role of lncRNA myocardial infarction associated transcript (MIAT) in CRC is unclear. Materials and Methods: The abundance of MIAT, miR-488-3p, and the type 1 insulin-like growth factor receptor (IGF1R) was measured by real-time quantitative polymerase chain reaction assay. Western blot assay was carried out to assess the protein level in CRC samples or control group. The cell activity, abilities of migration and invasion, and glycolysis were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazol-3-ium bromide (MTT), transwell, and testing glucose consumption and lactate product, correspondingly. The target association between miR-488-3p, MIAT, or IGF1R was predicted and established by bioinformatics tools, dual-luciferase reporter, and RNA pull-down assays, correspondingly. The effects of MIAT silencing in vivo were analyzed by animal experiments. Results: LncRNA MIAT was upregulated in CRC sample and that was positively correlated with IGF1R expression. Loss-of-functional assay suggested that knockdown of MIAT impeded cell activity, migration, invasion, and glycolysis of CRC cells in vivo, along with xenograft growth in vivo. Moreover, silencing of IGF1R inhibited the progression of CRC. Therefore, overexpression of IGF1R could abolish silencing of MIAT-induced effects on CRC cells. Mechanistically, MIAT was a sponge for miR-488-3p, thereby regulating IGF1R expression in CRC. Conclusion: The present study confirmed that the "MIAT/miR-488-3p/IGF1R" pathway was involved in the development of CRC, which may be the target for developing therapeutic approaches for CRC.
Collapse
Affiliation(s)
- Yunhua Liu
- Department of Gastroenterology, the First People's Hospital of Tianmen, Hubei, China
| | - Huaiying Peng
- Department of Digestive Endoscopy Room, the First People's Hospital of Tianmen, Hubei, China
| | - Yongxiang Shen
- Department of Gastroenterology, the First People's Hospital of Tianmen, Hubei, China
| | - Rongfeng Da
- Department of Gastroenterology, the First People's Hospital of Tianmen, Hubei, China
| | - Aihua Tian
- Department of Gastroenterology, the First People's Hospital of Tianmen, Hubei, China
| | - Xiaomei Guo
- Department of Computerized Tomography and Magnetic Resonance Imaging Room, the First People's Hospital of Tianmen, Hubei, China
| |
Collapse
|
4
|
Icard P, Simula L, Fournel L, Leroy K, Lupo A, Damotte D, Charpentier MC, Durdux C, Loi M, Schussler O, Chassagnon G, Coquerel A, Lincet H, De Pauw V, Alifano M. The strategic roles of four enzymes in the interconnection between metabolism and oncogene activation in non-small cell lung cancer: Therapeutic implications. Drug Resist Updat 2022; 63:100852. [PMID: 35849943 DOI: 10.1016/j.drup.2022.100852] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
NSCLC is the leading cause of cancer mortality and represents a major challenge in cancer therapy. Intrinsic and acquired anticancer drug resistance are promoted by hypoxia and HIF-1α. Moreover, chemoresistance is sustained by the activation of key signaling pathways (such as RAS and its well-known downstream targets PI3K/AKT and MAPK) and several mutated oncogenes (including KRAS and EGFR among others). In this review, we highlight how these oncogenic factors are interconnected with cell metabolism (aerobic glycolysis, glutaminolysis and lipid synthesis). Also, we stress the key role of four metabolic enzymes (PFK1, dimeric-PKM2, GLS1 and ACLY), which promote the activation of these oncogenic pathways in a positive feedback loop. These four tenors orchestrating the coordination of metabolism and oncogenic pathways could be key druggable targets for specific inhibition. Since PFK1 appears as the first tenor of this orchestra, its inhibition (and/or that of its main activator PFK2/PFKFB3) could be an efficacious strategy against NSCLC. Citrate is a potent physiologic inhibitor of both PFK1 and PFKFB3, and NSCLC cells seem to maintain a low citrate level to sustain aerobic glycolysis and the PFK1/PI3K/EGFR axis. Awaiting the development of specific non-toxic inhibitors of PFK1 and PFK2/PFKFB3, we propose to test strategies increasing citrate levels in NSCLC tumors to disrupt this interconnection. This could be attempted by evaluating inhibitors of the citrate-consuming enzyme ACLY and/or by direct administration of citrate at high doses. In preclinical models, this "citrate strategy" efficiently inhibits PFK1/PFK2, HIF-1α, and IGFR/PI3K/AKT axes. It also blocks tumor growth in RAS-driven lung cancer models, reversing dedifferentiation, promoting T lymphocytes tumor infiltration, and increasing sensitivity to cytotoxic drugs.
Collapse
Affiliation(s)
- Philippe Icard
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; Normandie Univ, UNICAEN, CHU de Caen Normandie, Unité de recherche BioTICLA INSERM U1086, 14000 Caen, France.
| | - Luca Simula
- Department of Infection, Immunity and Inflammation, Cochin Institute, INSERM U1016, CNRS UMR8104, Paris University, Paris 75014, France
| | - Ludovic Fournel
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM UMR-S 1124, Cellular Homeostasis and Cancer, University of Paris, Paris, France
| | - Karen Leroy
- Department of Genomic Medicine and Cancers, Georges Pompidou European Hospital, APHP, Paris, France
| | - Audrey Lupo
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Diane Damotte
- Pathology Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | | | - Catherine Durdux
- Radiation Oncology Department, Georges Pompidou European Hospital, APHP, Paris, France
| | - Mauro Loi
- Radiotherapy Department, University of Florence, Florence, Italy
| | - Olivier Schussler
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | | | - Antoine Coquerel
- INSERM U1075, COMETE " Mobilités: Attention, Orientation, Chronobiologie", Université Caen, France
| | - Hubert Lincet
- ISPB, Faculté de Pharmacie, Lyon, France, Université Lyon 1, Lyon, France; INSERM U1052, CNRS UMR5286, Cancer Research Center of Lyon (CRCL), France
| | - Vincent De Pauw
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Paris Center University Hospitals, AP-HP, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| |
Collapse
|
5
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Jacob Berger A, Gigi E, Kupershmidt L, Meir Z, Gavert N, Zwang Y, Prior A, Gilad S, Harush U, Haviv I, Stemmer SM, Blum G, Merquiol E, Mardamshina M, Kaminski Strauss S, Friedlander G, Bar J, Kamer I, Reizel Y, Geiger T, Pilpel Y, Levin Y, Tanay A, Barzel B, Reuveni H, Straussman R. IRS1 phosphorylation underlies the non-stochastic probability of cancer cells to persist during EGFR inhibition therapy. NATURE CANCER 2021; 2:1055-1070. [PMID: 35121883 DOI: 10.1038/s43018-021-00261-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
Stochastic transition of cancer cells between drug-sensitive and drug-tolerant persister phenotypes has been proposed to play a key role in non-genetic resistance to therapy. Yet, we show here that cancer cells actually possess a highly stable inherited chance to persist (CTP) during therapy. This CTP is non-stochastic, determined pre-treatment and has a unimodal distribution ranging from 0 to almost 100%. Notably, CTP is drug specific. We found that differential serine/threonine phosphorylation of the insulin receptor substrate 1 (IRS1) protein determines the CTP of lung and of head and neck cancer cells under epidermal growth factor receptor inhibition, both in vitro and in vivo. Indeed, the first-in-class IRS1 inhibitor NT219 was highly synergistic with anti-epidermal growth factor receptor therapy across multiple in vitro and in vivo models. Elucidation of drug-specific mechanisms that determine the degree and stability of cellular CTP may establish a framework for the elimination of cancer persisters, using new rationally designed drug combinations.
Collapse
Affiliation(s)
- Adi Jacob Berger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Elinor Gigi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lana Kupershmidt
- TyrNovo Ltd, Rehovot, Israel.,Cancer Personalized Medicine and Diagnostic Genomics Lab, Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Zohar Meir
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Nancy Gavert
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaara Zwang
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Prior
- De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomit Gilad
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Uzi Harush
- Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel.,Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Izhak Haviv
- TyrNovo Ltd, Rehovot, Israel.,Cancer Personalized Medicine and Diagnostic Genomics Lab, Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel.,AID Genomics and Gensort Ltd, Rehovot, Israel
| | - Salomon M Stemmer
- Davidoff Center, Rabin Medical Center, Felsenstien Medical Research Center, Petach Tikva, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Blum
- Institute of Drug Research, The School of Pharmacy, Faculty of Medicine, Campus Ein Karem, The Hebrew University, Jerusalem, Israel
| | - Emmanuelle Merquiol
- Institute of Drug Research, The School of Pharmacy, Faculty of Medicine, Campus Ein Karem, The Hebrew University, Jerusalem, Israel
| | - Mariya Mardamshina
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Gilgi Friedlander
- Ilana and Pascal Mantoux Institute for Bioinformatics, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Jair Bar
- Sheba Medical Center, Ramat Gan, Israel
| | | | - Yitzhak Reizel
- Department of Genetics and Institute for Diabetes Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yishai Levin
- De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.,Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Baruch Barzel
- Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel.,Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Hadas Reuveni
- TyrNovo Ltd, Rehovot, Israel.,Purple Biotech Ltd, Rehovot, Israel
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
7
|
Qin Q, Li X, Liang X, Zeng L, Wang J, Sun L, Zhong D. Targeting the EMT transcription factor Snail overcomes resistance to osimertinib in EGFR-mutant non-small cell lung cancer. Thorac Cancer 2021; 12:1708-1715. [PMID: 33943009 PMCID: PMC8169301 DOI: 10.1111/1759-7714.13906] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The resistance mechanism of the third generation of epidermal growth factor (EGFR) tyrosine kinase inhibitor (TKI) osimertinib is complex. Epithelial mesenchymal transition (EMT) is a common mechanism of EGFR-TKI acquired resistance. Snail is an important transcription factor related to EMT. Whether targeting Snail can reverse the resistance of osimertinib by downregulating Snail is unknown. METHODS The presence of EMT in H1975/OR (osimertinib resistance) cells was confirmed by transwell assay. To explore the EMT role in resistance, the expression levels of EMT markers were detected in both parental cells H1975 and resistant cells H1975OR. We used RNA interference technology to knockdown the key regulator Snail in resistant cells. After the interference efficiency was confirmed, changes in EMT-related molecules of Snail were explicitly downregulated, and changes in sensitivity and migration and invasion ability were also examined. We used CDK4/6 inhibitor to test the ability of reversing drug resistance by downregulating Snail. RESULTS Compared with the H1975 cell line, the H1975/OR resistant cell line showed increased invasiveness, upregulated expression of vimentin and downregulation of E-cadherin. EMT occurred in the H1975/OR resistant cell line. The expression of Snail was upregulated in the osimertinib-resistant cell line H1975/OR. Knockdown of Snail increased the sensitivity of H1975/OR cells to osimertinib. CDK4/6 inhibitor palbociclib could downregulate the expression of Snail. CDK 4/6 inhibitor palbociclib combined with osimertinib could reverse the resistance of osimertinib in H1975/OR. CONCLUSIONS Snail plays an important role in the third generation of EGFR-TKI osimertinib resistance, which may be reversed by downregulating Snail.
Collapse
Affiliation(s)
- Qiong Qin
- Department of OncologyTianjin Medical University General HospitalTianjinChina,Tianjin Lung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Xiaoqing Li
- Phase I clinical trail Department, Tianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Xingmei Liang
- Department of OncologyTianjin Medical University General HospitalTianjinChina,Tianjin Lung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Lili Zeng
- Department of OncologyTianjin Medical University General HospitalTianjinChina,Tianjin Lung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Jing Wang
- Tianjin Lung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Linlin Sun
- Tianjin Lung Cancer InstituteTianjin Medical University General HospitalTianjinChina
| | - Diansheng Zhong
- Department of OncologyTianjin Medical University General HospitalTianjinChina
| |
Collapse
|
8
|
Tripathi SK, Biswal BK. SOX9 promotes epidermal growth factor receptor-tyrosine kinase inhibitor resistance via targeting β-catenin and epithelial to mesenchymal transition in lung cancer. Life Sci 2021; 277:119608. [PMID: 33989664 DOI: 10.1016/j.lfs.2021.119608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023]
Abstract
AIMS The first-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), gefitinib, continues to be a primary treatment option for lung cancer patients. However, acquisition of resistance to gefitinib is a major obstacle in lung cancer treatment and its cause is poorly understood. The present study aimed to implicate the role of SOX9-β-catenin in developed resistance to gefitinib through epithelial to mesenchymal transition (EMT) in lung cancer in vitro and ex vivo. MAIN METHODS Expression effect of SOX9 on survivability of lung cancer patients was demonstrated through online available Kaplan-Meier Plotter data base. Then, cell viability assay, colony forming assay, cell migration and invasion assays, flow cytometry, drug efflux assay, qRT-PCR, and western blotting were conducted to confirmed the role of SOX9 in gefitinib resistance in lung cancer cells. Dual-luciferase assay established the regulatory relation between SOX9 and β-catenin. Multicellular spheroid assay further explored that down regulation of SOX9 could reverse gefitinib resistance ex vivo. KEY FINDINGS Kaplan-Meier method correlated the higher expression of SOX9 and β-catenin with poor overall survival of lung cancer patients. Upregulation of SOX9 was associated gefitinib resistance with increased cell proliferation, migration and invasion, single-cell colony-forming ability, reduced apoptosis, and gefitinib intake in lung cancer cells. Moreover, upregulated SOX9 promoted EMT via targeting β-catenin and knockdown of SOX9 reversed the resistance and EMT phenotype. Similarly, we found that multicellular spheroid of gefitinib resistant cells showed larger surface area with more dispersion and viability of cells, while SOX9 knockdown abolished these induced properties ex vivo. SIGNIFICANCE SOX9 expression could provide an innovative perspective as biomarker to understand the EGFR-TKIs resistance in lung cancer.
Collapse
Affiliation(s)
- Surya Kant Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bijesh Kumar Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
9
|
Kalantzakos TJ, Sullivan TB, Sebel LE, Canes D, Burks EJ, Moinzadeh A, Rieger-Christ KM. MicroRNAs MiR-15a and MiR-26a cooperatively regulate O-GlcNAc-transferase to control proliferation in clear cell renal cell carcinoma. Cancer Biomark 2021; 30:343-351. [PMID: 33337348 DOI: 10.3233/cbm-200553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs), a group of non-coding post-transcriptional regulators of gene expression, are dysregulated in clear cell renal cell carcinoma (ccRCC) and play an important role in carcinogenesis. Our prior work identified a subset of miRNAs in pT1 ccRCC tumors associated with progression to metastatic disease. OBJECTIVE To investigate the impact of two of these dysregulated miRNA, miR-15a-5p and -26a-5p, in an effort to elucidate the mechanisms underpinning aggressive forms of stage I ccRCC. METHODS The ccRCC cell line 786-O was transfected with pre-miRs-15a-5p and -26a-5p to rescue expression. Cell proliferation was measured via MT Cell Viability Assay. O-GlcNAc-transferase (OGT), a known protein in ccRCC proliferation, was identified by bioinformatics analysis as a target of both miRNA and validated via luciferase reporter assay to confirm binding of each miR to the 3' untranslated region (UTR). OGT protein expression was evaluated via western blotting. RESULTS Luciferase assay confirmed specificity of miR-15a-5p and -26a-5p for the OGT UTR. Western blot analysis for OGT showed reduced expression following co-transfection of both miRNAs compared to negative control or individual transfection. Co-transfection of these miRNAs greatly reduced proliferation when compared to negative control or the individual transfections. CONCLUSION Our results indicate that the dysregulation of miR-15a-5p and -26a-5p contribute cooperatively to the proliferation of ccRCC through their regulation of OGT. These results give insight into the pathogenesis of aggressive early stage ccRCC and suggest potential therapeutic targets for future research.
Collapse
Affiliation(s)
- Thomas J Kalantzakos
- Department of Translational Research, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Travis B Sullivan
- Department of Translational Research, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Luke E Sebel
- Department of Urology, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - David Canes
- Department of Urology, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Eric J Burks
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Alireza Moinzadeh
- Department of Urology, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Kimberly M Rieger-Christ
- Department of Translational Research, Lahey Hospital and Medical Center, Burlington, MA, USA.,Department of Urology, Lahey Hospital and Medical Center, Burlington, MA, USA
| |
Collapse
|
10
|
Mukherjee TK, Malik P, Hoidal JR. The emerging role of estrogen related receptorα in complications of non-small cell lung cancers. Oncol Lett 2021; 21:258. [PMID: 33664821 PMCID: PMC7882887 DOI: 10.3892/ol.2021.12519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022] Open
Abstract
Approximately 85% of lung cancer cases are recognized as non-small cell lung cancer (NSCLC) with a perilous (13–17%) 5-year survival in Europe and the USA. Although tobacco smoking has consistently emerged as the leading cause of NSCLC complications, its consequences are distinctly manifest with respect to sex bias, due to differential gene and sex hormone expression. Estrogen related receptor α (ERRα), a member of the nuclear orphan receptor superfamily is normally expressed in the lungs, and activates various nuclear genes without binding to the ligands, such as estrogens. In NSCLC ERRα expression is significantly higher compared with healthy individuals. It is well established ERα and ERβ‚ have 93% and 60% identity in the DNA and ligand binding domains, respectively. ERα and ERRα have 69% (70% with ERRα-1) and 34% (35% with ERRα-1) identity, respectively; ERRα and ERRβ‚ have 92 and 61% identity, respectively. However, whether there is distinctive ERRα interaction with mammalian estrogens or concurrent involvement in non-ER signalling pathway activation is not known. Relevant to NSCLC, ERRα promotes proliferation, invasion and migration by silencing the tumor suppressor proteins p53 and pRB, and accelerates G2-M transition during cell division. Epithelial to mesenchymal transition (EMT) and activation of Slug (an EMT associated transcription factor) are the prominent mechanisms by which ERRα activates NSCLC metastasis. Based on these observations, the present article focuses on the feasibility of antiERRα therapy alone and in combination with antiER as a therapeutic strategy for NSCLC complications.
Collapse
Affiliation(s)
- Tapan K Mukherjee
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT 84132, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA.,George E. Wahlen Department of Veterans Affairs Medical Centre, Salt Lake City, UT 84132, USA
| | - Parth Malik
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - John R Hoidal
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT 84132, USA.,Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA.,George E. Wahlen Department of Veterans Affairs Medical Centre, Salt Lake City, UT 84132, USA
| |
Collapse
|
11
|
Chen J, Zhang S, Zheng X, Mao J, Xie S, Chen W, Ran X. WZ4003 sensitizes non-small cell lung cancer cells to gefitinib via inhibition of ARK5 and epithelial-to-mesenchymal transition. Am J Transl Res 2020; 12:7377-7385. [PMID: 33312374 PMCID: PMC7724321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/18/2020] [Indexed: 06/12/2023]
Abstract
Gefitinib, an epidermal growth factor receptor tyrosine kinase inhibitor, is used as a first-line treatment for advanced non-small cell lung cancer (NSCLC); however, its utility is hampered by the development of chemoresistance. This study aimed to investigate the synergistic role of WZ4003, a novel (nua) kinase (NUAK) inhibitor, in enhancing gefitinib sensitivity in NSCLC cells. Our data indicated WZ4003 enhances the sensitivity of NSCLC cells to gefitinib. We also found ARK5 knockdown in NSCLC cell lines increased their sensitivity to gefitinib. However, WZ4003 did not affect gefitinib sensitivity when ARK5 was knocked down in NSCLC cell lines (using siRNA). Both WZ4003 and ARK5 inhibition suppressed epithelial-to-mesenchymal transition by reducing the expression of vimentin and increasing E-cadherin expression. Together, our results demonstrate WZ4003 plays a vital role in releasing acquired resistance to gefitinib by inhibiting ARK5 and epithelial-to-mesenchymal transition. Therefore, synergistic use of WZ4003 and gefitinib may prevent the development of gefitinib resistance in NSCLC.
Collapse
Affiliation(s)
- Jiabin Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
- Department of Medical Oncology, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
| | - Shufen Zhang
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
- Department of Medical Oncology, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
| | - Xiaoxiao Zheng
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
- Department of Medical Oncology, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
| | - Jiayan Mao
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
- Department of Medical Oncology, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
| | - Shangzhi Xie
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
- Department of Medical Oncology, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
- Department of Medical Oncology, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
| | - Xiangui Ran
- Department of Respiratory, Fuyang People’s HospitalNo. 63, Lushi Street, Fuyang 236000, Anhui, China
| |
Collapse
|
12
|
Li L, Wang T, Hu M, Zhang Y, Chen H, Xu L. Metformin Overcomes Acquired Resistance to EGFR TKIs in EGFR-Mutant Lung Cancer via AMPK/ERK/NF-κB Signaling Pathway. Front Oncol 2020; 10:1605. [PMID: 33014814 PMCID: PMC7511631 DOI: 10.3389/fonc.2020.01605] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/24/2020] [Indexed: 01/15/2023] Open
Abstract
Background: The major limitation of EGFR TKIs in EGFR-mutant lung cancer therapy is the development of acquired resistance. The underlying mechanisms remain unknown in about 30% of cases. NF-κB activation was encountered in the acquired resistance to EGFR TKIs. Unfortunately, none of NF-κB inhibitors has been clinically approved. The most commonly used antidiabetic drug metformin has demonstrated antitumor effects associated with NF-κB inhibition. Therefore, in this study, metformin was examined for its antitumor and antiresistance effects and underlying mechanisms. Methods:In vitro and in vivo EGFR-mutant lung cancer models with acquired resistance to EGFR TKIs were used. Results: We found that NF-κB was activated in EGFR-mutant lung cancer cells with acquired resistance to EGFR TKIs. Metformin inhibited proliferation and promoted apoptosis of lung cancer cells, especially those with acquired EGFR TKI resistance. Moreover, metformin reversed and delayed acquired resistance to EGFR TKIs as well as suppressed cancer stemness in EGFR-mutant lung cancer. Mechanistically, those effects of metformin were associated with activation of AMPK, resulting in the inhibition of downstream ERK/NF-κB signaling. Conclusions: Our data provided novel and further molecular rationale and preclinical data to support combination of metformin with EGFR TKIs to treat EGFR-mutant lung cancer patients, especially those with acquired resistance.
Collapse
Affiliation(s)
- Ling Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengdi Hu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yali Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Lou L, Wang J, Lv F, Wang G, Li Y, Xing L, Shen H, Zhang X. Y-box binding protein 1 (YB-1) promotes gefitinib resistance in lung adenocarcinoma cells by activating AKT signaling and epithelial-mesenchymal transition through targeting major vault protein (MVP). Cell Oncol (Dordr) 2020; 44:109-133. [PMID: 32894437 DOI: 10.1007/s13402-020-00556-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Gefitinib is a first-line treatment option for epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma. However, most patients inevitably develop gefitinib resistance. The mechanism underlying this resistance is not fully understood. Y-box binding protein 1 (YB-1) has been reported to play a role in modulating drug sensitivity, but its role in gefitinib resistance is currently unknown. Here, we investigated the role of YB-1 in gefitinib resistance of lung adenocarcinoma. METHODS We determined the expression of YB-1, epithelial-mesenchymal transition (EMT) and AKT signaling markers, as well as the viability of lung adenocarcinoma cell lines bearing mutant (HCC827, PC-9) or wild-type (H1299) EGFR. We also evaluated PC-9 cell migration and invasion using transwell assays. The clinical importance of YB-1 and major vault protein (MVP) was evaluated using primary lung adenocarcinoma patient samples. RESULTS We found that YB-1 was significantly upregulated in gefitinib-resistant lung adenocarcinoma cells compared to gefitinib-sensitive cells. YB-1 augmented gefitinib resistance by activating the AKT pathway and promoting EMT. Decreased migration and invasion was observed upon MVP silencing in YB-1-overexpressing PC-9 cells, as well as restored gefitinib sensitivity. A retrospective analysis of 85 patients with lung adenocarcinoma revealed that YB-1 levels were significantly increased in tyrosine kinase inhibitor (TKI)-resistant patients compared to those in TKI-sensitive patients, indicating that YB-1 may serve as a biomarker to clinically predict acquired gefitinib resistance. CONCLUSION YB-1 activates AKT signaling and promotes EMT at least in part by directly activating MVP. Hence, targeting the YB-1/MVP axis may help to overcome gefitinib resistance in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Lei Lou
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, People's Republic of China.,Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Juan Wang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, People's Republic of China
| | - Fengzhu Lv
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Guohui Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, People's Republic of China
| | - Yuehong Li
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, People's Republic of China
| | - Lingxiao Xing
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Haitao Shen
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Xianghong Zhang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050000, People's Republic of China. .,Laboratory of Pathology, Hebei Medical University, Shijiazhuang, Hebei Province Shijiazhuang, Hebei, 050017, People's Republic of China.
| |
Collapse
|
14
|
He B, Xia S, Zhang Z. NudCD1 Promotes the Proliferation and Metastasis of Non-Small Cell Lung Cancer Cells through the Activation of IGF1R-ERK1/2. Pathobiology 2020; 87:244-253. [PMID: 32634806 DOI: 10.1159/000505159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/30/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND NudC domain containing 1 (NudCD1) is an oncoprotein related to diverse cancers. This study aims to investigate the expression, role, and regulatory mechanism of NudCD1 in non-small cell lung cancer (NSCLC). METHODS qRT-PCR, Western blot, and immunohistochemistry were performed to detect the expressions of NudCD1 in NSCLC tissues and cell lines. The correlation between NudCD1 expression and clinical features was determined by the χ2 test. Besides, shRNA was used to construct the NudCD1 low expression model of NCI-H1299 and NCI-H460 cells, and CCK-8 and transwell assay were conducted to monitor the changes of proliferation, migration, and invasion of cancer cells. The expression levels of epithelial-mesenchymal transition markers and IGF1R-ERK1/2 signaling pathway proteins were detected by Western blot. RESULTS The expression of NudCD1 in NSCLC was higher than that in normal tissues, and the increased expression of NudCD1 was significantly correlated with increased T stage and lymph node metastasis. Moreover, patients with high expression of NudCD1 had worse prognosis. NudCD1 knockdown was proven to impede the proliferation but facilitate the migration and invasion of cancer cells. Furthermore, knockdown of NudCD1 resulted in an increase in the expression of E-cadherin and a decrease in the expression of vimentin. We also observed that NudCD1 overexpression promoted the phosphorylation of IGF1R and ERK1/2 proteins. CONCLUSION NudCD1 promotes the proliferation and metastasis of NSCLC cells via activation of IGF1R-ERK1/2, which indicates that NudCD1 may be a potential therapy target of NSCLC.
Collapse
Affiliation(s)
- Bin He
- Centre for Cardiothoracic Surgery, Xiangyang Central Hospital, Hospital Affiliated to Hubei University of Arts and Science, Xiangyang, China
| | - Shihui Xia
- Centre for Cardiothoracic Surgery, Xiangyang Central Hospital, Hospital Affiliated to Hubei University of Arts and Science, Xiangyang, China
| | - Zengwang Zhang
- Centre for Cardiothoracic Surgery, Xiangyang Central Hospital, Hospital Affiliated to Hubei University of Arts and Science, Xiangyang, China,
| |
Collapse
|
15
|
Tripathi SK, Pandey K, Rengasamy KRR, Biswal BK. Recent updates on the resistance mechanisms to epidermal growth factor receptor tyrosine kinase inhibitors and resistance reversion strategies in lung cancer. Med Res Rev 2020; 40:2132-2176. [PMID: 32596830 DOI: 10.1002/med.21700] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/21/2020] [Accepted: 06/09/2020] [Indexed: 12/17/2022]
Abstract
Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have led to a substantial improvement in the prognosis of lung cancer patients by explicitly targeting the activating mutations within the EGFR. Initially, patients harboring tumors with EGFR mutations show progression-free survival and improvement in the response rates toward all-generation EGFR-TKIs; however, these agents fail to deliver the intended results in the long-term due to drug resistance. Therefore, it is necessary to recognize specific cardinal mechanisms that regulate the resistance phenomenon. Understanding the intricate mechanisms underlying EGFR-TKIs resistance in lung cancer could provide cognizance for more advanced targeted therapeutics. The present review features insights into current updates on the discrete mechanisms, including secondary or tertiary mutations, parallel and downstream signaling pathways, acquiring an epithelial-to-mesenchymal transition (EMT) signature, microRNAs (miRNAs), and epigenetic alterations, which lead to intrinsic and acquired resistance against EGFR-TKIs in lung cancer. In addition, this paper also reviews current possible strategies to overcome this issue using combination treatment of recently developed MET inhibitors, allosteric inhibitors or immunotherapies, transformation of EMT, targeting miRNAs, and epigenetic alterations in intrinsic and acquired EGFR-TKIs resistant lung cancer. In conclusion, multiple factors are responsible for intrinsic and acquired resistance to EGFR-TKIs and understanding of the detailed molecular mechanisms, and recent advancements in pharmacological studies are needed to develop new strategies to overcome intrinsic and acquired EGFR-TKIs resistance in lung cancer.
Collapse
Affiliation(s)
- Surya K Tripathi
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, India
| | - Kamal Pandey
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, India
| | - Kannan R R Rengasamy
- Department of Bioresources and Food Science, Konkuk University, Seoul, South Korea
| | - Bijesh K Biswal
- Cancer Drug Resistance Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, India
| |
Collapse
|
16
|
Li J, Kwok HF. Current Strategies for Treating NSCLC: From Biological Mechanisms to Clinical Treatment. Cancers (Basel) 2020; 12:E1587. [PMID: 32549388 PMCID: PMC7352656 DOI: 10.3390/cancers12061587] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/17/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of specific epidermal growth factor receptor (EGFR)-activating mutations heralded a breakthrough in non-small-cell lung cancer (NSCLC) treatments, with the subsequent development of EGFR-tyrosine kinase inhibitor (TKIs) becoming the first-line therapy for patients harboring EGFR mutations. However, acquired resistance to EGFR-TKIs inevitably occurs in patients following initial TKI treatment, leading to disease progression. Various mechanisms are behind the acquired resistance, and mainly include (1) target gene modification, (2) alternative parallel pathway activation, (3) downstream pathway activation, and (4) histological/phenotypic transformation. Approaches to combat the acquired resistance have been investigated according to these mechanisms. Newer generations of TKIs have been developed to target the secondary/tertiary EGFR mutations in patients with acquired resistance. In addition, combination therapies have been developed as another promising strategy to overcome acquired resistance through the activation of other signaling pathways. Thus, in this review, we summarize the mechanisms for acquired resistance and focus on the potential corresponding therapeutic strategies for acquired resistance.
Collapse
Affiliation(s)
- Junnan Li
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau;
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau;
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| |
Collapse
|
17
|
Shaurova T, Zhang L, Goodrich DW, Hershberger PA. Understanding Lineage Plasticity as a Path to Targeted Therapy Failure in EGFR-Mutant Non-small Cell Lung Cancer. Front Genet 2020; 11:281. [PMID: 32292420 PMCID: PMC7121227 DOI: 10.3389/fgene.2020.00281] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022] Open
Abstract
Somatic alterations in the epidermal growth factor receptor gene (EGFR) result in aberrant activation of kinase signaling and occur in ∼15% of non-small cell lung cancers (NSCLC). Patients diagnosed with EGFR-mutant NSCLC have good initial clinical response to EGFR tyrosine kinase inhibitors (EGFR TKIs), yet tumor recurrence is common and quick to develop. Mechanisms of acquired resistance to EGFR TKIs have been studied extensively over the past decade. Great progress has been made in understanding two major routes of therapeutic failure: additional genomic alterations in the EGFR gene and activation of alternative kinase signaling (so-called “bypass activation”). Several pharmacological agents aimed at overcoming these modes of EGFR TKI resistance are FDA-approved or under clinical development. Phenotypic transformation, a less common and less well understood mechanism of EGFR TKI resistance is yet to be addressed in the clinic. In the context of acquired EGFR TKI resistance, phenotypic transformation encompasses epithelial to mesenchymal transition (EMT), transformation of adenocarcinoma of the lung (LUAD) to squamous cell carcinoma (SCC) or small cell lung cancer (SCLC). SCLC transformation, or neuroendocrine differentiation, has been linked to inactivation of TP53 and RB1 signaling. However, the exact mechanism that permits lineage switching needs further investigation. Recent reports indicate that LUAD and SCLC have a common cell of origin, and that trans-differentiation occurs under the right conditions. Options for therapeutic targeting of EGFR-mutant SCLC are limited currently to conventional genotoxic chemotherapy. Similarly, the basis of EMT-associated resistance is not clear. EMT is a complex process that can be characterized by a spectrum of intermediate states with diverse expression of epithelial and mesenchymal factors. In the context of acquired resistance to EGFR TKIs, EMT frequently co-occurs with bypass activation, making it challenging to determine the exact contribution of EMT to therapeutic failure. Reversibility of EMT-associated resistance points toward its epigenetic origin, with additional adjustments, such as genetic alterations and bypass activation, occurring later during disease progression. This review will discuss the mechanistic basis for EGFR TKI resistance linked to phenotypic transformation, as well as challenges and opportunities in addressing this type of targeted therapy resistance in EGFR-mutant NSCLC.
Collapse
Affiliation(s)
- Tatiana Shaurova
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Letian Zhang
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Pamela A Hershberger
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
18
|
Li L, Hu M, Wang T, Chen H, Xu L. Repositioning Aspirin to Treat Lung and Breast Cancers and Overcome Acquired Resistance to Targeted Therapy. Front Oncol 2020; 9:1503. [PMID: 31993373 PMCID: PMC6971167 DOI: 10.3389/fonc.2019.01503] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 12/16/2019] [Indexed: 02/02/2023] Open
Abstract
Background: The major limitation of targeted cancer therapy is development of acquired resistance. Intratumoral heterogeneity and coexist of multiple resistance mechanisms make combination therapies targeting one specific mechanism inefficient. Methods: Transcriptional signature obtained from GEO was used to reposition FDA-approved drugs to treat lung and breast cancers as well as overcome acquired resistance to EGFR TKIs in lung cancer and to tamoxifen in breast cancer via CMap. In vitro and in vivo models were used to examine candidate drugs for their anti-cancer and anti-resistance efficacy and underlying mechanisms. Results: We found that aspirin, the most commonly used drug, not only inhibited proliferation and promoted apoptosis of cancer cells, but also delayed and overcame acquired resistance to targeted therapy using in vitro and in vivo models. The underlying mechanism could be attributed to enhanced cancer stemness and activated NF-κB signaling in acquired resistant tumors, both of which were suppressed by aspirin and rendered resistant tumors more sensitive to aspirin. Conclusions: Our data identify aspirin as a potential candidate for combination therapy for lung and breast cancers.
Collapse
Affiliation(s)
- Ling Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengdi Hu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Nakano Y, Isobe K, Kobayashi H, Kaburaki K, Isshiki T, Sakamoto S, Takai Y, Tochigi N, Mikami T, Iyoda A, Homma S, Kishi K. Clinical importance of long non‑coding RNA LINC00460 expression in EGFR‑mutant lung adenocarcinoma. Int J Oncol 2019; 56:243-257. [PMID: 31789388 PMCID: PMC6910175 DOI: 10.3892/ijo.2019.4919] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/08/2019] [Indexed: 12/26/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been reported to be involved in the physiological and pathological processes of tumor pathogenesis, including epithelial-mesenchymal transition (EMT). However, epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) resistance is a major challenge in the treatment of advanced and recurrent EGFR-mutant lung adenocarcinoma. An increased understanding of the underlying mechanisms would aid in the development of effective therapeutic strategies against EGFR-TKI resistance, strategies which are urgently required for clinical therapy. In this study, long non-coding RNA LINC00460 was identified as a novel marker of a poor response to EGFR-TKI and prognosis. In lung cancer cells, LINC00460 promoted EGFR-TKI resistance as a competitive decoy for miR-149-5p, thereby facilitating interleukin (IL)-6 expression and inducing EMT-like phenotypes. The knockdown or knockout of LINC00460 in gefitinib-resistant non-small cell lung cancer cells restored the response to EGFR-TKI. In addition, as compared with patients with a low LINC00460 expression in tumors, those with a high LINC00460 expression had a significantly shorter progression-free survival following gefitinib therapy, and a shorter overall survival. Therefore, LINC00460 may be a predictor of and potential therapeutic target for EGFR-TKI resistance.
Collapse
Affiliation(s)
- Yuta Nakano
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo 143‑8541, Japan
| | - Kazutoshi Isobe
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo 143‑8541, Japan
| | - Hiroshi Kobayashi
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo 143‑8541, Japan
| | - Kyohei Kaburaki
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo 143‑8541, Japan
| | - Takuma Isshiki
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo 143‑8541, Japan
| | - Susumu Sakamoto
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo 143‑8541, Japan
| | - Yujiro Takai
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo 143‑8541, Japan
| | - Naobumi Tochigi
- Department of Surgical Pathology, Toho University School of Medicine, Tokyo 143‑8541, Japan
| | - Tetsuo Mikami
- Department of Pathology, Toho University School of Medicine, Tokyo 143‑8541, Japan
| | - Akira Iyoda
- Department of Chest Surgery, Toho University School of Medicine, Tokyo 143‑8541, Japan
| | - Sakae Homma
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo 143‑8541, Japan
| | - Kazuma Kishi
- Department of Respiratory Medicine, Toho University School of Medicine, Tokyo 143‑8541, Japan
| |
Collapse
|
20
|
Amphiregulin Regulates Phagocytosis-Induced Cell Death in Monocytes via EGFR and the Bcl-2 Protein Family. Mediators Inflamm 2019; 2019:1603131. [PMID: 32082070 PMCID: PMC7012211 DOI: 10.1155/2019/1603131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/08/2019] [Accepted: 08/26/2019] [Indexed: 01/24/2023] Open
Abstract
Neonates are extremely susceptible to bacterial infections, and evidences suggest that phagocytosis-induced cell death (PICD) is less frequently triggered in neonatal monocytes than in monocytes from adult donors. An insufficient termination of the inflammatory response, leading to a prolonged survival of neonatal monocytes with ongoing proinflammatory cytokine release, could be associated with the progression of various inflammatory diseases in neonates. Our previous data indicate that amphiregulin (AREG) is increasingly expressed on the cell surface of neonatal monocytes, resulting in remarkably higher soluble AREG levels after proteolytic shedding. In this study, we found that E. coli-infected neonatal monocytes show an increased phosphorylation of ERK, increased expression of Bcl-2 and Bcl-XL, and reduced levels of cleaved caspase-3 and caspase-9 compared to adult monocytes. In both cell types, additional stimulation with soluble AREG further increased ERK activation and expression of Bcl-2 and Bcl-XL and reduced levels of cleaved caspase-3 and caspase-9 in an EGFR-dependent manner. These data suggest that reduced PICD of neonatal monocytes could be due to reduced intrinsic apoptosis and that AREG can promote protection against PICD. This reduction of the intrinsic apoptosis pathway in neonatal monocytes could be relevant for severely prolonged inflammatory responses of neonates.
Collapse
|
21
|
Wang C, Wang T, Lv D, Li L, Yue J, Chen HZ, Xu L. Acquired Resistance to EGFR TKIs Mediated by TGFβ1/Integrin β3 Signaling in EGFR-Mutant Lung Cancer. Mol Cancer Ther 2019; 18:2357-2367. [PMID: 31501278 DOI: 10.1158/1535-7163.mct-19-0181] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/11/2019] [Accepted: 09/03/2019] [Indexed: 11/16/2022]
Abstract
Investigation of novel molecular mechanisms is essential to develop strategies to overcome acquired resistance to EGFR tyrosine kinase inhibitors (TKI). Integrin has been demonstrated as a regulator of cancer progression. The aim of this study was to identify which specific integrins are involved and regulated in acquired resistance to EGFR TKIs in EGFR-mutant lung cancer. The expression levels of integrin subunits were examined in EGFR-mutant lung cancer cells and xenograft tumors with acquired resistance to EGFR TKIs. Manipulation of integrin β3 was performed to explore whether integrin β3 overexpression was associated with TKI resistance, anoikis resistance, EMT, and cancer stemness in resistant lung cancer. To explore the mechanism, TGFβ1 level was examined, and TGFβ1 inhibitor was then used. Integrin β3 was dramatically and consistently overexpressed in acquired gefitinib- or osimertinib-resistant lung cancer in vitro and in vivo Integrin β3 was also involved in the progression of lung adenocarcinoma. Antagonizing integrin β3 increased the TKI sensitivity and delayed the occurrence of TKI resistance in vitro and in vivo, as well as suppressed proliferation, anoikis resistance, and EMT phenotype in lung cancer cells. Overexpression of integrin β3 was also associated with the enhanced cancer stemness that was acquired in the development of resistance and suppressed by antagonizing integrin β3. Mechanistically, integrin β3 was induced by increased TGFβ1 levels in acquired TKI-resistant lung cancer. Our study identified the TGFβ1/integrin β3 axis as a promising target for combination therapy to delay or overcome acquired resistance to EGFR TKIs in EGFR-mutant lung cancer.
Collapse
Affiliation(s)
- Caiyun Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dacheng Lv
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinnan Yue
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
22
|
Liquid biopsy-based single-cell metabolic phenotyping of lung cancer patients for informative diagnostics. Nat Commun 2019; 10:3856. [PMID: 31451693 PMCID: PMC6710267 DOI: 10.1038/s41467-019-11808-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 08/01/2019] [Indexed: 12/31/2022] Open
Abstract
Accurate prediction of chemo- or targeted therapy responses for patients with similar driver oncogenes through a simple and least-invasive assay represents an unmet need in the clinical diagnosis of non-small cell lung cancer. Using a single-cell on-chip metabolic cytometry and fluorescent metabolic probes, we show metabolic phenotyping on the rare disseminated tumor cells in pleural effusions across a panel of 32 lung adenocarcinoma patients. Our results reveal extensive metabolic heterogeneity of tumor cells that differentially engage in glycolysis and mitochondrial oxidation. The cell number ratio of the two metabolic phenotypes is found to be predictive for patient therapy response, physiological performance, and survival. Transcriptome analysis reveals that the glycolytic phenotype is associated with mesenchymal-like cell state with elevated expression of the resistant-leading receptor tyrosine kinase AXL and immune checkpoint ligands. Drug targeting AXL induces a significant cell killing in the glycolytic cells without affecting the cells with active mitochondrial oxidation. Non-invasive methods to predict treatment response are urgently needed. Here in lung cancer, the authors develop a single-cell on-chip cytometry method to metabolically phenotype disseminated tumor cells, revealing metabolic heterogeneity and predictors of therapy response and survival.
Collapse
|
23
|
Induction of Acquired Resistance towards EGFR Inhibitor Gefitinib in a Patient-Derived Xenograft Model of Non-Small Cell Lung Cancer and Subsequent Molecular Characterization. Cells 2019; 8:cells8070740. [PMID: 31323891 PMCID: PMC6678194 DOI: 10.3390/cells8070740] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/17/2019] [Indexed: 02/08/2023] Open
Abstract
In up to 30% of non-small cell lung cancer (NSCLC) patients, the oncogenic driver of tumor growth is a constitutively activated epidermal growth factor receptor (EGFR). Although these patients gain great benefit from treatment with EGFR tyrosine kinase inhibitors, the development of resistance is inevitable. To model the emergence of drug resistance, an EGFR-driven, patient-derived xenograft (PDX) NSCLC model was treated continuously with Gefitinib in vivo. Over a period of more than three months, three separate clones developed and were subsequently analyzed: Whole exome sequencing and reverse phase protein arrays (RPPAs) were performed to identify the mechanism of resistance. In total, 13 genes were identified, which were mutated in all three resistant lines. Amongst them the mutations in NOMO2, ARHGEF5 and SMTNL2 were predicted as deleterious. The 53 mutated genes specific for at least two of the resistant lines were mainly involved in cell cycle activities or the Fanconi anemia pathway. On a protein level, total EGFR, total Axl, phospho-NFκB, and phospho-Stat1 were upregulated. Stat1, Stat3, MEK1/2, and NFκB displayed enhanced activation in the resistant clones determined by the phosphorylated vs. total protein ratio. In summary, we developed an NSCLC PDX line modelling possible escape mechanism under EGFR treatment. We identified three genes that have not been described before to be involved in an acquired EGFR resistance. Further functional studies are needed to decipher the underlying pathway regulation.
Collapse
|
24
|
Selfe J, Shipley JM. IGF signalling in germ cells and testicular germ cell tumours: roles and therapeutic approaches. Andrology 2019; 7:536-544. [PMID: 31179642 PMCID: PMC6771568 DOI: 10.1111/andr.12658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/01/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
The insulin-like growth factor (IGF) axis plays key roles in normal tissue growth and development as well as in the progression of several tumour types and their subsequent growth and progression to a metastatic phenotype. This review explores the role of IGF system in normal germ cell development and function in addition to examining the evidence for deregulation of IGF signalling in cancer, with particular relevance to evidence supporting a role in testicular germ cell tumours (TGCTs). Despite the clear preclinical rationale for targeting the IGF axis in cancer, there has been a lack of progress in identifying which patients may benefit from such therapy. Future employment of agents targeting the IGF pathway is expected to concentrate on their use in combination with other treatments to prevent resistance and exploit their potential as chemo- and radiosensitizers.
Collapse
Affiliation(s)
- J Selfe
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - J M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, UK
| |
Collapse
|
25
|
Epigenetic silencing of miR-483-3p promotes acquired gefitinib resistance and EMT in EGFR-mutant NSCLC by targeting integrin β3. Oncogene 2018; 37:4300-4312. [PMID: 29717264 PMCID: PMC6072709 DOI: 10.1038/s41388-018-0276-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 12/20/2022]
Abstract
All lung cancers patients with epidermal growth factor receptor (EGFR) mutation inevitably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKI). In up to 30% of cases, the mechanism underlying acquired resistance remains unknown. MicroRNAs (miRNAs) is a group of small non-coding RNAs commonly dysregulated in human cancers and have been implicated in therapy resistance. The aim of this study was to understand the roles of novel miRNAs in acquired EGFR TKI resistance in EGFR-mutant non-small cell lung cancer (NSCLC). Here, we reported the evidence of miR-483-3p silencing and epithelial-to-mesenchymal transition (EMT) phenotype in both in vitro and in vivo EGFR-mutant NSCLC models with acquired resistance to gefitinib. In those tumor models, forced expression of miR-483-3p efficiently increased sensitivity of gefitinib-resistant lung cancer cells to gefitinib by inhibiting proliferation and promoting apoptosis. Moreover, miR-483-3p reversed EMT and inhibited migration, invasion, and metastasis of gefitinib-resistant lung cancer cells. Mechanistically, miR-483-3p directly targeted integrin β3, and thus repressed downstream FAK/Erk signaling pathway. Furthermore, the silencing of miR-483-3p in gefitinib-resistant lung cancer cells was due to hypermethylation of its own promoter. Taken together, our data identify miR-483-3p as a promising target for combination therapy to overcome acquired EGFR TKI resistance in EGFR-mutant NSCLC.
Collapse
|
26
|
Zaman A, Bivona TG. Emerging application of genomics-guided therapeutics in personalized lung cancer treatment. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:160. [PMID: 29911108 DOI: 10.21037/atm.2018.05.02] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In lung cancer, genomics-driven comprehensive molecular profiling has identified novel chemically and immunologically addressable vulnerabilities, resulting in an increasing application of precision medicine by targeted inactivation of tumor oncogenes and immunogenic activation of host anti-tumor surveillance as modes of treatment. However, initially profound response of these targeted therapies is followed by relapse due to therapy-resistant residual disease states. Although distinct mechanisms and frameworks for therapy resistance have been proposed, accounting for and upfront prediction of resistance trajectories has been challenging. In this review, we discuss in both non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), the current standing, and challenges associated with genomics-guided strategies for personalized therapy against both oncogenic alterations as well as post-therapy resistance mechanisms. In NSCLC, we catalog the targeted therapy approaches against most notable oncogenic alterations such as epidermal growth factor receptor (EGFR), serine/threonine-protein kinase b-raf (BRAF), Kirsten rat sarcoma viral proto-oncogene (KRAS), anaplastic lymphoma kinase (ALK), ROS1 proto-oncogene receptor tyrosine kinase (ROS1). For SCLC, currently highly recalcitrant to targeted therapy, we enumerate a range of exciting and maturing precision medicine approaches. Furthermore, we discuss a number of immunotherapy approaches, in combination or alone, that are being actively pursued clinically in lung cancer. This review not only highlights common mechanistic themes underpinning different classes of resistance and discusses tumor heterogeneity as a source of residual disease, but also discusses potential ways to overcome these barriers. We emphasize how an extensive understanding of these themes can predict and improve therapeutic strategies, such as through poly-therapy approaches, to forestall tumor evolution upfront.
Collapse
Affiliation(s)
- Aubhishek Zaman
- Department of Medicine, University of California, San Francisco, CA, USA.,UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA, USA.,UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
27
|
Genomic Profiling on an Unselected Solid Tumor Population Reveals a Highly Mutated Wnt/β-Catenin Pathway Associated with Oncogenic EGFR Mutations. J Pers Med 2018; 8:jpm8020013. [PMID: 29642553 PMCID: PMC6023530 DOI: 10.3390/jpm8020013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Oncogenic epidermal growth factor receptors (EGFRs) can recruit key effectors in diverse cellular processes to propagate oncogenic signals. Targeted and combinational therapeutic strategies have been successfully applied for treating EGFR-driven cancers. However, a main challenge in EGFR therapies is drug resistance due to mutations, oncogenic shift, alternative signaling, and other potential mechanisms. To further understand the genetic alterations associated with oncogenic EGFRs and to provide further insight into optimal and personalized therapeutic strategies, we applied a proprietary comprehensive next-generation sequencing (NGS)-based assay of 435 genes to systematically study the genomic profiles of 1565 unselected solid cancer patient samples. We found that activating EGFR mutations were predominantly detected in lung cancer, particularly in non-small cell lung cancer (NSCLC). The mutational landscape of EGFR-driven tumors covered most key signaling pathways and biological processes. Strikingly, the Wnt/β-catenin pathway was highly mutated (48 variants detected in 46% of the EGFR-driven tumors), and its variant number topped that in the TP53/apoptosis and PI3K-AKT-mTOR pathways. Furthermore, an analysis of mutation distribution revealed a differential association pattern of gene mutations between EGFR exon 19del and EGFR L858R. Our results confirm the aggressive nature of the oncogenic EGFR-driven tumors and reassure that a combinational strategy should have advantages over an EGFR-targeted monotherapy and holds great promise for overcoming drug resistance.
Collapse
|