1
|
Wang Y, Ding G, Chu C, Cheng XD, Qin JJ. Genomic biology and therapeutic strategies of liver metastasis from gastric cancer. Crit Rev Oncol Hematol 2024; 202:104470. [PMID: 39111457 DOI: 10.1016/j.critrevonc.2024.104470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The liver is a frequent site of metastasis in advanced gastric cancer (GC). Despite significant advancements in diagnostic and therapeutic techniques, the overall survival rate for patients afflicted with gastric cancer liver metastasis (GCLM) remains dismally low. Precision oncology has made significant progress in identifying therapeutic targets and enhancing our understanding of metastasis mechanisms through genome sequencing and molecular characterization. Therefore, it is crucial to have a comprehensive understanding of the various molecular processes involved in GCLM and the fundamental principles of systemic therapy to develop new treatment approaches. This paper aims to review recent findings on the diagnosis, potential biomarkers, and therapies targeting the multiple molecular processes of GCLM, with the goal of improving treatment strategies for patients with GCLM.
Collapse
Affiliation(s)
- Yichao Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 313200, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Guangyu Ding
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Chu Chu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 313200, China
| | - Xiang-Dong Cheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Key Laboratory for Molecular Medicine and Chinese Medicine Preparations, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
2
|
Moeinafshar A, Nouri M, Shokrollahi N, Masrour M, Behnam A, Tehrani Fateh S, Sadeghi H, Miryounesi M, Ghasemi MR. Non-coding RNAs as potential therapeutic targets for receptor tyrosine kinase signaling in solid tumors: current status and future directions. Cancer Cell Int 2024; 24:26. [PMID: 38200584 PMCID: PMC10782702 DOI: 10.1186/s12935-023-03203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This review article presents an in-depth analysis of the current state of research on receptor tyrosine kinase regulatory non-coding RNAs (RTK-RNAs) in solid tumors. RTK-RNAs belong to a class of non-coding RNAs (nc-RNAs) responsible for regulating the expression and activity of receptor tyrosine kinases (RTKs), which play a critical role in cancer development and progression. The article explores the molecular mechanisms through which RTK-RNAs modulate RTK signaling pathways and highlights recent advancements in the field. This include the identification of potential new RTK-RNAs and development of therapeutic strategies targeting RTK-RNAs. While the review discusses promising results from a variety of studies, encompassing in vitro, in vivo, and clinical investigations, it is important to acknowledge the challenges and limitations associated with targeting RTK-RNAs for therapeutic applications. Further studies involving various cancer cell lines, animal models, and ultimately, patients are necessary to validate the efficacy of targeting RTK-RNAs. The specificity of ncRNAs in targeting cellular pathways grants them tremendous potential, but careful consideration is required to minimize off-target effects, the article additionally discusses the potential clinical applications of RTK-RNAs as biomarkers for cancer diagnosis, prognosis, and treatment. In essence, by providing a comprehensive overview of the current understanding of RTK-RNAs in solid tumors, this review emphasizes their potential as therapeutic targets for cancer while acknowledging the associated challenges and limitations.
Collapse
Affiliation(s)
- Aysan Moeinafshar
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Shokrollahi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Masrour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Center for Orthopedic Trans-Disciplinary Applied Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Behnam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahand Tehrani Fateh
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Sadeghi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Miryounesi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Ghasemi
- Center for Comprehensive Genetic Services, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Sahib AS, Fawzi A, Zabibah RS, Koka NA, Khudair SA, Muhammad FA, Hamad DA. miRNA/epithelial-mesenchymal axis (EMT) axis as a key player in cancer progression and metastasis: A focus on gastric and bladder cancers. Cell Signal 2023; 112:110881. [PMID: 37666286 DOI: 10.1016/j.cellsig.2023.110881] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023]
Abstract
The metastasis a major hallmark of tumors that its significant is not only related to the basic research, but clinical investigations have revealed that majority of cancer deaths are due to the metastasis. The metastasis of tumor cells is significantly increased due to EMT mechanism and therefore, inhibition of EMT can reduce biological behaviors of tumor cells and improve the survival rate of patients. One of the gaps related to cancer metastasis is lack of specific focus on the EMT regulation in certain types of tumor cells. The gastric and bladder cancers are considered as two main reasons of death among patients in clinical level. Herein, the role of EMT in regulation of their progression is evaluated with a focus on the function of miRNAs. The inhibition/induction of EMT in these cancers and their ability in modulation of EMT-related factors including ZEB1/2 proteins, TGF-β, Snail and cadherin proteins are discussed. Moreover, lncRNAs and circRNAs in crosstalk of miRNA/EMT regulation in these tumors are discussed and final impact on cancer metastasis and response of tumor cells to the chemotherapy is evaluated. Moreover, the impact of miRNAs transferred by exosomes in regulation of EMT in these cancers are discussed.
Collapse
Affiliation(s)
- Ameer S Sahib
- Department of Pharmacy, Al- Mustaqbal University College, 51001 Hilla, Iraq
| | - Amjid Fawzi
- Medical Technical College, Al-Farahidi University, Iraq
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Nisar Ahmad Koka
- Department of English, Faculty of Languages and Translation, King Khalid University, Abha, Kingdom of Saudi Arabia.
| | | | | | - Doaa A Hamad
- Nursing Department, Hilla University College, Babylon, Iraq
| |
Collapse
|
4
|
Hamidi AA, Taghehchian N, Zangouei AS, Akhlaghipour I, Maharati A, Basirat Z, Moghbeli M. Molecular mechanisms of microRNA-216a during tumor progression. Cancer Cell Int 2023; 23:19. [PMID: 36740668 PMCID: PMC9899407 DOI: 10.1186/s12935-023-02865-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) as the members of non-coding RNAs family are involved in post-transcriptional regulation by translational inhibiting or mRNA degradation. They have a critical role in regulation of cell proliferation and migration. MiRNAs aberrations have been reported in various cancers. Considering the importance of these factors in regulation of cellular processes and their high stability in body fluids, these factors can be suggested as suitable non-invasive markers for the cancer diagnosis. MiR-216a deregulation has been frequently reported in different cancers. Therefore, in the present review we discussed the molecular mechanisms of the miR-216a during tumor progression. It has been reported that miR-216a mainly functioned as a tumor suppressor through the regulation of signaling pathways and transcription factors. This review paves the way to suggest the miR-216a as a probable therapeutic and diagnostic target in cancer patients.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- grid.411583.a0000 0001 2198 6209Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Basirat
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- grid.411583.a0000 0001 2198 6209Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Sadrkhanloo M, Entezari M, Orouei S, Ghollasi M, Fathi N, Rezaei S, Hejazi ES, Kakavand A, Saebfar H, Hashemi M, Goharrizi MASB, Salimimoghadam S, Rashidi M, Taheriazam A, Samarghandian S. STAT3-EMT axis in tumors: modulation of cancer metastasis, stemness and therapy response. Pharmacol Res 2022; 182:106311. [PMID: 35716914 DOI: 10.1016/j.phrs.2022.106311] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/07/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis of tumor cells and their spread to various organs and tissues of body, providing undesirable prognosis. In addition to migration, EMT increases stemness and mediates therapy resistance. Hence, pathways involved in EMT regulation should be highlighted. STAT3 is an oncogenic pathway that can elevate growth rate and migratory ability of cancer cells and induce drug resistance. The inhibition of STAT3 signaling impairs cancer progression and promotes chemotherapy-mediated cell death. Present review focuses on STAT3 and EMT interaction in modulating cancer migration. First of all, STAT3 is an upstream mediator of EMT and is able to induce EMT-mediated metastasis in brain tumors, thoracic cancers and gastrointestinal cancers. Therefore, STAT3 inhibition significantly suppresses cancer metastasis and improves prognosis of patients. EMT regulators such as ZEB1/2 proteins, TGF-β, Twist, Snail and Slug are affected by STAT3 signaling to stimulate cancer migration and invasion. Different molecular pathways such as miRNAs, lncRNAs and circRNAs modulate STAT3/EMT axis. Furthermore, we discuss how STAT3 and EMT interaction affects therapy response of cancer cells. Finally, we demonstrate targeting STAT3/EMT axis by anti-tumor agents and clinical application of this axis for improving patient prognosis.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nikoo Fathi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
6
|
Wang Y, Wu Y, Jiang J, Zhang Y, Fu Y, Zheng M, Tao X, Yi J, Mu D, Cao X. The prognostic significance of bromodomain protein 4 expression in solid tumor patients: A meta-analysis. Pathol Res Pract 2022; 234:153918. [PMID: 35561521 DOI: 10.1016/j.prp.2022.153918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Cancer is a leading cause of death worldwide. At present, several inhibitors of bromodomain protein 4 have shown promising anti-tumor responses in clinical trials. Numerous studies have reported the value of bromodomain protein 4 expression in predicting the prognosis of patients with cancers, but their conclusions remain controversial. Therefore, we conducted a meta-analysis to explore the association between bromodomain protein 4 and patient prognosis with the aim to provide new directions for the development of strategies for targeted cancer therapy. METHODS The meta-analysis was registered in the International Prospective Register of Systematic Reviews (https://www.crd.york.ac.uk/prospero/; Registration No. CRD42020184948) and followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement. PubMed Central, PubMed, Cochrane Library and Embase were thoroughly searched to identify eligible studies published through March 31, 2021. Odds ratios with 95% confidence intervals were calculated to demonstrate the relationship between bromodomain protein 4 expression and clinicopathological features. We computed pooled estimated hazard ratios with 95% confidence intervals using Stata 12.0 software to clarify the relationship between bromodomain protein 4 expression and overall survival of various cancers. A quality assessment of the eligible articles was performed based on the Newcastle-Ottawa scale. RESULTS A total of 974 patients from 10 studies were enrolled in the meta-analysis. Our results revealed that compared to low bromodomain protein 4 expression, high bromodomain protein 4 expression in cancer tissues was significantly associated with lymph node metastasis (Odds ratio = 3.59, 95% confidence interval: 2.62-4.91), distant metastasis (Odds ratio = 4.22, 95% confidence interval: 2.40-7.45), advanced TNM stage (III+IV vs. I+II: Odds ratio = 3.23, 95% confidence interval: 1.29-8.08), and poorly differentiated tumors (Odds ratio = 1.87, 95% confidence interval: 1.33-2.63). In addition, an elevated expression of bromodomain protein 4 tended to shorten survival time (Hazard ratio = 2.23, 95% confidence interval: 1.62-3.07). The subgroup analysis results showed that bromodomain protein 4 upregulation was related to poor prognosis in patients with digestive system cancers (Hazard ratio = 2.54, 95% confidence interval: 1.85-3.50). CONCLUSION This meta-analysis indicated that bromodomain protein 4 may serve as a promising prognostic biomarker for cancers and a direct effective cancer treatment target.
Collapse
Affiliation(s)
- Yueqi Wang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Yanhua Wu
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Jing Jiang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Yangyu Zhang
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Yingli Fu
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Min Zheng
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Xuerong Tao
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Jiaxin Yi
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Dongmei Mu
- Division of Clinical Research, First Hospital of Jilin University, Changchun, Jilin Province, China.
| | - Xueyuan Cao
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin Province, China.
| |
Collapse
|
7
|
MiR-139-5p Inhibits the Development of Gastric Cancer through Targeting TPD52. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4033373. [PMID: 35222884 PMCID: PMC8866006 DOI: 10.1155/2022/4033373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Many researchers have confirmed that miRNAs are involved in the pathogenesis of gastric cancer (GC). This study focused on investigating the specific functions of miR-139-5p in GC. METHODS MiR-139-5p and TPD52 expressions were observed by qRT-PCR or western blot in GC. The functional mechanism of miR-139-5p was explored by the luciferase reporter assay, transwell assay, and MTT assay. RESULTS MiR-139-5p downregulation and TPD52 upregulation were detected in GC. Adverse clinical features and prognosis in GC patients were related to low miR-139-5p expression. MiR-139-5p overexpression restrained GC cell proliferation and metastasis. Furthermore, miR-139-5p directly targeted TPD52. TPD52 silencing blocked GC progression. And TPD52 upregulation weakened the antitumor effect of miR-139-5p in GC. CONCLUSION MiR-139-5p inhibits GC cell proliferation and metastasis through downregulating TPD52.
Collapse
|
8
|
Chen Q, Zheng Y, Chen X, Ge P, Wang P, Wu B. Upregulation of miR-216a-5p by Lentinan Targeted Inhibition of JAK2/STAT3 Signaling Pathway to Reduce Lung Adenocarcinoma Cell Stemness, Promote Apoptosis, and Slow Down the Lung Adenocarcinoma Mechanisms. Front Oncol 2021; 11:778096. [PMID: 34900727 PMCID: PMC8656221 DOI: 10.3389/fonc.2021.778096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022] Open
Abstract
To investigate the effect of Lentinan (LNT) on lung adenocarcinoma (LUAD) cell stemness and its mechanism. In this study, we founded that LNT significantly reduce the cell proliferation, activity, migration, invasion, and stemness of LUAD cells, and promote their apoptosis compared with the control group in vitro. Moreover, LNT significantly inhibited the volume and weight of tumors of nude mice in vivo. At the same time, LNT can significantly up-regulate miR-216a-5p levels and reduce the protein expression of phospho-JAK2 (Y1007/1008) and phospho-STAT3 (Tyr705), thereby inhibiting the JAK2/STAT3 signaling pathway. Interfering with miR-216a-5p expression and activating the JAK2/STAT3 signaling pathway can significantly reverse LNT inhibitory effects on LUAD. Collectively, LNT can inhibit the JAK2/STAT3 signaling pathway by up-regulating miR-216a-5p, reducing stemness, and promoting LUAD cells apoptosis, then slow down LUAD occurrence and development, providing concepts and experimental foundation treating patients with LUAD.
Collapse
Affiliation(s)
- Quan Chen
- Department of Thoracic Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| | - Yiming Zheng
- Department of Thoracic Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| | - Xia Chen
- Department of Thoracic Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| | - Pengfei Ge
- Department of Thoracic Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| | - Pengcheng Wang
- Department of Thoracic Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| | - Bingbing Wu
- Department of Thoracic Surgery, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital), Taizhou, China
| |
Collapse
|
9
|
Sajjadi-Dokht M, Merza Mohamad TA, Rahman HS, Maashi MS, Danshina S, Shomali N, Solali S, Marofi F, Zeinalzadeh E, Akbari M, Adili A, Aslaminabad R, Hagh MF, Jarahian M. MicroRNAs and JAK/STAT3 signaling: A new promising therapeutic axis in blood cancers. Genes Dis 2021; 9:849-867. [PMID: 35685482 PMCID: PMC9170603 DOI: 10.1016/j.gendis.2021.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/16/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022] Open
Abstract
Blood disorders include a wide spectrum of blood-associated malignancies resulting from inherited or acquired defects. The ineffectiveness of existing therapies against blood disorders arises from different reasons, one of which is drug resistance, so different types of leukemia may show different responses to treatment. Leukemia occurs for a variety of genetic and acquired reasons, leading to uncontrolled proliferation in one or more cell lines. Regarding the genetic defects, oncogene signal transducer and activator of transcription (STAT) family transcription factor, especially STAT3, play an essential role in hematological disorders onset and progress upon mutations, dysfunction, or hyperactivity. Besides, microRNAs, as biological molecules, has been shown to play a dual role in either tumorigenesis and tumor suppression in various cancers. Besides, a strong association between STAT3 and miRNA has been reported. For example, miRNAs can regulate STAT3 via targeting its upstream mediators such as IL6, IL9, and JAKs or directly binding to the STAT3 gene. On the other hand, STAT3 can regulate miRNAs. In this review study, we aimed to determine the role of either microRNAs and STAT3 along with their effect on one another's activity and function in hematological malignancies.
Collapse
|
10
|
Mu G, Zhu Y, Dong Z, Shi L, Deng Y, Li H. Calmodulin 2 Facilitates Angiogenesis and Metastasis of Gastric Cancer via STAT3/HIF-1A/VEGF-A Mediated Macrophage Polarization. Front Oncol 2021; 11:727306. [PMID: 34604066 PMCID: PMC8479158 DOI: 10.3389/fonc.2021.727306] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/30/2021] [Indexed: 01/13/2023] Open
Abstract
Background Tumor-associated macrophages (TAMs) are indispensable to mediating the connections between cells in the tumor microenvironment. In this study, we intended to research the function and mechanism of Calmodulin2 (CALM2) in gastric cancer (GC)-TAM microenvironment. Materials and methods CALM2 expression in GC tissues and GC cells was determined through quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC). The correlation between CALM2 level and the survival rate of GC patients was assessed. The CALM2 overexpression or knockdown model was constructed to evaluate its role in GC cell proliferation, migration, and invasion. THP1 cells or HUVECs were co-cultured with the conditioned medium of GC cells. Tubule formation experiment was done to examine the angiogenesis of endothelial cells. The proliferation, migration, and polarization of THP1 cells were measured. A xenograft model was set up in BALB/c male nude mice to study CALM2x’s effects on tumor growth and lung metastasis in vivo. Western Blot (WB) checked the profile of JAK2/STAT3/HIF-1/VEGFA in GC tissues and cells. Results In GC tissues and cell lines, CALM2 expression was elevated and positively relevant to the poor prognosis of GC patients. In in-vitro experiments, CALM2 overexpression or knockdown could facilitate or curb the proliferation, migration, invasion, and angiogenesis of HUVECs and M2 polarization of THP1 cells. In in-vivo experiments, CALM2 boosted tumor growth and lung metastasis. Mechanically, CALM2 could arouse the JAK2/STAT3/HIF-1/VEGFA signaling. It was also discovered that JAK2 and HIF-1A inhibition could attenuate the promoting effects of CALM2 on GC, HUVECs cells, and macrophages. Conclusion CALM2 modulates the JAK2/STAT3/HIF-1/VEGFA axis and bolsters macrophage polarization, thus facilitating GC metastasis and angiogenesis.
Collapse
Affiliation(s)
- Ganggang Mu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yijie Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zehua Dong
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lang Shi
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunchao Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongyan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China.,Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Liu X, Ma R, Yi B, Riker AI, Xi Y. MicroRNAs are involved in the development and progression of gastric cancer. Acta Pharmacol Sin 2021; 42:1018-1026. [PMID: 33037405 PMCID: PMC8208993 DOI: 10.1038/s41401-020-00540-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/14/2020] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are recognized as an essential component of the RNA family, exerting multiple and intricate biological functions, particularly in the process of tumorigenesis, proliferation, and metastatic progression. MiRNAs are altered in gastric cancer (GC), showing activity as both tumor suppressors and oncogenes, although their true roles have not been fully understood. This review will focus upon the recent advances of miRNA studies related to the regulatory mechanisms of gastric tumor cell proliferation, apoptosis, and cell cycle. We hope to provide an in-depth insight into the mechanistic role of miRNAs in GC development and progression. In particular, we summarize the latest studies relevant to miRNAs' impact upon the epithelial-mesenchymal transition, tumor microenvironment, and chemoresistance in GC cells. We expect to elucidate the molecular mechanisms involving miRNAs for better understanding the etiology of GC, and facilitating the development of new treatment regimens for the treatment of GC.
Collapse
Affiliation(s)
- Xiaolin Liu
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Oncology, the First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, China
| | - Ruixia Ma
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, 221000, China
| | - Bin Yi
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Adam I Riker
- Geaton and JoAnn DeCesaris Cancer Institute, Department of Surgery, Anne Arundel Medical Center, Cancer Service Line, Luminis Health, Annapolis, MD, USA.
| | - Yaguang Xi
- Department of Genetics and Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
12
|
Li M, Xu D, Xia X, Ni B, Zhu C, Zhao G, Cao H. Sema3C promotes hepatic metastasis and predicts poor prognosis in gastric adenocarcinoma. J Int Med Res 2021; 49:3000605211009802. [PMID: 33909533 PMCID: PMC8108085 DOI: 10.1177/03000605211009802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Semaphorin 3C (Sema3C) may regulate tumor metastasis and prognosis. We determined the biological roles of Sema3C in the hepatic metastasis of gastric adenocarcinoma and evaluated its clinical significance as a potential biomarker. METHODS Sema3C expression in gastric cancer (GC) cell lines and tissues was measured using RT-qPCR and western blotting. Moreover, Sema3C functions were analyzed using Transwell assays and in vitro metastasis assays in gain- and loss-of-function experiments. Furthermore, the impact of Sema3C on the prognosis of 80 randomly selected patients with GC was investigated by immunohistochemistry. Additionally, the expression of epithelial-mesenchymal transition (EMT) indicators was verified by immunohistochemistry in GC tissues. RESULTS Sema3C expression was significantly upregulated in highly metastatic GC cell lines and tissues. Additionally, Sema3C promoted invasion, migration and hepatic metastasis in GC cells. Moreover, Sema3C expression was positively correlated with clinicopathological features in GC and paired hepatic metastatic tissues, and Sema3C expression was an independent prognostic factor. Finally, Sema3C expression was associated with node metastasis, hepatic metastasis and EMT marker expression. CONCLUSIONS Sema3C may play roles in regulating the EMT and metastasis of gastric adenocarcinoma, highlighting its potential use as a prognostic factor for hepatic metastasis and poor prognosis in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Maoran Li
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Danhua Xu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiang Xia
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Bo Ni
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Chunchao Zhu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Gang Zhao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Hui Cao
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
13
|
Chen Q, Hu Z, Zhang X, Wei Z, Fu H, Yang D, Cai Q. A four-lncRNA signature for predicting prognosis of recurrence patients with gastric cancer. Open Med (Wars) 2021; 16:540-552. [PMID: 33869776 PMCID: PMC8024435 DOI: 10.1515/med-2021-0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/12/2021] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose This study aimed to develop a multi-long noncoding RNA (lncRNA) signature for the prediction of gastric cancer (GC) based on differential gene expression between recurrence and nonrecurrence patients. Methods By repurposing microarray expression profiles of RNAs from The Cancer Genome Atlas (TCGA), we performed differential expression analysis between recurrence and nonrecurrence patients. A prognostic risk prediction model was constructed based on data from TCGA database, and its reliability was validated using data from Gene Expression Omnibus database. Furthermore, the lncRNA-associated competing endogenous RNA (ceRNA) network was constructed, namely, DIANA-LncBasev2 and starBase database. Results We identified 363 differentially expressed RNAs (317 mRNAs, 18 lncRNAs, and 28 microRNAs [miRNAs]). Principal component analysis showed that the seven-feature lncRNAs screened by support vector machine-recursive feature elimination algorithm was more informative for predicting recurrence of GC in comparison with the eight-feature lncRNAs screened by random forest-out-of-bag algorithm. Four of the seven-feature lncRNAs including LINC00843, SNHG3, C21orf62-AS1, and MIR99AHG were chosen to develop a four-lncRNA risk score model. This risk score model was able to distinguish patients with high and low risk of recurrence, and was tested in two independent validation sets. The ceRNA network of this four-lncRNA signature included 10 miRNAs and 178 mRNAs. The mRNAs significantly related to the Wnt-signaling pathway and relevant biological processes. Conclusion A useful four-lncRNA signature recurrence was established to distinguish GC patients with high and low risk of recurrence. Regulating the relevant miRNAs and Wnt pathway might partly affect GC metastasisby.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Zunqi Hu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Xin Zhang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Ziran Wei
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Hongbing Fu
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - DeJun Yang
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Qingping Cai
- Department of Gastrointestinal Surgery, Changzheng Hospital, Naval Medical University, No. 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| |
Collapse
|
14
|
Zhu T, Lou Q, Shi Z, Chen G. Identification of key miRNA-gene pairs in gastric cancer through integrated analysis of mRNA and miRNA microarray. Am J Transl Res 2021; 13:253-269. [PMID: 33527022 PMCID: PMC7847513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Nowadays, the current bioinformatic methods have been increasingly applied in the field of oncological research. In this study, we expect a better understanding of the molecular mechanism of gastric cancer from the bioinformatic methods. By systematically addressing the differential expression of microRNAs (miRNAs) and mRNAs between gastric cancer specimens and normal gastric specimens with the application of bioinformatics tools, A total of 206 DEGs and 38 DEMs were identified. The Gene Ontology (GO) analysis of Annotation, Visualization and Integrated Discovery (DAVID) database revealed that the differentially expressed genes (DEGs) were significantly enriched in biological process, molecular function and cellular component, while Kyoto Encyclopedia of Genes and Genomes (KEGG) database showed DEGs were significantly enriched in 8 signal pathways. The miRNA-gene regulatory network was constructed based on 385 miRNA-gene (DEM-DEG) pairs, consisting of 35 miRNAs and 107 target genes. In the regulatory network, the top 5 up-regulated genes were Transmembrane Protease, Serine 11B (TMPRSS11B), regulator of G protein signaling 1 (RGS1), cysteine rich angiogenic inducer 61 (CYR61), inhibin subunit beta A (INHBA), syntrophin gamma 1 (SNTG1), and the top 5 down-regulated genes were tumor necrosis factor receptor superfamily, member 19 (TNFRSF19), pleckstrin homology domain containing B2 (PLEKHB2), Tax1 binding protein 3 (TAX1BP3), presenilin enhancer, gamma-secretase subunit (PSENEN), NME/NM23 nucleoside diphosphate kinase 3 (NME3). Based on the gastric cancer patient database from Kaplan-Meier Plotter tools, we found that 8 of 10 genes with most significant changes in the miRNA-gene regulatory network possessed a prognostic value for survival time of gastric cancer patients. Patients with higher level of RGS1, PLEKHB2, TAX1BP3 and PSENEN in gastric cancer had a longer survival time compared with the patients with lower level of these genes. On the contrary, patients with higher level of INHBA, SNTG1, TNFRSF19 and NME3 were found associated with a shorter survival time. In conclusion, our findings provided several potential targets regarding gastric cancer, which may result in a new strategy to treat gastric cancer from a system rather than a single-gene perspective.
Collapse
Affiliation(s)
- Tieming Zhu
- Department of General Surgery, Hangzhou First People’s HospitalHangzhou, Zhejiang Province, China
| | - Qiuyue Lou
- Department of Health Education, Zhuji People’s Hospital of Zhejiang ProvinceShaoxing, Zhejiang Province, China
| | - Zhewei Shi
- Department of Cardiology, Zhuji People’s Hospital of Zhejiang ProvinceShaoxing, Zhejiang Province, China
| | - Ganghong Chen
- Department of General Surgery, Zhuji People’s Hospital of Zhejiang ProvinceShaoxing, Zhejiang Province, China
| |
Collapse
|
15
|
Kipkeeva F, Muzaffarova T, Korotaeva A, Nikulin M, Grishina K, Mansorunov D, Apanovich P, Karpukhin A. MicroRNA in Gastric Cancer Development: Mechanisms and Biomarkers. Diagnostics (Basel) 2020; 10:E891. [PMID: 33142817 PMCID: PMC7692123 DOI: 10.3390/diagnostics10110891] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/20/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer (GC) is one of the most common and difficult diseases to treat. The study of signaling pathway regulation by microRNA provides information on the mechanisms of GC development and is the basis for biomarker creation. In this study, a circuit of microRNA interactions with signaling pathways was constructed. The microRNAs, associated with metastasis and chemoresistance, are described. In most cases, microRNAs in GC regulate the Wnt/β-catenin, PI3K/AKT/mTOR, RAS/RAF/ERK/MAPK, NF-kB, TGF-β, and JAK/STAT pathways. Part of the microRNA acts on several target genes that function in different pathways. This often leads to an intensification of the induced processes. MicroRNAs have also been described that have the opposite effect on different pathways, causing different functional consequences. By acting on several target genes, or genes associated with several pathways, microRNAs can function in a signaling network. MicroRNAs associated with metastasis most often interact with the Wnt/β-catenin pathway. MicroRNAs affecting chemoresistance, in most cases, affect the regulators of apoptosis and are associated with the PI3K/AKT/mTOR pathway. The characteristics of microRNAs proposed as candidates for GC biomarkers were analyzed. The currently developed diagnostic and prognostic panels of microRNAs are also considered.
Collapse
Affiliation(s)
- Fatimat Kipkeeva
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Tatyana Muzaffarova
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Alexandra Korotaeva
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Maxim Nikulin
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of Russia, 24 Kashirskoe Shosse, Moscow 115478, Russia;
| | - Kristina Grishina
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Danzan Mansorunov
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Pavel Apanovich
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| | - Alexander Karpukhin
- Research Centre for Medical Genetics, 1 Moskvorechye St., Moscow 115522, Russia; (F.K.); (T.M.); (A.K.); (K.G.); (D.M.); (P.A.)
| |
Collapse
|
16
|
Abdi E, Latifi-Navid S, Zahri S, Kholghi-Oskooei V, Mostafaiy B, Yazdanbod A, Pourfarzi F. SNP-SNP interactions of oncogenic long non-coding RNAs HOTAIR and HOTTIP on gastric cancer susceptibility. Sci Rep 2020; 10:16763. [PMID: 33028884 PMCID: PMC7541458 DOI: 10.1038/s41598-020-73682-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Genetic variants within oncogenic long non-coding RNAs HOTAIR and HOTTIP may affect their gene expression levels, thereby modifying genetic susceptibility to gastric cancer (GC). In a hospital-based study in Ardabil-a very high-risk area in North-West Iran, 600 blood samples from 300 GC patients and 300 healthy controls were recruited for genotyping. Seven HOTAIR (i.e., rs17720428, rs7958904, rs1899663, and rs4759314) and HOTTIP (i.e., rs3807598, rs17501292, and rs1859168) 'tag' single nucleotide polymorphisms (SNPs) were genotyped by the Infinium HTS platform. The rs17720428, rs7958904, and rs1899663 tagSNPs significantly increased GC risk under dominant models by 1.5-, 1.57-, and 1.5-fold, respectively. The G-C-T-A haplotype of HOTAIR tagSNPs increased the risk of GC by 1.31-fold. No significant association was found between HOTTIP SNPs and the risk of GC. HOTAIR and HOTTIP variants were also not associated with any clinicopathologic characteristics. The SNP-SNP interaction of HOTAIR rs17720428/rs7958904 with HOTTIP rs1859168 was associated with an increased risk of GC (rs17720428 TG-rs1859168 CC, OR = 1.76; rs7958904 GC-rs1859168 CC, OR = 1.85; rs7958904 CC-rs1859168 CC, OR = 1.86). Interestingly, the SNP-SNP interaction of HOTAIR rs1899663 with HOTTIP rs1859168 strongly increased the risk of GC (rs1899663 GT-rs1859168 CC, OR = 4.3; rs1899663 TT-rs1859168 CC, OR = 9.37; rs1899663 TT-rs1859168 CA, OR = 6.59). We showed that the HOTAIR rs17720428, rs7958904, and rs1899663 tagSNPs and their interactions with the HOTTIP rs1859168 polymorphism significantly increased the risk of GC. Specifically, novel SNP-SNP interactions between HOTAIR and HOTTIP tagSNPs have a larger impact than individual SNP effects on GC risk, thereby providing us with valuable information to reveal potential biological mechanisms for developing GC.
Collapse
Affiliation(s)
- Esmat Abdi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, 5619911367, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, 5619911367, Ardabil, Iran.
| | - Saber Zahri
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, 5619911367, Ardabil, Iran
| | - Vahid Kholghi-Oskooei
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, 9516915169, Torbat Heydariyeh, Iran.,Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, 9516915169, Torbat Heydariyeh, Iran
| | - Behdad Mostafaiy
- Department of Statistics, Faculty of Sciences, University of Mohaghegh Ardabili, 5619911367, Ardabil, Iran
| | - Abbas Yazdanbod
- Digestive Disease Research Center, Ardabil University of Medical Sciences, 5618953141, Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences, 5618953141, Ardabil, Iran
| |
Collapse
|
17
|
Exosomes: Insights from Retinoblastoma and Other Eye Cancers. Int J Mol Sci 2020; 21:ijms21197055. [PMID: 32992741 PMCID: PMC7582726 DOI: 10.3390/ijms21197055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes, considered as cell debris or garbage bags, have been later characterized as nanometer-sized extracellular double-membrane lipid bilayer bio-vesicles secreted by the fusion of vesicular bodies with the plasma membrane. The constituents and the rate of exosomes formation differ in different pathophysiological conditions. Exosomes are also observed and studied in different parts of the eye, like the retina, cornea, aqueous, and vitreous humor. Tear fluid consists of exosomes that are shown to regulate various cellular processes. The role of exosomes in eye cancers, especially retinoblastoma (RB), is not well explored, although few studies point towards their presence. Retinoblastoma is an intraocular tumor that constitutes 3% of cases of cancer in children. Diagnosis of RB may require invasive procedures, which might lead to the spread of the disease to other parts. Due to this reason, better ways of diagnosis are being explored. Studies on the exosomes in RB tumors and serum might help designing better diagnostic approaches for RB. In this article, we reviewed studies on exosomes in the eye, with a special emphasis on RB. We also reviewed miRNAs expressed in RB tumor, serum, and cell lines and analyzed the targets of these miRNAs from the proteins identified in the RB tumor exosomes. hsa-miR-494 and hsa-miR-9, upregulated and downregulated, respectively in RB, have the maximum number of targets. Although oppositely regulated, they share the same targets in the proteins identified in RB tumor exosomes. Overall this review provides the up-to-date progress in the area of eye exosome research, with an emphasis on RB.
Collapse
|
18
|
Qu XH, Shi YL, Ma Y, Bao WW, Yang L, Li JC, Zhang F. LncRNA DANCR regulates the growth and metastasis of oral squamous cell carcinoma cells via altering miR-216a-5p expression. Hum Cell 2020; 33:1281-1293. [PMID: 32860589 DOI: 10.1007/s13577-020-00411-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022]
Abstract
The study aims to investigate how DANCR can alter the growth and metastasis of oral squamous cell carcinoma (OSCC) cells by regulating miR-216a-5p. The expression of DANCR and miR-216a-5p in OSCC patients and cells were measured. SCC15 and CAL-27 cells were selected to divide into Control, sh-NC, DANCR shRNA, DANCR, miR-216a-5p mimic, and DANCR + miR-216a-5p mimic groups. Dual-luciferase reporter gene assay was performed for the verification of the targeting relationship between miR-216a-5p and DANCR/Bcl-2/KLF12. We also quantified the abilities of OSCC cells regarding proliferation, invasion, migration and apoptosis, and the expression levels of apoptosis-related proteins were measured. Finally, the tumor-bearing nude mice were established to verify the effect of DANCR in vivo. Up-regulated DANCR expression and down-regulated miR-216a-5p expression were observed in both OSCC tissues and cells, and they were proven strongly correlated to the histological grade, clinical staging and lymph node metastasis of OSCC patients. Dual-luciferase reporter gene assay showed a target relationship between DANCR and miR-216a-5p, as well as between miR-216a-5p and Bcl-2/KLF12. Both DANCR shRNA and miR-216a-5p mimic decreased proliferative, migration and invasive abilities of OSCC cells with increased cell apoptosis. However, DANCR group showed completely opposite trends. Moreover, miR-216a-5p mimic could reverse the role of DANCR in promoting tumor growth. In-vivo experiment confirmed the inhibitory role of DANCR shRNA in tumor growth and metastasis. We concluded that DANCR may promote the growth and metastasis of OSCC cells and suppress OSCC cell apoptosis by sponging miR-216a-5p.
Collapse
Affiliation(s)
- Xing-Hui Qu
- Department of Orthodontics, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - You-Ling Shi
- Department of Orthodontics, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Yan Ma
- Department of Orthodontics, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Wei-Wei Bao
- Department of Orthodontics, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Lei Yang
- Department of Orthodontics, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Jin-Chao Li
- Department of Oral Surgery, Dongfeng Stomatological Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei Province, China
| | - Fan Zhang
- Department of Pediatric Dentistry, Dongfeng Stomatological Hospital, Hubei University of Medicine, No. 16, Daling Road, Zhangwan District, Shiyan, 442000, Hubei Province, China.
| |
Collapse
|
19
|
STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic Targeting and Future Prospects. BIOLOGY 2020; 9:biology9060126. [PMID: 32545648 PMCID: PMC7345582 DOI: 10.3390/biology9060126] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
Abstract
Molecular signaling pathways play a significant role in the regulation of biological mechanisms, and their abnormal expression can provide the conditions for cancer development. The signal transducer and activator of transcription 3 (STAT3) is a key member of the STAT proteins and its oncogene role in cancer has been shown. STAT3 is able to promote the proliferation and invasion of cancer cells and induces chemoresistance. Different downstream targets of STAT3 have been identified in cancer and it has also been shown that microRNA (miR), long non-coding RNA (lncRNA) and other molecular pathways are able to function as upstream mediators of STAT3 in cancer. In the present review, we focus on the role and regulation of STAT3 in gastric cancer (GC). miRs and lncRNAs are considered as potential upstream mediators of STAT3 and they are able to affect STAT3 expression in exerting their oncogene or onco-suppressor role in GC cells. Anti-tumor compounds suppress the STAT3 signaling pathway to restrict the proliferation and malignant behavior of GC cells. Other molecular pathways, such as sirtuin, stathmin and so on, can act as upstream mediators of STAT3 in GC. Notably, the components of the tumor microenvironment that are capable of targeting STAT3 in GC, such as fibroblasts and macrophages, are discussed in this review. Finally, we demonstrate that STAT3 can target oncogene factors to enhance the proliferation and metastasis of GC cells.
Collapse
|
20
|
Liu Y, Liu C, Zhang X, Liu Z, Yan X. Chrysophanol protects PC12 cells against oxygen glucose deprivation-evoked injury by up-regulating miR-216a. Cell Cycle 2020; 19:1433-1442. [PMID: 32401588 DOI: 10.1080/15384101.2020.1731655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Cerebral stroke refers to an acute onset of neurological deficit syndrome. In this research, we attempted to probe into the underlying mechanisms by which chrysophanol (CP) performed its regulatory roles in cerebral stroke. Methods OGD inducement was conducted in PC12 cells to construct a cerebral stroke model. Subsequently, CCK-8 assay, western blot, flow cytometry were utilized to determine cell viability, proliferation, and apoptosis, respectively. qRT-PCR was employed for detecting miR-216a expression level. Afterward, cell transfection was performed to alter miR-216a expression. Further, experiments were conducted to determine the expression of crucial factors participated in PI3 K/AKT and JAK2/STAT3 pathways for exploring the underlying mechanisms. Results OGD inducement suppressed cell viability, while promoted cell apoptosis. Besides, it enhanced the expression of proliferation-associated p53, p21, and apoptosis-associated Bax, and Cleaved-caspase-3, while suppressed the expression of Bcl-2. Furthermore, CHR exposure ameliorated the effects that OGD-evoked, and elevated the expression of miR-216a, as well as the expression of crucial factors participated in PI3 K/AKT and JAK2/STAT3 pathways. However, miR-216a silencing markedly reversed the effects triggered by CHR exposure. Conclusion CHR exposure relieved OGD-evoked PC12 cell damage by elevating miR-216a expression and thereby activating of PI3 K/AKT and JAK2/STAT3 pathways.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Neurology, Jining No.1 People's Hospital , Jining, China
| | - Chuanqian Liu
- Department of Traditional Chinese Medicine, Jining No.1 People's Hospital , Jining, China
| | - Xueting Zhang
- Department of Traditional Chinese Medicine, Jining No.1 People's Hospital , Jining, China
| | - Zhenzhen Liu
- Department of Traditional Chinese Medicine, Jining No.1 People's Hospital , Jining, China
| | - Xipeng Yan
- Department of Traditional Chinese Medicine, Jining No.1 People's Hospital , Jining, China
| |
Collapse
|
21
|
Wang P, Liu Q, Zhao H, Bishop JO, Zhou G, Olson LK, Moore A. miR-216a-targeting theranostic nanoparticles promote proliferation of insulin-secreting cells in type 1 diabetes animal model. Sci Rep 2020; 10:5302. [PMID: 32210316 PMCID: PMC7093482 DOI: 10.1038/s41598-020-62269-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/06/2020] [Indexed: 11/30/2022] Open
Abstract
Aberrant expression of miRNAs in pancreatic islets is closely related to the development of type 1 diabetes (T1D). The aim of this study was to identify key miRNAs dysregulated in pancreatic islets during T1D progression and to develop a theranostic approach to modify their expression using an MRI-based nanodrug consisting of iron oxide nanoparticles conjugated to miRNA-targeting oligonucleotides in a mouse model of T1D. Isolated pancreatic islets were derived from NOD mice of three distinct age groups (3, 8 and 18-week-old). Total RNA collected from cultured islets was purified and global miRNA profiling was performed with 3D-Gene global miRNA microarray mouse chips encompassing all mouse miRNAs available on the Sanger miRBase V16. Of the miRNAs that were found to be differentially expressed across three age groups, we identified one candidate (miR-216a) implicated in beta cell proliferation for subsequent validation by RT-PCR. Alterations in miR-216a expression within pancreatic beta cells were also examined using in situ hybridization on the frozen pancreatic sections. For in vitro studies, miR-216a mimics/inhibitors were conjugated to iron oxide nanoparticles and incubated with beta cell line, βTC-6. Cell proliferation marker Ki67 was evaluated. Expression of the phosphatase and tensin homolog (PTEN), which is one of the direct targets of miR-216a, was analyzed using western blot. For in vivo study, the miR-216a mimics/inhibitors conjugated to the nanoparticles were injected into 12-week-old female diabetic Balb/c mice via pancreatic duct. The delivery of the nanodrug was monitored by in vivo MRI. Blood glucose of the treated mice was monitored post injection. Ex vivo histological analysis of the pancreatic sections included staining for insulin, PTEN and Ki67. miRNA microarray demonstrated that the expression of miR-216a in the islets from NOD mice significantly changed during T1D progression. In vitro studies showed that treatment with a miR-216a inhibitor nanodrug suppressed proliferation of beta cells and increased the expression of PTEN, a miR-216a target. In contrast, introduction of a mimic nanodrug decreased PTEN expression and increased beta cell proliferation. Animals treated in vivo with a mimic nanodrug had higher insulin-producing functionality compared to controls. These observations were in line with downregulation of PTEN and increase in beta cell proliferation in that group. Our studies demonstrated that miR-216a could serve as a potential therapeutic target for the treatment of diabetes. miR-216a-targeting theranostic nanodrugs served as exploratory tools to define functionality of this miRNA in conjunction with in vivo MR imaging.
Collapse
Affiliation(s)
- Ping Wang
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, 48823, USA.
| | - Qiong Liu
- Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Fudan University, Shanghai, 200032, China
| | - Hongwei Zhao
- Shanxi Medical University, Taiyuan, Shanxi, 030001, China.,Department of Gynecologic Oncology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, 030013, China
| | - Jack Owen Bishop
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, 48823, USA.,Department of Neuroscience, College of Natural Science, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Guoli Zhou
- Biomedical Research Informatics Core, Clinical & Translational Sciences Institute, Michigan State University, East Lansing, Michigan, 48824, USA
| | - L Karl Olson
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Anna Moore
- Precision Health Program, Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, Michigan, 48823, USA.
| |
Collapse
|
22
|
Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial-Mesenchymal Transition. Cells 2020; 9:cells9010217. [PMID: 31952344 PMCID: PMC7017057 DOI: 10.3390/cells9010217] [Citation(s) in RCA: 267] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
The JAK/STAT3 signaling pathway plays an essential role in various types of cancers. Activation of this pathway leads to increased tumorigenic and metastatic ability, the transition of cancer stem cells (CSCs), and chemoresistance in cancer via enhancing the epithelial–mesenchymal transition (EMT). EMT acts as a critical regulator in the progression of cancer and is involved in regulating invasion, spread, and survival. Furthermore, accumulating evidence indicates the failure of conventional therapies due to the acquisition of CSC properties. In this review, we summarize the effects of JAK/STAT3 activation on EMT and the generation of CSCs. Moreover, we discuss cutting-edge data on the link between EMT and CSCs in the tumor microenvironment that involves a previously unknown function of miRNAs, and also discuss new regulators of the JAK/STAT3 signaling pathway.
Collapse
|
23
|
Yang Z, Song C, Jiang R, Huang Y, Lan X, Lei C, Chen H. Micro-Ribonucleic Acid-216a Regulates Bovine Primary Muscle Cells Proliferation and Differentiation via Targeting SMAD Nuclear Interacting Protein-1 and Smad7. Front Genet 2019; 10:1112. [PMID: 31798627 PMCID: PMC6865218 DOI: 10.3389/fgene.2019.01112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/16/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs), belonging to a class of evolutionarily conserved small noncoding RNA of ∼22 nucleotides, are widely involved in skeletal muscle growth and development by regulating gene expression at the post-transcriptional level. While the expression feature and underlying function of miR-216a in mammal skeletal muscle development, especially in cattle, remains to be further elucidated. The aim of this study was to investigate the function and mechanism of miR-216a during bovine primary muscle cells proliferation and differentiation. Herein, we found that the expression level of miR-216a both presented a downward trend during the proliferation and differentiation phases, which suggested that it might have a potential role in the development of bovine skeletal muscle. Functionally, during the cells proliferation phase, overexpression of miR-216a inhibited the expression of proliferation-related genes, reduced the cell proliferation status, and resulted in cells G1 phase arrest. In cells differentiation stages, overexpression of miR-216a suppressed myogenic maker genes mRNA, protein, and myotube formation. Mechanistically, we found that SNIP1 and smad7 were the directly targets of miR-216a in regulating bovine primary muscle cells proliferation and differentiation, respectively. Altogether, these findings suggested that miR-216a functions as a suppressive miRNA in development of bovine primary muscle cells via targeting SNIP1 and smad7.
Collapse
Affiliation(s)
- Zhaoxin Yang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chengchuang Song
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Rui Jiang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
24
|
Zhao D, Ma Y, Li X, Lu X. microRNA-211 promotes invasion and migration of colorectal cancer cells by targeting FABP4 via PPARγ. J Cell Physiol 2019; 234:15429-15437. [PMID: 30809808 DOI: 10.1002/jcp.28190] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023]
Abstract
Fatty acid binding protein 4 (FABP4) is a novel tumor regulator that is abnormally expressed in many human cancers. In our study, upregulated microRNA-211 (miR-211) and reduced FABP4 expression were detected in colorectal cancer (CRC) patients and CRC cells. Mimic miR-211 or anti-miR-211 were transfected to investigate the effects of miR-211 on SW480 cells. The results showed that miR-211 promoted but anti-miR-211 inhibited cell migration, invasion, and epithelial-mesenchymal transition (EMT) of SW480 cells. Luciferase activity was decreased after cotransfection with miR-211 and WT-FABP4-UTR in SW480 cells. And reduced FABP4 protein expression by miR-211 indicated that FABP4 was the targeted gene of miR-211. miR-211 inhibited the activation of peroxisome proliferator-activated receptor (PPAR) γ, whereas overexpression of FABP4 reversed that effect. Finally, FABP4 inhibited the migration, invasion, and EMT of SW480 cells, whereas PPARγ agonist reversed the effects of FABP4. Thus, the miR-211/FABP4/PPARγ axis may be a novel target for CRC therapy.
Collapse
Affiliation(s)
- Dongmei Zhao
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Provincal Cancer Hospital, Zhengzhou, Henan, China
| | - Yanying Ma
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Provincal Cancer Hospital, Zhengzhou, Henan, China
| | - Xu Li
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Provincal Cancer Hospital, Zhengzhou, Henan, China
| | - Xiaoyu Lu
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University, Henan Provincal Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
25
|
Xu LN, Jin LN. Effect of down-regulation of miR-221 on cell proliferation and cisplatin sensitivity in cisplatin-resistant gastric cancer cells and underlying mechanism. Shijie Huaren Xiaohua Zazhi 2019; 27:857-863. [DOI: 10.11569/wcjd.v27.i14.857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Patients with advanced gastric cancer (GC) usually undergo chemotherapy as the primary treatment. However, the effectiveness of chemotherapy is often limited by the development of drug resistance in GC cells. This study aimed to investigate the expression pattern, biological role, and potential mechanism of microRNA-221 (miR-221) in cisplatin (DDP)-resistant GC cells, in order to provide a reference for clinical treatment of this malignancy.
AIM To investigate the effect of down-regulation of miR-221 on cell proliferation and DDP sensitivity in DDP-resistant GC cells and to explore the underlying mechanism.
METHODS AGS and MGC-803 cells were screened for DDP-resistant cells (AGS/DDP and MGC-803/DDP). The expression levels of miR-221 in GC tissues, matched tumor adjacent tissues, DDP-sensitive tissues, DDP-resistant tissues, GC cells, and DDP-resistant GC cells were detected by RT-PCR. After AGS/DDP and MGC-803/DDP cells were transfected with LV-miR-221-shRNA, cell proliferation and DDP sensitivity in those cells were measured by MTT assay, cell apoptosis was detected by Annexin V-FITC/PI staining, and the mRNA and protein expression of CCND1 was detected by RT-qPCR and Western blot, respectively. The potential target genes of miR-221 were predicted by bioinformatics analysis.
RESULTS The expression of miR-221 was up-regulated in GC tissues and gastric cells, especially in DDP-resistant tissues and DDP-resistant GC cells. Down-regulation of miR-221 inhibited the proliferation of AGS/DDP and MGC-803/DDP cells, but increased their apoptosis and chemosensitivity to DDP. CCND1 was found to be a direct target gene of miR-221. Transfection with LV-miR-221-shRNA inhibited the mRNA and protein expression of CCND1.
CONCLUSION Down-regulation of miR-221 can inhibit cell proliferation and promote chemosensitivity to DDP in DDP-resistant GC cells, which may be achieved by inhibiting the expression of its target gene CCND1.
Collapse
Affiliation(s)
- Li-Na Xu
- Department of Pharmacy, Taizhou Hospital, Taizhou Grace Medical Center (Group), Taizhou 317000, Zhejiang Province, China
| | - Li-Na Jin
- Department of Pharmacy, Taizhou Hospital, Taizhou Grace Medical Center (Group), Taizhou 317000, Zhejiang Province, China
| |
Collapse
|
26
|
Cui Y, Wang J, Liu S, Qu D, Jin H, Zhu L, Yang J, Zhang J, Li Q, Zhang Y, Yao Y. miR‐216a promotes breast cancer cell apoptosis by targeting
PKC
α. Fundam Clin Pharmacol 2019; 33:397-404. [PMID: 31119784 DOI: 10.1111/fcp.12481] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/22/2019] [Accepted: 05/10/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ying Cui
- Department of Radiation Oncology Harbin Medical University Cancer Hospital Heilongjiang 150081 China
| | - Jinghao Wang
- Department of Pharmacy the First Affiliated Hospital Jinan University Guangzhou 510630 China
| | - Shanshan Liu
- Department of Radiation Oncology Harbin Medical University Cancer Hospital Heilongjiang 150081 China
| | - Di Qu
- Department of Medical Oncology the Second Affiliated Hospital of Harbin Medical University Heilongjiang 150086 China
| | - Hong Jin
- Department of Gynecology Harbin Medical University Cancer Hospital Heilongjiang 150081 China
| | - Lin Zhu
- Department of Radiation Oncology Harbin Medical University Cancer Hospital Heilongjiang 150081 China
| | - Jiani Yang
- Department of Medical Oncology Harbin Medical University Cancer Hospital Heilongjiang 150081China
| | - Jingchun Zhang
- Department of Medical Oncology Harbin Medical University Cancer Hospital Heilongjiang 150081China
| | - Qingwei Li
- Department of Medical Oncology Harbin Medical University Cancer Hospital Heilongjiang 150081China
| | - Yanqiao Zhang
- Department of Medical Oncology Harbin Medical University Cancer Hospital Heilongjiang 150081China
| | - Yuanfei Yao
- Department of Medical Oncology Harbin Medical University Cancer Hospital Heilongjiang 150081China
| |
Collapse
|
27
|
Song H, Shi L, Xu Y, Xu T, Fan R, Cao M, Xu W, Song J. BRD4 promotes the stemness of gastric cancer cells via attenuating miR-216a-3p-mediated inhibition of Wnt/β-catenin signaling. Eur J Pharmacol 2019; 852:189-197. [PMID: 30876979 DOI: 10.1016/j.ejphar.2019.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/01/2019] [Accepted: 03/11/2019] [Indexed: 02/02/2023]
Abstract
The bromodomain and extra-terminal domain (BET) protein BRD4 is emerging as a potential target for cancer therapy. However, BRD4 roles in regulating the stemness of gastric cancer cells are unclear. Here, we demonstrated that BRD4 expression was significantly increased in gastric cancer tissues, cell spheroids, and BRD4 knockdown attenuated the stemness of gastric cancer cells characterized as the decrease of stemness markers expression, capacity of cells spheroids formation and ALDH1 activity. Importantly, BRD4 expression was negatively correlated with overall survival, first progression survival and post progression survival of gastric cancer patients. Mechanistic investigations revealed that miR-216a-3p was the most remarkably upregulated miRNA in response to BRD4 knockdown and Wnt/β-catenin signaling was necessary for BRD4-mediated promotion on the stemness of gastric cancer cells. Additionally, BRD4 directly bound to the promoter and promoted the methylation level of MIR216A promoter, thus decreasing miR-216a-3p level. Notably, Wnt3a was identified as the direct target of miR-216a-3p in gastric cancer cells. Therefore, our results defined a BRD4/miR-216a-3p/Wnt/β-catenin pathway in regulating the stemness of gastric cancer cells.
Collapse
Affiliation(s)
- Hu Song
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China
| | - Linseng Shi
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China
| | - Yixin Xu
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China
| | - Teng Xu
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China
| | - Ruizhi Fan
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China
| | - Meng Cao
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China
| | - Wei Xu
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China
| | - Jun Song
- Department of General Surgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China; Institute of Digestive Disease, Xuzhou Medical University, 84 West Huaihai Road, Xuzhou, Jiangsu 221002, PR China.
| |
Collapse
|
28
|
Su Z, Wang C, Chang D, Zhu X, Sai C, Pei J. Limonin attenuates the stemness of breast cancer cells via suppressing MIR216A methylation. Biomed Pharmacother 2019; 112:108699. [PMID: 30970511 DOI: 10.1016/j.biopha.2019.108699] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
Limonin has been shown to exert anti-inflammatory effects, however, its roles in tumor progression remain unclear. This work aims to investigate the roles and related mechanism of limonin in the stemness of breast cancer cells. Here, we found that limonin attenuated the stemness of breast cancer cells in a concentration-dependent manner, evident by the decreasing the capacity of cell spheroid formation, expression of stemness markers and ALDH1 activity, whereas had no toxicity on non-tumorigenic cells. Additionally, limonin enhanced adriamycin sensitivity of breast cancer cells and attenuated adriamycin resistance in adriamycin-resistant breast cancer cells. Mechanistically, limonin decreased MIR216A methylation level and thus increased miR-216a-3p expression. Furthermore, miR-216a-3p could directly bind to WNT3A and thus inactivated Wnt/β-catenin pathway. Therefore, our results indicate that limonin could attenuate the stemness and chemoresistance via inhibiting MIR216A methylation and subsequently suppressing Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Zhou Su
- Department of Pharmacy, Rizhao People's Hospital of Shandong Province, 126 Tai'an Road, Rizhao 276800, China
| | - Caihong Wang
- Department of Pharmacy, Rizhao City Maternal and Child Health Care Hospital, Shandong Province, Rizhao 276800, China
| | - Deyu Chang
- Department of Pharmacy, Rizhao People's Hospital of Shandong Province, Rizhao 276800, China
| | - Xiuna Zhu
- Department of Surgery, Rizhao People's Hospital of Shandong Province, Rizhao 276800, China
| | - Chunmei Sai
- School of pharmacy, Jining Medical University, Rizhao City, Shandong, China
| | - Jian Pei
- Department of Pharmacy, Rizhao People's Hospital of Shandong Province, 126 Tai'an Road, Rizhao 276800, China.
| |
Collapse
|
29
|
Liu K, Tian T, Zheng Y, Zhou L, Dai C, Wang M, Lin S, Deng Y, Hao Q, Zhai Z, Dai Z. Scutellarin inhibits proliferation and invasion of hepatocellular carcinoma cells via down-regulation of JAK2/STAT3 pathway. J Cell Mol Med 2019; 23:3040-3044. [PMID: 30697962 PMCID: PMC6433857 DOI: 10.1111/jcmm.14169] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 02/06/2023] Open
Abstract
The prognosis of hepatocellular carcinoma (HCC) is poor because of high incidence of recurrence and metastasis. JAK/STAT signalling pathway regulates cell proliferation, apoptosis, differentiation and migration and epithelial‐mesenchymal transition (EMT) is also considered to contribute to invasion and metastasis of epithelial malignant tumours. Scutellarin is an active component found in many traditional Chinese herbs and has been regularly used in anti‐inflammatory and antitumour medicine. This study aimed to identify the effect of scutellarin and its possible mechanism of action in HCC cells. Proliferation, colony‐forming, apoptosis and cell migration assays were used to examine the effect of scutellarin on HCC cells. Quantitative real‐time PCR and Western blotting were performed to study the molecular mechanisms of action of scutellarin. Light and electron microscopy and immunofluorescence analysis were performed to study the effect of scutellarin on cellular mechanics. We show that scutellarin potentially suppresses invasiveness of HepG2 and MHCC97‐H cells in vitro by remodelling their cytoskeleton. The molecular mechanism behind it might be the inhibition of the EMT process, which could be attributed to the down‐regulation of the JAK2/STAT3 pathway. These findings may provide new clinical ideas for the treatment of liver cancer.
Collapse
Affiliation(s)
- Kang Liu
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Tian Tian
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Zheng
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Linghui Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Cong Dai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Meng Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shuai Lin
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yujiao Deng
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Qian Hao
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhen Zhai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Zhijun Dai
- Department of Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
30
|
Long non-coding RNA DANCR regulates proliferation and apoptosis of chondrocytes in osteoarthritis via miR-216a-5p-JAK2-STAT3 axis. Biosci Rep 2018; 38:BSR20181228. [PMID: 30361290 PMCID: PMC6294632 DOI: 10.1042/bsr20181228] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/23/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common chronic joint disease. Long non-coding RNAs (lncRNAs) have been confirmed to play important roles in a variety of diseases including OA. However, the underlying mechanism of lncRNA differentiation antagonizing non-protein coding RNA (DANCR) in OA has not been well elucidated. The expression of DANCR in cartilage tissues from OA patients was detected using quantitative real-time PCR. After cell transfection, the effects of DANCR inhibition on the proliferation, apoptosis and inflammatory factors of OA chondrocytes were detected using Cell Counting Kit-8 assay and flow cytometry assay. Novel target of DANCR was then identified through bioinformatics analysis and confirmed by luciferase reporter assay and RNA immunoprecipitation assay. The expression of DANCR was significantly increased in OA patients. Function assays demonstrated that DANCR suppression inhibited the proliferation, inflammation, and promoted apoptosis of chondrocytes cells. Additionally, DANCR regulated survival of OA chondrocytes through acting as a competitive endogenous RNA for miR-216a-5p. Furthermore, JAK2 was a direct target of miR-216a-5p, and DANCR regulated the JAK2/STAT3 signal pathway through miR-216a-5p in OA chondrocytes. In the present study, we concluded that DANCR promoted the proliferation, inflammation, and reduced cell apoptosis in OA chondrocytes through regulating miR-216a-5p/JAK2/STAT3 signaling pathway, indicating DANCR might be a useful biomarker and potential therapeutic target for OA treatment.
Collapse
|
31
|
Xie Y, Jin P, Sun X, Jiao T, Zhang Y, Li Y, Sun M. SIX1 is upregulated in gastric cancer and regulates proliferation and invasion by targeting the ERK pathway and promoting epithelial-mesenchymal transition. Cell Biochem Funct 2018; 36:413-419. [PMID: 30379332 DOI: 10.1002/cbf.3361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/29/2018] [Accepted: 10/11/2018] [Indexed: 12/19/2022]
Abstract
Sine oculis homeobox homologue 1 (SIX1) is a Six class homeobox gene conserved throughout many species. It has been reported to act as an oncogene and is overexpressed in many cancers. However, the function and regulatory mechanism of SIX1 in gastric cancer (GC) remains unclear. In our study, we detected protein levels of SIX1 via immunohistochemistry (IHC) and its proliferation and invasion effects via CCK8 and transwell assays. Additionally, expression of cyclin D1, MMP2, p-ERK, and EMT-related proteins was measured by western blotting. We found that SIX1 had significantly higher expression in GC tissues and that it could promote GC cell proliferation and invasion. Also, overexpression of SIX1 increased the expression of cyclin D1, MMP2, p-ERK, and EMT-related proteins, which could all be inhibited by knocking down SIX1. In conclusion, SIX1 is upregulated in GC tissues. It can promote GC cell proliferation by targeting cyclin D1, invasion via ERK signalling, and EMT pathways by targeting MMP2 and E-cadherin. SIGNIFICANCE OF THE STUDY: Our study showed that SIX1 was upregulated in GC tissues, and promoted GC cell proliferation by targeting cyclin D1, invasion via ERK signalling, and EMT pathways by targeting MMP2 and E-cadherin. These results suggested the potential regulatory mechanism of SIX1 in proliferation and invasion of gastric cancer.
Collapse
Affiliation(s)
- Ying Xie
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Peng Jin
- Department of the Third Urology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xuren Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Taiwei Jiao
- Department of Endoscopy, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yining Zhang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yue Li
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| | - Mingjun Sun
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
32
|
In Vitro and In Vivo Inhibitory Effect of Gujin Xiaoliu Tang in Non-Small Cell Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8936108. [PMID: 30271456 PMCID: PMC6151250 DOI: 10.1155/2018/8936108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/30/2018] [Accepted: 08/12/2018] [Indexed: 12/13/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a serious threat to people's health. This study aims to determine the possible effect of Gujin Xiaoliu Tang (GJXLT) on NSCLC, which is an empirical formula from Professor Dai-Han Zhou. In this study, chromatographic fingerprinting of GJXLT and A549 cell model in vitro and in vivo was established. We cultured A549 cells in vitro and found that GJXLT inhibited A549 cell growth and induced apoptosis. Compared with the control group, the expression of p-STAT3 and VEGF proteins in the GJXLT groups was decreased. Similar findings were also observed in vivo. First, GJXLT inhibited the growth of transplanted tumor and did not reduce the weight of the tumor-bearing mice in comparison with that of the control group. Then, the Ki-67 expression of transplanted tumor in the GJXLT groups was decreased. In addition, the apoptosis rate of transplanted tumor in the GJXLT groups was increased. Overall, our data showed that GJXLT inhibited A549 cell proliferation and induced apoptosis in vivo and in vitro. Furthermore, GJXLT inhibited the growth of lung cancer xenograft in nude mice model with no obvious side effects. The anti-tumor effect of GJXLT might also be related to the inhibition of p-STATS and VEGF expression in the JAK2/STAT3 pathway. Our results demonstrated the potential of GJXLT as a novel treatment for NSCLC.
Collapse
|
33
|
Zhang L, Kang W, Lu X, Ma S, Dong L, Zou B. LncRNA CASC11 promoted gastric cancer cell proliferation, migration and invasion in vitro by regulating cell cycle pathway. Cell Cycle 2018; 17:1886-1900. [PMID: 30200804 DOI: 10.1080/15384101.2018.1502574] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In this study, we aimed to investigate the effects of lncRNA CASC11 on gastric cancer (GC) cell progression through regulating miR-340-5p and cell cycle pathway. Expressions of lncRNA CASC11 in gastric cancer tissues and cell lines were determined by qRT-PCR. Differentially expressed lncRNAs, mRNAs and miRNAs were screened through microarray analysis. The relationship among CASC11, CDK1 and miR-340-5p was predicted by TargetScan and validated through dual luciferase reporter assay. Western blot assay examined the protein level of CDK1 and several cell cycle regulatory proteins. GO functional analysis and KEGG pathway analysis were used to predict the association between functions and related pathways. Cell proliferation was determined by CCK-8 assays. Cell apoptosis and cell cycle were detected by flow cytometry assay. CASC11 was highly expressed in GC tissues and cell lines. Knockdown of CASC11 inhibited GC cell proliferation, promoted cell apoptosis and blocked cell cycle. KEGG further indicated an enriched cell cycle pathway involving CDK1. QRT-PCR showed that miR-340-5p was down-regulated in GC cells tissues, while CDK1 was up-regulated. Furthermore, CASC11 acted as a sponge of miR-340-5p which directly targeted CDK1. Meanwhile, miR-340-5p overexpression promoted GC cell apoptosis and induced cell cycle arrest, while CDK1 overexpression inhibited cell apoptosis and accelerated cell cycle. Our study revealed the mechanism of CASC11/miR-340-5p/CDK1 network in GC cell line, and suggested that CASC11 was a novel facilitator that exerted a biological effect by activating the cell cycle signaling pathway. This finding provides a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Li Zhang
- a Department of Gastroenterology , the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Wenquan Kang
- b Department of Gastroenterology, Shenzhen Sixth People's Hospital (Nanshan Hospital) , Huazhong University of Science and Technology Union Shenzhen Hospital , Shenzhen , China
| | - Xiaolan Lu
- a Department of Gastroenterology , the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Shiyang Ma
- a Department of Gastroenterology , the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Lei Dong
- a Department of Gastroenterology , the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Baicang Zou
- a Department of Gastroenterology , the Second Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
34
|
Hui W, Ma X, Zan Y, Song L, Zhang S, Dong L. MicroRNA-1292-5p inhibits cell growth, migration and invasion of gastric carcinoma by targeting DEK. Am J Cancer Res 2018; 8:1228-1238. [PMID: 30094096 PMCID: PMC6079159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/11/2018] [Indexed: 06/08/2023] Open
Abstract
Gastric cancer ranks as the third most lethal cancer worldwide. Although many efforts have been made to identify novel markers for early diagnosis and effective drugs for the treatment of gastric cancer, the outcome is still poor due to delayed diagnosis and lack of therapeutic options. MicroRNAs (miRNAs) play crucial roles during tumorigenesis, and several miRNAs were found to be critical for gastric cancer development, offering promise as therapeutic targets. The results of this study indicate that a novel miRNA, miR-1292-5p, is downregulated both in gastric carcinoma in vivo and in gastric cancer cell lines in vitro. In addition, we showed that attenuation of miR-1292-5p inhibited the growth, migration and invasion of the AGS and SGC-7901 gastric cancer cell lines. Importantly, our results demonstrate that the proto-oncogenic protein DEK is a direct target of miR-1292-5p in gastric carcinoma. Our results therefore demonstrate a tumor suppressor role of miR-1292-5p in gastric carcinoma and hint at the diagnostic and therapeutic potential of the miR-1292-5p/DEK pathway in gastric cancer.
Collapse
Affiliation(s)
- Wentao Hui
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Xiaobin Ma
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Ying Zan
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Lingqin Song
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Shuqun Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| | - Lei Dong
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong UniversityXi’an 710004, Shaanxi, China
| |
Collapse
|
35
|
Tao Y, Ma C, Fan Q, Wang Y, Han T, Sun C. MicroRNA-1296 Facilitates Proliferation, Migration And Invasion Of Colorectal Cancer Cells By Targeting SFPQ. J Cancer 2018; 9:2317-2326. [PMID: 30026827 PMCID: PMC6036719 DOI: 10.7150/jca.25427] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 03/30/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in cancer genesis and progression via acting as tumor suppressors or oncogenes. Previous studies report that miR-1296 shows upregulation in both colorectal cancer (CRC) tissues and plasma samples. However, the accurate clinical significance of miR-1296 and its role in CRC have not been well investigated. The aim of the present study was to disclose the aberrant expression, clinical significance, and the relevant biological function of miR-1296 in CRC. We found a marked upregulation of miR-1296 expression in CRC tissues compared to tumor-adjacent tissues. MiR-1296 overexpression was detected in five CRC cell lines (HCT116, Caco2, HT29, SW620 and SW480). High miR-1296 level was remarkably correlated with tumor size (>5cm), lymph node metastasis and TNM stage (III+IV). Notably. High miR-1296 expression was identified as a predictive factor for poor prognosis of CRC patients by survival analysis. MiR-1296 knockdown inhibited proliferation, migration, invasion capacities of HCT116 and SW480 cells in vitro. Moreover, miR-1296 silencing restrained the growth of CRC cells in vivo. Splicing factor proline and glutamine rich (SFPQ), a novel RNA binding protein, was identified as a direct target gene of miR-1296 in CRC. Downregulation of SFPQ expression was inversely associated with miR-1296 expression in CRC tissues. The Cancer Genome Atlas (TCGA) data revealed the prognostic value of dysregulated SFPQ in CRC patients. Interestingly, our findings established that the oncogenic role of miR-1296 was at least partially mediated by SFPQ in CRC cells. Collectively, these data indicate that miR-1296 accelerates CRC progression possibly by targeting SFPQ and may serve as a potential predictive factor and therapeutic target for CRC.
Collapse
Affiliation(s)
- Youmao Tao
- Department of Gastrointestinal Colorectal and Anal Surgery
| | - Chong Ma
- Department of Gastrointestinal Colorectal and Anal Surgery
| | - Qihao Fan
- Department of Gastrointestinal Colorectal and Anal Surgery
| | - Yannan Wang
- Department of Gastrointestinal Colorectal and Anal Surgery
| | - Tao Han
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin Province 130033, China
| | - Caixia Sun
- Department of Gastrointestinal Colorectal and Anal Surgery
| |
Collapse
|
36
|
Li W, Ng JMK, Wong CC, Ng EKW, Yu J. Molecular alterations of cancer cell and tumour microenvironment in metastatic gastric cancer. Oncogene 2018; 37:4903-4920. [PMID: 29795331 PMCID: PMC6127089 DOI: 10.1038/s41388-018-0341-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
The term metastasis is widely used to describe the endpoint of the process by which tumour cells spread from the primary location to an anatomically distant site. Achieving successful dissemination is dependent not only on the molecular alterations of the cancer cells themselves, but also on the microenvironment through which they encounter. Here, we reviewed the molecular alterations of metastatic gastric cancer (GC) as it reflects a large proportion of GC patients currently seen in clinic. We hope that further exploration and understanding of the multistep metastatic cascade will yield novel therapeutic targets that will lead to better patient outcomes.
Collapse
Affiliation(s)
- Weilin Li
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Jennifer Mun-Kar Ng
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Enders Kwok Wai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| |
Collapse
|
37
|
Jiang L, Yang W, Bian W, Yang H, Wu X, Li Y, Feng W, Liu X. MicroRNA-623 Targets Cyclin D1 to Inhibit Cell Proliferation and Enhance the Chemosensitivity of Cells to 5-Fluorouracil in Gastric Cancer. Oncol Res 2018; 27:19-27. [PMID: 29495973 PMCID: PMC7848397 DOI: 10.3727/096504018x15193469240508] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The dysregulation of microRNAs (miRNAs) plays an important function in the onset and progression of gastric cancer (GC). In addition, aberrantly expressed miRNAs affect the chemosensitivity of GC cells to chemotherapeutic drugs. Hence, miRNA-based targeted therapy might be applied to treat patients with GC exhibiting chemotherapeutic resistance. In this study, miRNA-623 (miR-623) expression was downregulated in GC tissues and cell lines. Functional analysis showed that the restored miR-623 expression could inhibit the proliferation of GC cells and enhance their chemosensitivity to 5-FU via the cell apoptosis pathway. Cyclin D1 (CCND1) was identified as a direct target gene of miR-623 in GC. The overexpressed CCND1 in GC tissues was negatively correlated with miR-623 level. The recovered CCND1 expression counteracted the effects of miR-623 on GC cell proliferation, chemosensitivity, and 5-FU-induced apoptosis. Thus, our results suggest that miR-623 might function as a tumor suppressor in GC and could be a promising therapeutic target for patients with GC, especially those with chemotherapeutic resistance.
Collapse
Affiliation(s)
- Lihua Jiang
- Department of Oncology, Linyi Third People's Hospital, Shandong, P.R. China
| | - Wenchuan Yang
- Department of Oncology, Linyi Third People's Hospital, Shandong, P.R. China
| | - Weishi Bian
- Department of Cardiology, Linyi Third People's Hospital, Shandong, P.R. China
| | - Hailin Yang
- Department of Oncology, Linyi Third People's Hospital, Shandong, P.R. China
| | - Xia Wu
- Department of Oncology, Linyi Third People's Hospital, Shandong, P.R. China
| | - Yuhua Li
- Department of Oncology, Linyi Third People's Hospital, Shandong, P.R. China
| | - Wen Feng
- Department of Oncology, Linyi Third People's Hospital, Shandong, P.R. China
| | - Xuejian Liu
- Department of Oncology, Linyi Third People's Hospital, Shandong, P.R. China
| |
Collapse
|
38
|
Guo J, Zhang Z, Pan L, Zhou Y. Identification of miR-758-3p as Potential Modulator of CBX5 Expression in Gastric Cancer. Technol Cancer Res Treat 2018; 17:1533033818816061. [PMID: 30486755 PMCID: PMC6280610 DOI: 10.1177/1533033818816061] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
Gastric cancer is one of the most frequently diagnosed cancer types in China and also the leading causes of cancer-related death. Previous study showed chromobox 5 expression was elevated in gastric cancer, but little is known regarding the precise molecular mechanisms by which chromobox 5 expression was modulated. In this study, we revealed that chromobox 5 could promote gastric cancer cell proliferation, migration, and invasion in vitro. We screened and identified microRNA-758-3p, whose expression was downregulated in gastric cancer tissues and cell lines, which was a potential upstream molecule of chromobox 5. Upregulation of microRNA-758-3p could markedly downregulate the expression of chromobox 5. Additionally, expression of microRNA-758-3p and chromobox 5 was inversely correlated in gastric cancer tissues. Moreover, microRNA-758-3p overexpression suppressed gastric cancer cell proliferation, migration, and invasion, but these effects can be partially reversed by chromobox 5 overexpression. Collectively, our results indicate that microRNA-758-3p serves as a tumor suppressor and plays a crucial role in inhibiting the proliferation, migration, and invasion of gastric cancer via targeting chromobox 5 and implicate its potential application in cancer therapy.
Collapse
Affiliation(s)
- Jinxing Guo
- Department of General Surgery, Renhe Hospital, Baoshan District, Shanghai, China
| | - Zichao Zhang
- Department of General Surgery, Digestive Medical Center, The First Affiliated Hospital of Tsinghua University, Jiuxianqiao, Chaoyang District, Beijing, China
| | - Lijie Pan
- Department of General Surgery, Digestive Medical Center, The First Affiliated Hospital of Tsinghua University, Jiuxianqiao, Chaoyang District, Beijing, China
| | - Yuanhang Zhou
- Department of General Surgery, Renhe Hospital, Baoshan District, Shanghai, China
| |
Collapse
|