1
|
Liu M, Li T, Liang H, Zhong P. Herbal medicines in Alzheimer's disease and the involvement of gut microbiota. Front Pharmacol 2024; 15:1416502. [PMID: 39081953 PMCID: PMC11286407 DOI: 10.3389/fphar.2024.1416502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory loss and cognitive impairment. It severely affects the quality of life of victims. The prevalence of AD has been increasing in recent years. Therefore, it is of great importance to elucidate the pathogenic mechanism of AD and search for effective therapeutic approaches. Gut microbiota dysbiosis, an altered state of gut microbiota, has been well known for its involvement in the pathogenesis of AD. Much effort has been made in searching for approaches capable of modulating the composition of gut microbiota in recent years. Herbal medicines have attracted extensive attention in recent decades for the prevention and treatment of AD. Here, we gave an overview of the recent research progress on the modulatory effects of herbal medicines and herbal formulae on gut microbiota as well as the possible beneficial effects on AD, which may provide new insights into the discovery of anti-AD agents and their therapeutic potential for AD through modulating the composition of gut microbiota.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Neurology, Yangpu District Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Tuming Li
- Department of Neurology, Yangpu District Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Huazheng Liang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Monash Suzhou Research Institute, Suzhou, China
| | - Ping Zhong
- Department of Neurology, Yangpu District Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Dhapola R, Kumari S, Sharma P, HariKrishnaReddy D. Insight into the emerging and common experimental in-vivo models of Alzheimer's disease. Lab Anim Res 2023; 39:33. [PMID: 38082453 PMCID: PMC10712122 DOI: 10.1186/s42826-023-00184-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 05/30/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, rapidly progressing neurodegenerative disorder. As the exact cause of the disease is still unclear, the drug development is very challenging. This review encompasses the commonly used AD models involving various chemicals, heavy metals and endogenous substances induced models and the transgenic models. It also provides insight into the reliable emerging models of AD that may overcome the shortcomings associated with available models. Chemicals like streptozotocin, scopolamine, colchicine and okadaic acid render the animal susceptible to neuroinflammation and oxidative stress induced neurodegeneration along with amyloid-β deposition and tau hyperphosphorylation. Similarly, endogenous substances like acrolein and amyloid-β 1-42 are efficient in inducing the major pathologies of AD. Heavy metals like aluminum and fluoride and mixture of these have been reported to induce neurotoxicity therefore are used as animal models for AD. Transgenic models developed as a result of knock-in or knock-out of certain genes associated with AD including PDAPP, APP23, Tg2576, APP/PS1, 3 × Tg and 5 × FAD have also been incorporated in this study. Further, emerging and advanced pathomimetic models of AD are provided particular interest here which will add on to the current knowledge of animal models and may aid in the drug development process and deepen our understanding related to AD pathogenesis. These newly discovered models include oAβ25-35 model, transgenic model expressing 82-kDa ChAT, oDGal mouse and APP knock-in rat. This study may aid in the selection of suitable model for development of novel potent therapeutics and for exploring detailed pathogenic mechanism of AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Sneha Kumari
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Prajjwal Sharma
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Dibbanti HariKrishnaReddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
3
|
Chen Y, Cai Y, Zhao Z, Yang D, Xu X. Optimization of Extraction Process, Preliminary Characterization and Safety Study of Crude Polysaccharides from Morindae Officinalis Radix. Foods 2023; 12:foods12081590. [PMID: 37107385 PMCID: PMC10137598 DOI: 10.3390/foods12081590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, the hot water extraction process of crude polysaccharides from Morindae officinalis radix (cMORP) was conducted and optimized through a single-factor test and orthogonal experimental design. With the optimal extraction process (extraction temperature of 80 °C, extraction time of 2 h, liquid/solid ratio of 15 mL/g, and number of extraction of 1), the cMORP was obtained by the ethanol precipitation method. The chemical properties and preliminary characterization of the cMORP were analyzed by chemical or instrumental methods. Furthermore, to indicate a preliminary study on safety, a single oral dose of 5000 mg/kg body weight (BW) was administered orally to Kunming (KM) mice for acute toxicity, and the cMORP was administered orally to KM mice once a day at doses of 25, 50, and 100 mg/kg BW for 30 days. General behaviors, body weight variations, histopathology, relative organ weights, and hematological and serum biochemical parameters were observed and recorded. The results suggested there were no toxicologically significant changes. Based on the safety study, cMORP can be initially considered non-toxic with no acute oral toxicity up to 5000 mg/kg BW and safe at up to 100 mg/kg BW in KM mice for 30 days.
Collapse
Affiliation(s)
- Yaxian Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yini Cai
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhimin Zhao
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Depo Yang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xinjun Xu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Luo YP, Liu Z, Wang C, Yang XF, Wu XY, Tian XL, Wen HZ. Anodal transcranial direct current stimulation alleviates cognitive impairment in an APP/PS1 model of Alzheimer's disease in the preclinical stage. Neural Regen Res 2022; 17:2278-2285. [PMID: 35259850 PMCID: PMC9083165 DOI: 10.4103/1673-5374.337053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Anodal transcranial direct current stimulation (AtDCS) has been shown to alleviate cognitive impairment in an APP/PS1 model of Alzheimer's disease in the preclinical stage. However, this enhancement was only observed immediately after AtDCS, and the long-term effect of AtDCS remains unknown. In this study, we treated 26-week-old mouse models of Alzheimer's disease in the preclinical stage with 10 AtDCS sessions or sham stimulation. The Morris water maze, novel object recognition task, and novel object location test were implemented to evaluate spatial learning memory and recognition memory of mice. Western blotting was used to detect the relevant protein content. Morphological changes were observed using immunohistochemistry and immunofluorescence staining. Six weeks after treatment, the mice subjected to AtDCS sessions had a shorter escape latency, a shorter path length, more platform area crossings, and spent more time in the target quadrant than sham-stimulated mice. The mice subjected to AtDCS sessions also performed better in the novel object recognition and novel object location tests than sham-stimulated mice. Furthermore, AtDCS reduced the levels of amyloid-β42 and glial fibrillary acidic protein, a marker of astrocyte activation, and increased the level of neuronal marker NeuN in hippocampal tissue. These findings suggest that AtDCS can improve the spatial learning and memory abilities and pathological state of an APP/PS1 mouse model of Alzheimer's disease in the preclinical stage, with improvements that last for at least 6 weeks.
Collapse
Affiliation(s)
- Yin-Pei Luo
- Chongqing Key Laboratory of Neurobiology, Department of Neurobiology, School of Basic Medicine, Army Medical University; Chongqing Medical Electronics Engineering Technology Research Center, Laboratory of Neural Regulation and Rehabilitation Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Zhi Liu
- Department of Histology and Embryology, School of Basic Medicine, Army Medical University, Chongqing, China
| | - Cong Wang
- Chongqing Medical Electronics Engineering Technology Research Center, Laboratory of Neural Regulation and Rehabilitation Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiu-Fang Yang
- Chongqing Medical Electronics Engineering Technology Research Center, Laboratory of Neural Regulation and Rehabilitation Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xiao-Ying Wu
- Chongqing Medical Electronics Engineering Technology Research Center, Laboratory of Neural Regulation and Rehabilitation Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xue-Long Tian
- Chongqing Medical Electronics Engineering Technology Research Center, Laboratory of Neural Regulation and Rehabilitation Technology, College of Bioengineering, Chongqing University, Chongqing, China
| | - Hui-Zhong Wen
- Chongqing Key Laboratory of Neurobiology, Department of Neurobiology, School of Basic Medicine, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Zhang Y, Zhang M. Neuroprotective effects of Morinda officinalis How.: Anti-inflammatory and antioxidant roles in Alzheimer’s disease. Front Aging Neurosci 2022; 14:963041. [PMID: 36158563 PMCID: PMC9493036 DOI: 10.3389/fnagi.2022.963041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 12/08/2022] Open
Abstract
Pharmacological studies have shown that some traditional Chinese medicines (TCMs) have applications in the treatment of Alzheimer’s disease (AD). Morinda officinalis How. (MO) is a TCM with a long history and is widely used to tonify kidney Yang. In vitro and in vivo experiments have suggested that MO contains various effective pharmaceutical components and chemicals, including oligosaccharides, anthraquinones, iridoids, flavonoids, amino acids, and trace elements, conferring MO with anti-inflammatory and antioxidant properties. Neuroinflammation and oxidative stress are undoubtedly hallmarks of neurodegeneration, contributing to AD progression. In this mini-review, we summarize the molecular mechanisms, structure-activity relationships, and potential synergistic and antagonistic effects of active components in MO. This discussion highlights the roles of these active components, such as oligosaccharides, anthraquinones, and iridoid glycosides, in the treatment of AD via anti-inflammatory and antioxidant mechanisms, providing a scientific basis for further utilization of MO.
Collapse
|
6
|
Li J, Wang S, Tian F, Zhang SQ, Jin H. Advances in Pharmacokinetic Mechanisms of Transporter-Mediated Herb-Drug Interactions. Pharmaceuticals (Basel) 2022; 15:ph15091126. [PMID: 36145347 PMCID: PMC9502688 DOI: 10.3390/ph15091126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
As the use of herbs has become more popular worldwide, there are increasing reports of herb-drug interactions (HDIs) following the combination of herbs and drugs. The active components of herbs are complex and have a variety of pharmacological activities, which inevitably affect changes in the pharmacokinetics of chemical drugs in vivo. The absorption, distribution, metabolism, and excretion of drugs in vivo are closely related to the expression of drug transporters. When the active components of herbs inhibit or induce the expression of transporters, this can cause changes in substrate pharmacokinetics, resulting in changes in the efficacy and toxicity of drugs. In this article, the tissue distribution and physiological functions of drug transporters are summarized through literature retrieval, and the effects of herbs on drug transporters and the possible mechanism of HDIs are analyzed and discussed in order to provide ideas and a reference for further guiding of safe clinical drug use.
Collapse
Affiliation(s)
- Jie Li
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuting Wang
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Fengjie Tian
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 102206, China
| | - Shuang-Qing Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, 29 Nanwei Road, Beijing 100050, China
- Correspondence: (S.-Q.Z.); (H.J.); Tel.: +86-10-66237226 (S.-Q.Z.); +86-10-67817730 (H.J.)
| | - Hongtao Jin
- New Drug Safety Evaluation Center, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Union-Genius Pharmaceutical Technology Development Co., Ltd., Beijing 100176, China
- NMPA Key Laboratory for Safety Research and Evaluation of Innovative Drug, Beijing 102206, China
- Correspondence: (S.-Q.Z.); (H.J.); Tel.: +86-10-66237226 (S.-Q.Z.); +86-10-67817730 (H.J.)
| |
Collapse
|
7
|
Xu W, Jiang Y, Wang N, Bai H, Xu S, Xia T, Xin H. Traditional Chinese Medicine as a Promising Strategy for the Treatment of Alzheimer's Disease Complicated With Osteoporosis. Front Pharmacol 2022; 13:842101. [PMID: 35721142 PMCID: PMC9198449 DOI: 10.3389/fphar.2022.842101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) and osteoporosis (OP) are progressive degenerative diseases caused by multiple factors, placing a huge burden on the world. Much evidence indicates that OP is a common complication in AD patients. In addition, there is also evidence to show that patients with OP have a higher risk of AD than those without OP. This suggests that the association between the two diseases may be due to a pathophysiological link rather than one disease causing the other. Several in vitro and in vivo studies have also proved their common pathogenesis. Based on the theory of traditional Chinese medicine, some classic and specific natural Chinese medicines are widely used to effectively treat AD and OP. Current evidence also shows that these treatments can ameliorate both brain damage and bone metabolism disorder and further alleviate AD complicated with OP. These valuable therapies might provide effective and safe alternatives to major pharmacological strategies.
Collapse
Affiliation(s)
- Weifan Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China.,Department of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Huanhuan Bai
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Shengyan Xu
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Tianshuang Xia
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Naval Medical University, Shanghai, China
| |
Collapse
|
8
|
Tian WJ, Jeon SH, Zhu GQ, Kwon EB, Kim GE, Bae WJ, Cho HJ, Ha US, Hong SH, Lee JY, Kim KS, Kim SW. Effect of high-BDNF microenvironment stem cells therapy on neurogenic bladder model in rats. Transl Androl Urol 2021; 10:345-355. [PMID: 33532323 PMCID: PMC7844501 DOI: 10.21037/tau-20-1072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background The purpose of this study is to explore the effects of high-BDNF microenvironment produced by engineered immortalized mesenchymal stem cells (imMSCs) on the neurogenic bladder (NB) and investigate underlying mechanism. Methods Male Sprague-Dawley rat (12-week-old, weighing about 370-400 g) were purchased from a Korean company (Orient Bio Co. Seongnam, Korea) and divided into the following groups (n=32): sham control group (n=8), NB group (n=8), NB + ImMSCs group (n=8), NB + ImMSCs (BDNF) group (n=8). The major pelvic ganglion (MPG) was observed under anesthesia. Three NB groups of rats were then subjected to bilateral MPG injury. The sham control group of rats was treated with sham surgery. Cystometry were performed before the rats were sacrificed, and then MPG and bladder were collected for histochemical and Western blot analysis. Results MSCs treatment improves lower urinary tract function, and the NB + ImMSCs (BDNF) group is better than the NB + ImMSCs group (P<0.01). MSCs treatment accelerates recovery of injured nerve tissue, and the NB + ImMSCs (BDNF) group is better than the NB + ImMSCs group (P<0.01). In high BDNF environment, apoptosis was reduced more significantly and muscle tissue recovered more rapidly (P<0.01). High-BDNF microenvironment activates more BDNF/TrkB/CREB signaling pathways (P<0.01). Conclusions In a rat NB model caused by nerve injury, imMSCs have certain effects on nerve tissue repair. At the same time, it was proved that increasing the expression of BDNF which had specific effect on nerve injury repair could more effectively repair injured MPG in local microenvironment. The mechanism may be related to the activation of the BDNF/TrkB/CREB signaling pathway and the reduction of apoptosis by highly expressed BDNF.
Collapse
Affiliation(s)
- Wen Jie Tian
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, the Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Hwan Jeon
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, the Catholic University of Korea, Seoul, Republic of Korea
| | - Guan Qun Zhu
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Eun Bi Kwon
- Catholic Integrative Medicine Research Institute, the Catholic University of Korea, Seoul, Republic of Korea
| | - Ga Eun Kim
- Catholic Integrative Medicine Research Institute, the Catholic University of Korea, Seoul, Republic of Korea
| | - Woong Jin Bae
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, the Catholic University of Korea, Seoul, Republic of Korea
| | - Hyuk Jin Cho
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - U-Syn Ha
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung-Hoo Hong
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji Youl Lee
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kang Sup Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sae Woong Kim
- Department of Urology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Integrative Medicine Research Institute, the Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
9
|
Tulloch J, Netsyk O, Pickett EK, Herrmann AG, Jain P, Stevenson AJ, Oren I, Hardt O, Spires-Jones TL. Maintained memory and long-term potentiation in a mouse model of Alzheimer's disease with both amyloid pathology and human tau. Eur J Neurosci 2020; 53:637-648. [PMID: 33169893 DOI: 10.1111/ejn.14918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 11/28/2022]
Abstract
One of the key knowledge gaps in the field of Alzheimer's disease research is the lack of understanding of how amyloid beta and tau cooperate to cause neurodegeneration. We recently generated a mouse model (APP/PS1 + Tau) that develops amyloid plaque pathology and expresses human tau in the absence of endogenous murine tau. These mice exhibit an age-related behavioural hyperactivity phenotype and transcriptional deficits which are ameliorated by tau transgene suppression. We hypothesized that these mice would also display memory and hippocampal synaptic plasticity deficits as has been reported for many plaque bearing mouse models which express endogenous mouse tau. We observed that our APP/PS1 + Tau model does not exhibit novel object memory or robust long-term potentiation deficits with age, whereas the parent APP/PS1 line with mouse tau did develop the expected deficits. These data are important as they highlight potential functional differences between mouse and human tau and the need to use multiple models to fully understand Alzheimer's disease pathogenesis and develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Jane Tulloch
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Olga Netsyk
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Eleanor K Pickett
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Abigail G Herrmann
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Pooja Jain
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Anna J Stevenson
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Iris Oren
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Oliver Hardt
- Department of Psychology, McGill University, Montreal, QC, Canada.,The Simons Initiative for the Developing Brain and The Patrick Wild Centre, The University of Edinburgh, Edinburgh, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Li JM, Zhao Y, Sun Y, Kong LD. Potential effect of herbal antidepressants on cognitive deficit: Pharmacological activity and possible molecular mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112830. [PMID: 32259666 DOI: 10.1016/j.jep.2020.112830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cognitive symptom is a "core" symptom of major depressive disorder (MDD) patients with clear deficit in memory, social and occupational function, and may persist during the remitting phase. Therefore, the remission of cognitive symptom has been considered as one of the main objectives in the treatment of MDD. Herbal antidepressants have been used to treat MDD, and there has been great advances in the understanding of the ability of these herbs to improve cognitive deficit linked to brain injury and various diseases including depression, Alzheimer disease, diabetes and age-related disorders. This systematic review summarizes the evidence from preclinical studies and clinical trials of herbal antidepressants with positive effects on cognitive deficit. The potential mechanisms by which herbal antidepressants prevent cognitive deficit are also reviewed. This review will facilitate further research and applications. MATERIALS AND METHODS We conducted an open-ended, English restricted search of MEDLINE (PubMed), Web of Science and Scopus for all available articles published or online before 31 December 2019, using terms pertaining to medical herb/phytomedicine/phytochemical/Chinese medicine and depression/major depressive disorder/antidepressant and/or cognitive impairment/cognitive deficit/cognitive dysfunction. RESULTS 7 prescriptions, more than 30 individual herbs and 50 phytochemicals from China, Japan, Korea and India with positive effects on the depressive state and cognitive deficit are reviewed herein. The evidence from preclinical studies and clinical trials proves that these herbal antidepressants exhibit positive effects on one or more aspects of cognitive defect including spatial, episodic, aversive, and short- and long-term memory. The action mode of the improvement of cognitive deficit by these herbal antidepressants is mediated mainly through two pathways. One pathway is to promote hippocampal neurogenesis through activating brain derived neurotrophic factor-tropomyosin-related kinase B signaling. The other pathway is to prevent neuronal apoptosis through the inhibition of neuro-inflammation and neuro-oxidation. CONCLUSION These herbal antidepressants, having potential therapy for cognitive deficit, may prevent pathological processes of neurodegenerative diseases. Furthermore, these herbal medicines should provide a treasure trove, which will accelerate the development of new antidepressants that can effectively improve cognitive symptom in MDD. Studies on their molecular mechanisms may provide more potential targets and therapeutic approaches for new drug discovery.
Collapse
Affiliation(s)
- Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
11
|
Huang HJ, Huang CY, Lee M, Lin JY, Hsieh-Li HM. Puerariae Radix Prevents Anxiety and Cognitive Deficits in Mice Under Oligomeric Aβ-Induced Stress. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2020; 47:1459-1481. [PMID: 31752523 DOI: 10.1142/s0192415x19500757] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To evaluate the therapeutic effects of Chinese herbal medicine (CHM) for Alzheimer's disease (AD), we evaluated five CHMs in oligomeric Aβ25-35-treated mouse primary hippocampal neuronal cultures. The aqueous extract from the root of Pueraria lobata (Puerariae Radix; PR) showed better neuroprotective effects than did the other four CHM aqueous extracts, including Gardenia jasminoides, Eleutherococcus senticosus, Rhodiola rosea, and Panax, in the primary culture treated with saline or oligomeric Aβ25-35. Furthermore, the neuroprotective effects of aqueous extract of PR were also better than its well-known active compound, puerarin, against the neurotoxicity of oligomeric Aβ25-35 in a primary culture. For in vivo experiments, C57BL/6J male mice that received direct infusion of soluble oligomeric Aβ25-35 into the bilateral hippocampal CA1 subregion were used as an alternative AD mouse model. The effects and molecular mechanisms of chronic systemic administration of PR aqueous extract were evaluated in the alternative AD model. PR aqueous extract prevented anxiety and cognitive impairment in mice associated with a decrease in the levels of Aβ deposition, tau protein phosphorylation, inflammation, loss of noradrenergic, and serotonergic neurons and an increase in the levels of synaptophysin and insulin degrading enzyme (IDE) against the toxicity of oligomeric Aβ25-35. Furthermore, no obvious damage to the liver and kidney was detected after chronic systemic administration of PR aqueous extract. Therefore, using PR could be a safer, more effective therapeutic strategy than using its active compound puerarin to prevent both cognitive and noncognitive dysfunction and related pathological features of AD.
Collapse
Affiliation(s)
- Hei-Jen Huang
- Department of Nursing, Mackay Junior College of Medicine, Nursing, and Management, Taipei 11260, Taiwan
| | - Ching-Yi Huang
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Mingchung Lee
- Brion Research Institute, New Taipei City 23143, Taiwan
| | - Jung-Yaw Lin
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Hsiu Mei Hsieh-Li
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
12
|
Human-Induced Pluripotent Stem Cells and Herbal Small-Molecule Drugs for Treatment of Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21041327. [PMID: 32079110 PMCID: PMC7072986 DOI: 10.3390/ijms21041327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by extracellular amyloid plaques composed of the β-amyloid peptides and intracellular neurofibrillary tangles and associates with progressive declines in memory and cognition. Several genes play important roles and regulate enzymes that produce a pathological accumulation of β-amyloid in the brain, such as gamma secretase (γ-secretase). Induced pluripotent stem cells from patients with Alzheimer’s disease with different underlying genetic mechanisms may help model different phenotypes of Alzheimer’s disease and facilitate personalized drug screening platforms for the identification of small molecules. We also discuss recent developments by γ-secretase inhibitors and modulators in the treatment of AD. In addition, small-molecule drugs isolated from Chinese herbal medicines have been shown effective in treating Alzheimer’s disease. We propose a mechanism of small-molecule drugs in treating Alzheimer’s disease. Combining therapy with different small-molecule drugs may increase the chance of symptomatic treatment. A customized strategy tailored to individuals and in combination with therapy may be a more suitable treatment option for Alzheimer’s disease in the future.
Collapse
|
13
|
Oligosaccharides from Morinda officinalis Slow the Progress of Aging Mice by Regulating the Key Microbiota-Metabolite Pairs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9306834. [PMID: 31929824 PMCID: PMC6942866 DOI: 10.1155/2019/9306834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/26/2019] [Accepted: 11/27/2019] [Indexed: 11/17/2022]
Abstract
The gut microbiota is considered an important factor in the progression of Alzheimer's disease (AD). Active research on the association between the metabolome and the gut microbiome is ongoing and can provide a large amount of beneficial information about the interactions between the microbiome and the metabolome. Previous studies have shown that the oligosaccharides from Morinda officinalis (OMO) can delay the progress of AD in model animals by regulating the diversity of the gut microbiome and metabolic components, and the correlation between the gut microbiome and metabolic components still needs to be further verified. This study applied a new two-level strategy to investigate and ensure the accuracy and consistency of the results. This strategy can be used to determine the association between the gut microbiome and serum metabolome in APP/PS1 transgenic mice and C57BL/6J male mice. The “4C0d-2 spp.-Cholesterol,” “CW040 spp.-L-valine,” “CW040 spp.-L-acetylcarnitine,” “RF39 spp.-L-valine,” “TM7-3 spp.-L-valine,” and “TM7-3 spp.-L-acetylcarnitine” associations among specific “microbiota-metabolite” pairs were further identified based on univariate and multivariate correlation analyses and functional analyses. The key relevant pairs were verified by an independent oligosaccharide intervention study, and the gut microbiome and serum metabolome of the OMO intervention group were similar to those of the normal group. The results indicate that OMO can significantly suppress Alzheimer's disease by regulating the key microbiota-metabolite pairs. Therefore, this two-level strategy is effective in identifying the principal correlations in large datasets obtained from combinations of multiomic studies and further enhancing our understanding of the correlation between the brain and gut in patients with AD.
Collapse
|
14
|
Yang X, Hu G, Lv L, Liu T, Qi L, Huang G, You D, Zhao J. Regulation of P-glycoprotein by Bajijiasu in vitro and in vivo by activating the Nrf2-mediated signalling pathway. PHARMACEUTICAL BIOLOGY 2019; 57:184-192. [PMID: 30929555 PMCID: PMC6450468 DOI: 10.1080/13880209.2019.1582679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
CONTEXT Bajijiasu (BJJS), a main bioactive compound from Morinda officinalis F.C. How. (Rubiaceae), is widely administered concomitantly with other drugs for treating male impotence, female infertility, fatigue, chronic rheumatism, depression, etc. Objective: This study investigates the regulation of P-glycoprotein (P-gp) by BJJS in vitro and in vivo. MATERIAL AND METHODS HepG2 cells were incubated with BJJS (10, 20 or 40 μM) for 48 h. C57 mice were orally treated with BJJS (25, 50 or 100 mg/kg) for 2 weeks. The protein and mRNA levels of P-gp were measured by using Western blot and real-time PCR, respectively. siNrf2 RNA was used to explore the mediation effects of Nrf2 on the P-gp expression. The efflux activity of P-gp was tested via a flow cytometry. RESULTS Incubation of HepG2 cells with BJJS at 10, 20, and 40 μM up-regulated the P-gp protein expression by 12.3%, 82.9%, and 134.3%, respectively. Treatment of C57 mice with BJJS at 25, 50 and 100 mg/kg increased the P-gp protein expression by 49.3%, 75.8% and 106.0%, respectively. Incubation of the cells with BJJS at 10, 20 and 40 μM up-regulated the total Nrf2 protein levels by 34.3%, 93.1% and 118.6%, respectively, and also increased the nuclear Nrf2 protein levels by 14.8%, 44.4% and 59.25%, respectively. The total Nrf2 protein levels were increased by 46.3%, 66.5%, and 87.4%, respectively, in the mice exposed to BJJS at 25, 50, and 100 mg/kg. Inhibition of Nrf2 by siRNA diminished the P-gp induction by 25.0%, 33.4%, and 38.7%, respectively, in the cells. In addition, BJJS enhanced the efflux activity of P-gp by 9.6%, 37.1%, and 48.1%, respectively, in the cells. CONCLUSIONS BJJS activates Nrf2 to induce P-gp expression, and enhanced the efflux activity of P-gp. The possibility of potential herb-drug interactions when BJJS is co-administered with other P-gp substrate drugs should be carefully monitored.
Collapse
Affiliation(s)
- Xin Yang
- The Fifth Affiliated Hospital of Guangzhou Medical University; The Fifth Clinical School of Guangzhou Medical University, Guangzhou, China
- CONTACT Xin Yang Department of Pharmacy, The Fifth Affiliated Hospital of Guangzhou Medical University; The Fifth Clinical School of Guangzhou Medical University, Guangzhou510700, China
| | - Guoyan Hu
- The Fifth Affiliated Hospital of Guangzhou Medical University; The Fifth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Lijuan Lv
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ting Liu
- The Fifth Affiliated Hospital of Guangzhou Medical University; The Fifth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Longkai Qi
- Guangdong Consun Pharmaceutical Group, Institute of Consun Co. for Chinese Medicine in Kidney Diseases, Guangzhou, China
| | - Guozhan Huang
- The Fifth Affiliated Hospital of Guangzhou Medical University; The Fifth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Dongqing You
- The Fifth Affiliated Hospital of Guangzhou Medical University; The Fifth Clinical School of Guangzhou Medical University, Guangzhou, China
| | - Jun Zhao
- Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
- Jun Zhao Department of Obstetrics and Gynecology, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
15
|
Yin C, Deng Y, Liu Y, Gao J, Yan L, Gong Q. Icariside II Ameliorates Cognitive Impairments Induced by Chronic Cerebral Hypoperfusion by Inhibiting the Amyloidogenic Pathway: Involvement of BDNF/TrkB/CREB Signaling and Up-Regulation of PPARα and PPARγ in Rats. Front Pharmacol 2018; 9:1211. [PMID: 30405422 PMCID: PMC6206175 DOI: 10.3389/fphar.2018.01211] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/04/2018] [Indexed: 01/20/2023] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is regarded as a high-risk factor for cognitive decline of vascular dementia (VD) as it is conducive to induce beta-amyloid (Aβ) aggregation. Icariside II (ICS II), a plant-derived flavonoid compound, has showed neuroprotective effect on animal models of Alzheimer’s disease (AD) by decreasing Aβ levels. Here, we assessed the effect of ICS II on CCH-induced cognitive deficits and Aβ levels in rats, and the possible underlying mechanisms were also explored. It was disclosed that CCH induced by bilateral common carotid artery occlusion (BCCAO) caused cognitive deficits, neuronal injury and increase of Aβ1-40 and Aβ1-42 levels in the rat hippocampus, while oral administration of ICS II for 28 days abolished the above deficits in the hippocampus of BCCAO rats. Meanwhile, ICS II significantly decreased the expression of beta-amyloid precursor protein (APP) and β-site amyloid precursor protein cleavage enzyme 1 (BACE1), as well as increased the expression of a disintegrin and metalloproteinase domain 10 (ADAM10) and insulin-degrading enzyme (IDE). ICS II also activated peroxisome proliferator-activated receptor (PPAR)α and PPARγ, enhanced the expression of brain-derived neurotrophic factor (BDNF), tyrosine receptor kinase B (TrkB), levels of Akt and cAMP response element binding protein (CREB) phosphorylation. Together, these findings suggested that ICS II attenuates CCH-induced cognitive deficits by inhibiting the amyloidogenic pathway via involvement of BDNF/TrkB/CREB signaling and up-regulation of PPARα and PPARγ in rats.
Collapse
Affiliation(s)
- Caixia Yin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yuanyuan Deng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yuangui Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Lingli Yan
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
16
|
Ligustilide Ameliorates Memory Deficiency in APP/PS1 Transgenic Mice via Restoring Mitochondrial Dysfunction. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4606752. [PMID: 30079347 PMCID: PMC6069587 DOI: 10.1155/2018/4606752] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/30/2018] [Accepted: 06/10/2018] [Indexed: 12/20/2022]
Abstract
Ligustilide, the main lipophilic component of Radix angelicae sinensis, has been shown to ameliorate cognitive dysfunction in a few Alzheimer's disease mouse models, but its mechanism is not fully understood. In this study, we employed 7-month-old APP/PS1 mice to explore whether LIG is able to protect against Alzheimer's disease progression. The Morris water maze and Y-maze test results showed that eight weeks of intragastric administration of LIG (10 mg/kg, 40 mg/kg) every day improved memory deficit in APP/PS1 mice. The thioflavin-S staining and Western blot results (Aβ1-42 monomer/oligomer, APP, ADAM10, SAPPα, and PreP) showed that LIG reduced Aβ levels in the brain of APP/PS1 mice. Transmission electron microscopy analysis showed that LIG reduced the mitochondria number and increased the mitochondrial length in the hippocampal CA1 area of APP/PS1 mice. A reduced level of Drp1 (fission) and increased levels of Mfn1, Mfn2, and Opa1 (fusion) were found in APP/PS1 mice treated with LIG. An increased ATP level in the brain and increased activities of cytochrome c oxidase (CCO) and succinate dehydrogenase (SDH) in mitochondrion separated from the hippocampus and cortex revealed that LIG alleviated mitochondrial dysfunction. LIG exerts an antioxidation effect via reducing the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) and increasing the activity of Mn-SOD in the brain. Elevated levels of PSD-95, synaptophysin, and synapsin 1 in both the hippocampus and cortex indicated that LIG provided synaptic protection. These findings show that treatment with LIG ameliorates mitochondrial dynamics and morphology issues, improves mitochondrial function, reduces Aβ levels in the brain, restores the synaptic structure, and ameliorates memory deficit in APP/PS1 mice. These results imply that LIG may serve as a potential antidementia drug.
Collapse
|
17
|
Che H, Li Q, Zhang T, Wang D, Yang L, Xu J, Yanagita T, Xue C, Chang Y, Wang Y. Effects of Astaxanthin and Docosahexaenoic-Acid-Acylated Astaxanthin on Alzheimer's Disease in APP/PS1 Double-Transgenic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4948-4957. [PMID: 29695154 DOI: 10.1021/acs.jafc.8b00988] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with the characteristics of senile plaques, neuroinflammation, neurofibrillary tangles, and destruction of synapse structure stability. Previous studies have verified the protective effects of astaxanthin (AST). However, whether synthesized docosahexaenoic-acid-acylated AST diesters (AST-DHA) could delay AD pathogenesis remains unclear. In the present study, APP/PSEN1 (APP/PS1) double-transgenic mice were administrated with AST and AST-DHA for 2 months. The results of radial 8-arm maze and Morris water maze tests showed that AST-DHA exerted more significant effects than AST in enhancing learning and memory levels of APP/PS1 mice. Further mechanical studies suggested that AST-DHA was superior to AST in regulating the parameters of oxidative stress, reducing tau hyperphosphorylation, suppressing neuroinflammation, and regulating inflammasome expression and activation in APP/PS1 mice. The findings suggested that AST-DHA attenuated cognitive disorders by reducing pathological features in APP/PS1 mice, suggesting that AST-DHA might be a potential therapeutic agent for AD.
Collapse
Affiliation(s)
- Hongxia Che
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Qian Li
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Tiantian Zhang
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Dandan Wang
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Lu Yang
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Jie Xu
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Teruyoshi Yanagita
- Laboratory of Nutrition Biochemistry, Department of Applied Biochemistry and Food Science , Saga University , Saga 840-8502 , Japan
| | - Changhu Xue
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
- Qingdao National Laboratory for Marine Science and Technology , Laboratory of Marine Drugs and Biological Products , Qingdao , Shandong 266237 , People's Republic of China
| | - Yaoguang Chang
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
| | - Yuming Wang
- College of Food Science and Engineering , Ocean University of China , Qingdao , Shandong 266003 , People's Republic of China
- Qingdao National Laboratory for Marine Science and Technology , Laboratory of Marine Drugs and Biological Products , Qingdao , Shandong 266237 , People's Republic of China
| |
Collapse
|