1
|
Pastor-Anglada M, Mata-Ventosa A, Pérez-Torras S. Inborn Errors of Nucleoside Transporter (NT)-Encoding Genes ( SLC28 and SLC29). Int J Mol Sci 2022; 23:8770. [PMID: 35955904 PMCID: PMC9369021 DOI: 10.3390/ijms23158770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
The proper regulation of nucleotide pools is essential for all types of cellular functions and depends on de novo nucleotide biosynthesis, salvage, and degradation pathways. Despite the apparent essentiality of these processes, a significant number of rare diseases associated with mutations in genes encoding various enzymes of these pathways have been already identified, and others are likely yet to come. However, knowledge on genetic alterations impacting on nucleoside and nucleobase transporters is still limited. At this moment three gene-encoding nucleoside and nucleobase transporter proteins have been reported to be mutated in humans, SLC29A1, SLC29A3, and SLC28A1, impacting on the expression and function of ENT1, ENT3, and CNT1, respectively. ENT1 alterations determine Augustine-null blood type and cause ectopic calcification during aging. ENT3 deficiency translates into various clinical manifestations and syndromes, altogether listed in the OMIM catalog as histiocytosis-lymphoadenopathy plus syndrome (OMIM#602782). CNT1 deficiency causes uridine-cytidineuria (URCTU) (OMIM#618477), a unique type of pyrimidineuria with an as yet not well-known clinical impact. Increasing knowledge on the physiological, molecular and structural features of these transporter proteins is helping us to better understand the biological basis behind the biochemical and clinical manifestations caused by these deficiencies. Moreover, they also support the view that some metabolic compensation might occur in these disturbances, because they do not seem to significantly impact nucleotide homeostasis, but rather other biological events associated with particular subtypes of transporter proteins.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Aida Mata-Ventosa
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sandra Pérez-Torras
- Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Boces-Pascual C, Mata-Ventosa A, Martín-Satué M, Boix L, Gironella M, Pastor-Anglada M, Pérez-Torras S. OncomiRs miR-106a and miR-17 negatively regulate the nucleoside-derived drug transporter hCNT1. Cell Mol Life Sci 2021; 78:7505-7518. [PMID: 34647142 PMCID: PMC8629896 DOI: 10.1007/s00018-021-03959-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022]
Abstract
High-affinity uptake of natural nucleosides as well as nucleoside derivatives used in anticancer therapies is mediated by human concentrative nucleoside transporters (hCNTs). hCNT1, the hCNT family member that specifically transports pyrimidines, is also a transceptor involved in tumor progression. In particular, oncogenesis appears to be associated with hCNT1 downregulation in some cancers, although the underlying mechanisms are largely unknown. Here, we sought to address changes in colorectal and pancreatic ductal adenocarcinoma-both of which are important digestive cancers-in the context of treatment with fluoropyrimidine derivatives. An analysis of cancer samples and matching non-tumoral adjacent tissues revealed downregulation of hCNT1 protein in both types of tumor. Further exploration of the putative regulation of hCNT1 by microRNAs (miRNAs), which are highly deregulated in these cancers, revealed a direct relationship between the oncomiRs miR-106a and miR-17 and the loss of hCNT1. Collectively, our findings provide the first demonstration that hCNT1 inhibition by these oncomiRs could contribute to chemoresistance to fluoropyrimidine-based treatments in colorectal and pancreatic cancer.
Collapse
Affiliation(s)
- Clara Boces-Pascual
- grid.5841.80000 0004 1937 0247Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu (IR SJD-CERCA), Esplugues de Llobregat, Barcelona, Spain
| | - Aida Mata-Ventosa
- grid.5841.80000 0004 1937 0247Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu (IR SJD-CERCA), Esplugues de Llobregat, Barcelona, Spain
| | - Mireia Martín-Satué
- grid.5841.80000 0004 1937 0247Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain ,grid.413396.a0000 0004 1768 8905Biomedical Research Institute of Bellvitge (IDIBELL), Oncobell Program, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Loreto Boix
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain ,grid.5841.80000 0004 1937 0247Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica (FCRB), University of Barcelona, Barcelona, Spain
| | - Meritxell Gironella
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain ,grid.10403.36Gastrointestinal & Pancreatic Oncology Group, Hospital Clinic of Barcelona/Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marçal Pastor-Anglada
- grid.5841.80000 0004 1937 0247Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu (IR SJD-CERCA), Esplugues de Llobregat, Barcelona, Spain
| | - Sandra Pérez-Torras
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain. .,Institut de Recerca Sant Joan de Déu (IR SJD-CERCA), Esplugues de Llobregat, Barcelona, Spain.
| |
Collapse
|
3
|
Plasma Membrane Transporters as Biomarkers and Molecular Targets in Cholangiocarcinoma. Cells 2020; 9:cells9020498. [PMID: 32098199 PMCID: PMC7072733 DOI: 10.3390/cells9020498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/18/2022] Open
Abstract
The dismal prognosis of patients with advanced cholangiocarcinoma (CCA) is due, in part, to the extreme resistance of this type of liver cancer to available chemotherapeutic agents. Among the complex mechanisms accounting for CCA chemoresistance are those involving the impairment of drug uptake, which mainly occurs through transporters of the superfamily of solute carrier (SLC) proteins, and the active export of drugs from cancer cells, mainly through members of families B, C and G of ATP-binding cassette (ABC) proteins. Both mechanisms result in decreased amounts of active drugs able to reach their intracellular targets. Therefore, the “cancer transportome”, defined as the set of transporters expressed at a given moment in the tumor, is an essential element for defining the multidrug resistance (MDR) phenotype of cancer cells. For this reason, during the last two decades, plasma membrane transporters have been envisaged as targets for the development of strategies aimed at sensitizing cancer cells to chemotherapy, either by increasing the uptake or reducing the export of antitumor agents by modulating the expression/function of SLC and ABC proteins, respectively. Moreover, since some elements of the transportome are differentially expressed in CCA, their usefulness as biomarkers with diagnostic and prognostic purposes in CCA patients has been evaluated.
Collapse
|
4
|
Models for Understanding Resistance to Chemotherapy in Liver Cancer. Cancers (Basel) 2019; 11:cancers11111677. [PMID: 31671735 PMCID: PMC6896032 DOI: 10.3390/cancers11111677] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
The lack of response to pharmacological treatment constitutes a substantial limitation in the handling of patients with primary liver cancers (PLCs). The existence of active mechanisms of chemoresistance (MOCs) in hepatocellular carcinoma, cholangiocarcinoma, and hepatoblastoma hampers the usefulness of chemotherapy. A better understanding of MOCs is needed to develop strategies able to overcome drug refractoriness in PLCs. With this aim, several experimental models are commonly used. These include in vitro cell-free assays using subcellular systems; studies with primary cell cultures; cancer cell lines or heterologous expression systems; multicellular models, such as spheroids and organoids; and a variety of in vivo models in rodents, such as subcutaneous and orthotopic tumor xenografts or chemically or genetically induced liver carcinogenesis. Novel methods to perform programmed genomic edition and more efficient techniques to isolate circulating microvesicles offer new opportunities for establishing useful experimental tools for understanding the resistance to chemotherapy in PLCs. In the present review, using three criteria for information organization: (1) level of research; (2) type of MOC; and (3) type of PLC, we have summarized the advantages and limitations of the armamentarium available in the field of pharmacological investigation of PLC chemoresistance.
Collapse
|
5
|
Pastor-Anglada M, Urtasun N, Pérez-Torras S. Intestinal Nucleoside Transporters: Function, Expression, and Regulation. Compr Physiol 2018; 8:1003-1017. [PMID: 29978890 DOI: 10.1002/cphy.c170039] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The gastrointestinal tract is the absorptive organ for nutrients found in foods after digestion. Nucleosides and, to a lesser extent nucleobases, are the late products of nucleoprotein digestion. These metabolites are absorbed by nucleoside (and nucleobase) transporter (NT) proteins. NTs are differentially distributed along the gastrointestinal tract showing also polarized expression in epithelial cells. Concentrative nucleoside transporters (CNTs) are mainly located at the apical side of enterocytes, whereas equilibrative nucleoside transporters (ENTs) facilitate the basolateral efflux of nucleosides and nucleobases to the bloodstream. Moreover, selected nucleotides and the bioactive nucleoside adenosine act directly on intestinal cells modulating purinergic signaling. NT-polarized insertion is tightly regulated. However, not much is known about the modulation of intestinal NT function in humans, probably due to the lack of appropriate cell models retaining CNT functional expression. Thus, the possibility of nutritional regulation of intestinal NTs has been addressed using animal models. Besides the nutrition-related role of NT proteins, orally administered drugs also need to cross the intestinal barrier, this event being a major determinant of drug bioavailability. In this regard, NT proteins might also play a role in pharmacology, thereby allowing the absorption of nucleoside- and nucleobase-derived drugs. The relative broad selectivity of these membrane transporters also suggests clinically relevant drug-drug interactions when using combined therapies. This review focuses on all these physiological and pharmacological aspects of NT protein biology. © 2017 American Physiological Society. Compr Physiol 8:1003-1017, 2018.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Nerea Urtasun
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Sandra Pérez-Torras
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
6
|
Pastor-Anglada M, Pérez-Torras S. Emerging Roles of Nucleoside Transporters. Front Pharmacol 2018; 9:606. [PMID: 29928232 PMCID: PMC5997781 DOI: 10.3389/fphar.2018.00606] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/21/2018] [Indexed: 01/02/2023] Open
Abstract
Since human Nucleoside Transporters (hNTs) were identified by their activity as transport systems, extensive work has been done to fully characterize them at the molecular and physiological level. Many efforts have been addressed to the identification of their selectivity for natural substrates and nucleoside analogs used to treat several diseases. hNTs belong to two different gene families, SLC28 and SLC29, encoding human Concentrative Nucleoside Transporters (hCNTs) and human Equilibrative Nucleoside Transporters (hENTs), respectively. hCNTs and hENTs are integral membrane proteins, albeit structurally unrelated. Both families share common features as substrate selectivity and often tissue localization. This apparent biological redundancy may anticipate some different roles for hCNTs and hENTs in cell physiology. Thus, hENTs may have a major role in maintaining nucleoside homeostasis, whereas hCNTs could contribute to nucleoside sensing and signal transduction. In this sense, the ascription of hCNT1 to a transceptor reinforces this hypothesis. Moreover, some evidences could suggest a putative role of hCNT2 and hCNT3 as transceptors. The interacting proteins identified for hCNT2 suggest a link to energy metabolism. Moreover, the ability of hCNT2 and hCNT3 to transport adenosine links both proteins to purinergic signaling. On the other hand, the broad selectivity transporters hENTs have a crucial role in salvage pathways and purinergic signaling by means of nucleoside pools regulation. In particular, the two new hENT2 isoforms recently described together with hENT2 seem to be key elements controlling nucleoside and nucleotide pools for DNA synthesis. This review focuses on all these NTs functions beyond their mere translocation ability.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| | - Sandra Pérez-Torras
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain
| |
Collapse
|