1
|
Essola JM, Zhang M, Yang H, Li F, Xia B, Mavoungou JF, Hussain A, Huang Y. Exosome regulation of immune response mechanism: Pros and cons in immunotherapy. Bioact Mater 2024; 32:124-146. [PMID: 37927901 PMCID: PMC10622742 DOI: 10.1016/j.bioactmat.2023.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Due to its multiple features, including the ability to orchestrate remote communication between different tissues, the exosomes are the extracellular vesicles arousing the highest interest in the scientific community. Their size, established as an average of 30-150 nm, allows them to be easily uptaken by most cells. According to the type of cells-derived exosomes, they may carry specific biomolecular cargoes used to reprogram the cells they are interacting with. In certain circumstances, exosomes stimulate the immune response by facilitating or amplifying the release of foreign antigens-killing cells, inflammatory factors, or antibodies (immune activation). Meanwhile, in other cases, they are efficiently used by malignant elements such as cancer cells to mislead the immune recognition mechanism, carrying and transferring their cancerous cargoes to distant healthy cells, thus contributing to antigenic invasion (immune suppression). Exosome dichotomic patterns upon immune system regulation present broad advantages in immunotherapy. Its perfect comprehension, from its early biogenesis to its specific interaction with recipient cells, will promote a significant enhancement of immunotherapy employing molecular biology, nanomedicine, and nanotechnology.
Collapse
Affiliation(s)
- Julien Milon Essola
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing, 100190, PR China
- University of Chinese Academy of Sciences. Beijing 100049, PR China
| | - Jacques François Mavoungou
- Université Internationale de Libreville, Libreville, 20411, Gabon
- Central and West African Virus Epidemiology, Libreville, 2263, Gabon
- Département de phytotechnologies, Institut National Supérieur d’Agronomie et de Biotechnologie, Université des Sciences et Techniques de Masuku, Franceville, 901, Gabon
- Institut de Recherches Agronomiques et Forestiers, Centre National de la Recherche Scientifique et du développement Technologique, Libreville, 16182, Gabon
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Rigerna Therapeutics Co. Ltd., China
| |
Collapse
|
2
|
Wang T, Li F, Lu Z. Ultra-conserved RNA: a novel biological tool with diagnostic and therapeutic potential. Discov Oncol 2023; 14:41. [PMID: 37036543 PMCID: PMC10086085 DOI: 10.1007/s12672-023-00650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023] Open
Abstract
Ultra-conserved RNA (ucRNA) is a subset of long non-coding RNA, that is highly conserved among mice, rats and humans. UcRNA has attracted extensive attention in recent years for its potential biological significance in normal physiological function and diseases. However, due to the instability of RNA and the technical limitation, the function and mechanism of ucRNAs are largely unknown. Over the last two decades, researchers have made a lot of efforts to try to lift the veil of ucRNA in nervous, cardiovascular system and other systems as well as cancers. Since the concept of the glymphatic system is relatively new, we summarized here recent findings on the functions, regulation and the underlying mechanisms of ucRNAs in physiology and pathology. Meanwhile, pathology in some diseases is likely to contribute to abnormal expression of ucRNA in turn. We also discuss the technical challenges and bright prospects for future applications of ucRNAs in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Tingye Wang
- Department of Basic Medicine and Medical Technology, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
| | - Feng Li
- Department of Basic Medicine and Medical Technology, Medical College, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, Jiangsu, China
| | - Zhanping Lu
- Department of Basic Medicine and Medical Technology, Medical College, Yangzhou University, Yangzhou, Jiangsu, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou, Jiangsu, China.
| |
Collapse
|
3
|
de Oliveira JC. Transcribed Ultraconserved Regions: New regulators in cancer signaling and potential biomarkers. Genet Mol Biol 2023; 46:e20220125. [PMID: 36622962 PMCID: PMC9829027 DOI: 10.1590/1678-4685-gmb-2022-0125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 11/06/2022] [Indexed: 01/11/2023] Open
Abstract
The ultraconserved regions (UCRs) are 481 genomic elements, longer than 200 bp, 100% conserved in human, mouse, and rat genomes. Usually, coding regions are more conserved, but more than 80% of UCRs are either intergenic or intronic, and many of them produce long non-coding RNAs (lncRNAs). Recently, the deregulated expression of transcribed UCRs (T-UCRs) has been associated with pathological conditions. But, differently from many lncRNAs with recognized crucial effects on malignant cell processes, the role of T-UCRs in the control of cancer cell networks is understudied. Furthermore, the potential utility of these molecules as molecular markers is not clear. Based on this information, the present review aims to organize information about T-UCRs with either oncogenic or tumor suppressor role associated with cancer cell signaling, and better describe T-UCRs with potential utility as prognosis markers. Out of 481 T-UCRs, 297 present differential expression in cancer samples, 23 molecules are associated with tumorigenesis processes, and 12 have more clear potential utility as prognosis markers. In conclusion, T-UCRs are deregulated in several tumor types, highlighted as important molecules in cancer networks, and with potential utility as prognosis markers, although further investigation for translational medicine is still needed.
Collapse
|
4
|
Gao SS, Zhang ZK, Wang XB, Ma Y, Yin GQ, Guo XB. Role of transcribed ultraconserved regions in gastric cancer and therapeutic perspectives. World J Gastroenterol 2022; 28:2900-2909. [PMID: 35978878 PMCID: PMC9280734 DOI: 10.3748/wjg.v28.i25.2900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/08/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of cancer-related death. The occurrence and development of GC is a complex process involving multiple biological mechanisms. Although traditional regulation modulates molecular functions related to the occurrence and development of GC, the comprehensive mechanisms remain unclear. Ultraconserved region (UCR) refers to a genome sequence that is completely conserved in the homologous regions of the human, rat and mouse genomes, with 100% identity, without any insertions or deletions, and often located in fragile sites and tumour-related genes. The transcribed UCR (T-UCR) is transcribed from the UCR and is a new type of long noncoding RNA. Recent studies have found that the expression level of T-UCRs changes during the occurrence and development of GC, revealing a new mechanism underlying GC. Therefore, this article aims to review the relevant research on T-UCRs in GC, as well as the function of T-UCRs and their regulatory role in the occurrence and development of GC, to provide new strategies for GC diagnosis and treatment.
Collapse
Affiliation(s)
- Shen-Shuo Gao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
| | - Zhi-Kai Zhang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
| | - Xu-Bin Wang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Yan Ma
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Guo-Qing Yin
- Department of Anus and Intestine Surgery, Qingzhou Hospital Affiliated to Shandong First Medical University, Qingzhou 262500, Shandong Province, China
| | - Xiao-Bo Guo
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| |
Collapse
|
5
|
Gibert MK, Sarkar A, Chagari B, Roig-Laboy C, Saha S, Bednarek S, Kefas B, Hanif F, Hudson K, Dube C, Zhang Y, Abounader R. Transcribed Ultraconserved Regions in Cancer. Cells 2022; 11:1684. [PMID: 35626721 PMCID: PMC9139194 DOI: 10.3390/cells11101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/25/2022] Open
Abstract
Transcribed ultraconserved regions are putative lncRNA molecules that are transcribed from DNA that is 100% conserved in human, mouse, and rat genomes. This is notable, as lncRNAs are typically poorly conserved. TUCRs remain very understudied in many diseases, including cancer. In this review, we summarize the current literature on TUCRs in cancer with respect to expression deregulation, functional roles, mechanisms of action, and clinical perspectives.
Collapse
Affiliation(s)
- Myron K. Gibert
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Aditya Sarkar
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Bilhan Chagari
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Christian Roig-Laboy
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Shekhar Saha
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Sylwia Bednarek
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Benjamin Kefas
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Farina Hanif
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Kadie Hudson
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Collin Dube
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Ying Zhang
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
| | - Roger Abounader
- Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; (M.K.G.J.); (A.S.); (B.C.); (C.R.-L.); (S.S.); (S.B.); (B.K.); (F.H.); (K.H.); (C.D.); (Y.Z.)
- Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- NCI Designated Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
6
|
Bozgeyik I. The dark matter of the human genome and its role in human cancers. Gene 2022; 811:146084. [PMID: 34843880 DOI: 10.1016/j.gene.2021.146084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/06/2021] [Accepted: 11/23/2021] [Indexed: 12/26/2022]
Abstract
The transcribed ultra-conserved regions (T-UCRs) are a novel family of non-coding RNAs which are absolutely conserved (100%) across orthologous regions of the human, mouse, and rat genomes. T-UCRs represent a small portion of the human genome that is likely to be functional but does not code for proteins and is referred to as the "dark matter" of the human genome. Although T-UCRs are ubiquitously expressed, tissue- and disease-specific expression of T-UCRs have also been observed. Accumulating evidence suggests that T-UCRs are differentially expressed and involved in the malignant transformation of human tumors through various genetic and epigenetic regulatory mechanisms. Therefore, T-UCRs are novel candidate predisposing biomarkers for cancer development. T-UCRs have shown to drive malignant transformation of human cancers through regulating non-coding RNAs and/or protein coding genes. However, the functions and fate of most T-UCRs remain mysterious. Here, we review and highlight the current knowledge on these ultra-conserved elements in the formation and progression of human cancers.
Collapse
Affiliation(s)
- Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey.
| |
Collapse
|
7
|
Harada K, Sakamoto N, Ukai S, Yamamoto Y, Pham QT, Taniyama D, Honma R, Maruyama R, Takashima T, Ota H, Takemoto Y, Tanabe K, Ohdan H, Yasui W. Establishment of oxaliplatin-resistant gastric cancer organoids: importance of myoferlin in the acquisition of oxaliplatin resistance. Gastric Cancer 2021; 24:1264-1277. [PMID: 34272617 DOI: 10.1007/s10120-021-01206-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND The attainment of drug resistance in gastric cancer (GC) is a problematic issue. Although many studies have shown that cancer stem cells (CSCs) play an important role in the acquisition of drug resistance, there is no clinically available biomarker for predicting oxaliplatin (L-OHP) resistance in relation to CSCs. Organoid technology, a novel 3D cell culture system, allows harboring of patient-derived cancer cells containing abundant CSCs using niche factors in a dish. METHODS In this study, we established L-OHP-resistant gastric cancer organoids (GCOs) and evaluated their gene expression profile using microarray analysis. We validated the upregulated genes in the L-OHP-resistant GCOs compared to their parental GCOs to find a gene responsible for L-OHP resistance by qRT-PCR, immunohistochemistry, in vitro, and in vivo experiments. RESULTS We found myoferlin (MYOF) to be a candidate gene through microarray analysis. The results from cell viability assays and qRT-PCR showed that high expression of MYOF correlated significantly with the IC50 of L-OHP in GCOs. Immunohistochemistry of MYOF in GC tissue samples revealed that high expression of MYOF was significantly associated with poor prognosis, T grade, N grade, and lymphatic invasion, and showed MYOF to be an independent prognostic indicator, especially in the GC patients treated with platinum-based chemotherapy. The knockdown of MYOF repressed L-OHP resistance, cell growth, stem cell features, migration, invasion, and in vivo tumor growth. CONCLUSIONS Our results suggest that MYOF is highly involved in L-OHP resistance and tumor progression in GC. MYOF could be a promising biomarker and therapeutic target for L-OHP-resistant GC cases.
Collapse
Affiliation(s)
- Kenji Harada
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Shoichi Ukai
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Quoc Thang Pham
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Daiki Taniyama
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ririno Honma
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ryota Maruyama
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tsuyoshi Takashima
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Ota
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Takemoto
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Tanabe
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
8
|
Pereira Zambalde E, Bayraktar R, Schultz Jucoski T, Ivan C, Rodrigues AC, Mathias C, knutsen E, Silveira de Lima R, Fiori Gradia D, de Souza Fonseca Ribeiro EM, Hannash S, Adrian Calin G, Carvalhode Oliveira J. A novel lncRNA derived from an ultraconserved region: lnc- uc.147, a potential biomarker in luminal A breast cancer. RNA Biol 2021; 18:416-429. [PMID: 34387142 PMCID: PMC8677017 DOI: 10.1080/15476286.2021.1952757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/02/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023] Open
Abstract
The human genome contains 481 ultraconserved regions (UCRs), which are genomic stretches of over 200 base pairs conserved among human, rat, and mouse. The majority of these regions are transcriptionally active (T-UCRs), and several have been found to be differentially expressed in tumours. Some T-UCRs have been functionally characterized, but of those few have been associated to breast cancer (BC). Using TCGA data, we found 302 T-UCRs related to clinical features in BC: 43% were associated with molecular subtypes, 36% with oestrogen-receptor positivity, 17% with HER2 expression, 12% with stage, and 10% with overall survival. The expression levels of 12 T-UCRs were further analysed in a cohort of 82 Brazilian BC patients using RT-qPCR. We found that uc.147 is high expressed in luminal A and B patients. For luminal A, a subtype usually associated with better prognosis, high uc.147 expression was associated with a poor prognosis and suggested as an independent prognostic factor. The lncRNA from uc.147 (lnc-uc.147) is located in the nucleus. Northern blotting results show that uc.147 is a 2,8 kb monoexonic trancript, and its sequence was confirmed by RACE. The silencing of uc.147 increases apoptosis, arrests cell cycle, and reduces cell viability and colony formation in BC cell lines. Additionally, we identifed 19 proteins that interact with lnc-uc.147 through mass spectrometry and demonstrated a high correlation of lnc-uc.147 with the neighbour gene expression and miR-18 and miR-190b. This is the first study to analyse the expression of all T-UCRs in BC and to functionally assess the lnc-uc.147.
Collapse
Affiliation(s)
- Erika Pereira Zambalde
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Tayana Schultz Jucoski
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Cristina Ivan
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Carolina Rodrigues
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Carolina Mathias
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Erik knutsen
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Medical Biology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
| | | | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | | | - Samir Hannash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Adrian Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaqueline Carvalhode Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
9
|
The Role of lncRNA in the Development of Tumors, including Breast Cancer. Int J Mol Sci 2021; 22:ijms22168427. [PMID: 34445129 PMCID: PMC8395147 DOI: 10.3390/ijms22168427] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are the largest groups of ribonucleic acids, but, despite the increasing amount of literature data, the least understood. Given the involvement of lncRNA in basic cellular processes, especially in the regulation of transcription, the role of these noncoding molecules seems to be of great importance for the proper functioning of the organism. Studies have shown a relationship between disturbed lncRNA expression and the pathogenesis of many diseases, including cancer. The present article presents a detailed review of the latest reports and data regarding the importance of lncRNA in the development of cancers, including breast carcinoma.
Collapse
|
10
|
Sakamoto N, Sekino Y, Fukada K, Pham QT, Honma R, Taniyama D, Ukai S, Takashima T, Hattori T, Naka K, Tanabe K, Ohdan H, Yasui W. Uc.63+ contributes to gastric cancer progression through regulation of NF-kB signaling. Gastric Cancer 2020; 23:863-873. [PMID: 32323025 DOI: 10.1007/s10120-020-01070-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/02/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The transcribed ultraconserved regions (T-UCRs) are a novel class of long non-coding RNAs and are involved in the development of several types of cancer. Although several different papers have described the oncogenic role of Uc.63+, there are no reports mentioning its importance in gastric cancer (GC) biology. METHODS In this study, we evaluated Uc.63+ expression using clinical samples of GC by qRT-PCR, and also assessed the correlation between Uc.63+ expression and clinico-pathological factors. RESULTS The upregulation of Uc.63+ was significantly correlated with advanced clinico-pathological features. Knockdown of Uc.63+ significantly repressed GC cell growth and migration, whereas overexpression of Uc.63+ conversely promoted those of GC cells. In situ hybridization of Uc.63+ revealed its preferential expression in poorly differentiated adenocarcinoma. We further conducted a microarray analysis using MKN-1 cells overexpressing Uc.63- and found that NF-κB signaling was significantly upregulated in accordance with Uc.63+ expression. CONCLUSION Our results suggest that Uc.63+ could be involved in GC progression by regulating GC cell growth and migration via NF-κB signaling.
Collapse
Affiliation(s)
- Naoya Sakamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yohei Sekino
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kaho Fukada
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Quoc Thang Pham
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Ririno Honma
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Daiki Taniyama
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shoichi Ukai
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Tsuyoshi Takashima
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takuya Hattori
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuhito Naka
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kazuaki Tanabe
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Health Care for Adults, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
11
|
Sekino Y, Teishima J. Molecular mechanisms of docetaxel resistance in prostate cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:676-685. [PMID: 35582222 PMCID: PMC8992564 DOI: 10.20517/cdr.2020.37] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 01/12/2023]
Abstract
Docetaxel (DTX) chemotherapy offers excellent initial response and confers significant survival benefit in patients with castration-resistant prostate cancer (CRPC). However, the clinical utility of DTX is compromised when primary and acquired resistance are encountered. Therefore, a more thorough understanding of DTX resistance mechanisms may potentially improve survival in patients with CRPC. This review focuses on DTX and discusses its mechanisms of resistance. We outline the involvement of tubulin alterations, androgen receptor (AR) signaling/AR variants, ERG rearrangements, drug efflux/influx, cancer stem cells, centrosome clustering, and phosphoinositide 3-kinase/AKT signaling in mediating DTX resistance. Furthermore, potential biomarkers for DTX treatment and therapeutic strategies to circumvent DTX resistance are reviewed.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Jun Teishima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
12
|
Wang Y, Zhou D, Feng Y, Chen G, Li N. T-UCRs with digestive and respiratory diseases. Bioorg Med Chem Lett 2020; 30:127306. [PMID: 32631526 DOI: 10.1016/j.bmcl.2020.127306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022]
Abstract
From the perspective of histoembryology, the lung, gaster, and intestines that derived from the endoderm of the gastrula are structurally homologous. The interplay of intestines and lung in many pathologic changes is called the gut-lung axis. RNAs transcribed from ultraconserved regions (T-UCRs) are highly evolutionarily conserved in many mammalian genomes and have been found to be important in the pathogenesis and diagnosis of many diseases. More and more studies in recent years have shown that T-UCRs play important roles both in digestive and respiratory diseases. Taking the gut-lung axis as the entry point, this review summarizes the T-UCRs related to digestive and respiratory diseases in recent years. Meanwhile, these T-UCRs and their targets can lay a foundation for future drug research.
Collapse
Affiliation(s)
- Yajun Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuan Feng
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
13
|
Liu X, Zhou X, Deng CJ, Zhao Y, Shen J, Wang Y, Zhang YL. Comprehensive analyses of T-UCR expression profiles and exploration of the efficacy of uc.63- and uc.280+ as biomarkers for lung cancer in Xuanwei, China. Pathol Res Pract 2020; 216:152978. [PMID: 32360249 DOI: 10.1016/j.prp.2020.152978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/23/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Lung cancer in Xuanwei (LCXW), China, is known worldwide for occurring frequently with high morbidity and mortality, which necessitates research to determine its pathogenesis. This study attempted to screen potential transcribed ultraconserved region (T-UCR) biomarkers related to LCXW. METHODS We performed T-UCR microarrays on 26 paired lung adenocarcinoma and adjacent tissues to explore the T-UCR expression profile of LCXW. Then, bioinformatics analysis was carried out to identify potential T-UCRs, which were further validated by real-time quantitative PCR (RT-qPCR). Then, clinical relevance analysis and Kaplan-Meier tests were performed on 50 paired tissues. RESULTS T-UCRs and RNA transcripts whose transcription units overlap UCRs (RTOUs) were significantly dysregulated in LCXW tissues compared with the corresponding noncancerous lung (NCL) tissues and presented an increasing trend from stage I to III. The expression between T-UCRs and host genes or flanking genes presented a positive or negative correlation. RT-qPCR analysis showed that uc.63- and uc.280+ were significantly up-regulated in LCXW tissues (P < 0.05). Uc.63- up-regulation was associated with tumor stage and poor prognosis of patients (P < 0.05), and uc.280+ up-regulation was associated with patient age (P < 0.05). Bioinformatics analysis of RTOUs showed that the transcripts of XPO1, uc002sbh and uc002sbg, were potentially regulated targets of uc.63-. Gene Ontology and pathway analyses showed XPO1 was involved in many important biological functions. CONCLUSION This study depicted T-UCR and RTOU expression profiling of LCXW and revealed some potential T-UCR biomarkers that may be involved in the carcinogenesis of LCXW.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China; Yunnan Institute of Laboratory Diagnosis, Kunming, 650032, China; Innovation Team of Yunnan Provincial Clinical Laboratory and Diagnosis, Kunming, 650032, China
| | - Xin Zhou
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China; Yunnan Institute of Laboratory Diagnosis, Kunming, 650032, China; Innovation Team of Yunnan Provincial Clinical Laboratory and Diagnosis, Kunming, 650032, China
| | - Cheng-Jun Deng
- Department of Gastroenterology, Kunming Children's Hospital, Kunming, 650034, China
| | - Ying Zhao
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China; Yunnan Institute of Laboratory Diagnosis, Kunming, 650032, China; Innovation Team of Yunnan Provincial Clinical Laboratory and Diagnosis, Kunming, 650032, China
| | - Jie Shen
- Second Department of Internal Medicine, Kunming Third People's Hospital, Kunming, 650041, China
| | - Yan Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China; Yunnan Institute of Laboratory Diagnosis, Kunming, 650032, China; Innovation Team of Yunnan Provincial Clinical Laboratory and Diagnosis, Kunming, 650032, China
| | - Yan-Liang Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China; Yunnan Key Laboratory of Laboratory Medicine, Kunming, 650032, China; Yunnan Institute of Laboratory Diagnosis, Kunming, 650032, China; Innovation Team of Yunnan Provincial Clinical Laboratory and Diagnosis, Kunming, 650032, China.
| |
Collapse
|
14
|
Differentially Methylated Ultra-Conserved Regions Uc160 and Uc283 in Adenomas and Adenocarcinomas Are Associated with Overall Survival of Colorectal Cancer Patients. Cancers (Basel) 2020; 12:cancers12040895. [PMID: 32272654 PMCID: PMC7226527 DOI: 10.3390/cancers12040895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
: Deregulation of the transcribed ultra-conserved regions (T-UCRs) Uc160, Uc283, and Uc346 has been reported in colorectal cancer (CRC) recently. Here, we investigated promoter methylation of these T-UCRs during the adenoma-carcinoma sequence and their clinical significance in CRC patients. Methylation levels were assessed in CRC, adenomas, infiltrated lymph nodes, and metastatic tissue specimens. In situ hybridization was performed in representative tissue specimens. T-UCRs expression levels were also evaluated in HT-29 colon cancer cells before and after the acquired resistance to 5-fluorouracil (5-FU) and oxaliplatin. A gradual increase in T-UCRs methylation levels from hyperplastic polyps to adenomas and to in situ carcinomas (ISC) and a gradual decrease from ISC to infiltrative and metastatic carcinomas was observed (p < 0.001 for Uc160 and Uc283, p = 0.018 for Uc346). Uc160 and Uc283 methylation was associated with the grade of dysplasia in adenoma specimens (p = 0.034 and p = 0.019, respectively). Furthermore, higher Uc160 methylation, mainly in stage III and IV patients, was related to improved overall survival (OS) in univariate (p = 0.009; HR, 0.366) and multivariate analysis (p = 0.005; HR, 0.240). Similarly, higher methylation of Uc283 was associated with longer OS (p = 0.030). Finally, T-UCRs expression was significantly reduced in HT-29 cells after resistance to chemotherapy. This study suggests that promoter methylation of Uc160, Uc283, and Uc346 is altered during CRC development and that Uc160 and Uc283 methylation may have prognostic significance for CRC patients.
Collapse
|
15
|
das Chagas PF, de Sousa GR, Kodama MH, de Biagi Junior CAO, Yunes JA, Brandalise SR, Calin GA, Tone LG, Scrideli CA, de Oliveira JC. Ultraconserved long non-coding RNA uc.112 is highly expressed in childhood T versus B-cell acute lymphoblastic leukemia. Hematol Transfus Cell Ther 2020; 43:28-34. [PMID: 32014474 PMCID: PMC7910170 DOI: 10.1016/j.htct.2019.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 12/29/2022] Open
Abstract
Aberrant expression of long non-coding RNAs (lncRNAs) has been detected in several types of cancer, including acute lymphoblastic leukemia (ALL), but lncRNA mapped on transcribed ultraconserved regions (T-UCRs) are little explored. The T-UCRs uc.112, uc.122, uc.160 and uc.262 were evaluated by quantitative real-time PCR in bone marrow samples from children with T-ALL (n = 32) and common-ALL/pre-B ALL (n = 30). In pediatric ALL, higher expression levels of uc.112 were found in patients with T-ALL, compared to patients with B-ALL. T-cells did not differ significantly from B-cells regarding uc.112 expression in non-tumor precursors from public data. Additionally, among B-ALL patients, uc.112 was also found to be increased in patients with hyperdiploidy, compared to other karyotype results. The uc.122, uc.160, and uc.262 were not associated with biological or clinical features. These findings suggest a potential role of uc.112 in pediatric ALL and emphasize the need for further investigation of T-UCR in pediatric ALL.
Collapse
Affiliation(s)
- Pablo Ferreira das Chagas
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil; Universidade Federal de Alfenas (UNIFAL), Alfenas, MG, Brazil
| | - Graziella Ribeiro de Sousa
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Márcio Hideki Kodama
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | | | | | | | | | - Luiz Gonzaga Tone
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Carlos Alberto Scrideli
- Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FMRP-USP), Ribeirão Preto, SP, Brazil
| | - Jaqueline Carvalho de Oliveira
- Universidade Federal de Alfenas (UNIFAL), Alfenas, MG, Brazil; Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
16
|
Sun Y, Fan W, Xue R, Dong B, Liang Z, Chen C, Li J, Wang Y, Zhao J, Huang H, Jiang J, Wu Z, Dai G, Fang R, Yan Y, Yang T, Huang ZP, Dong Y, Liu C. Transcribed Ultraconserved Regions, Uc.323, Ameliorates Cardiac Hypertrophy by Regulating the Transcription of CPT1b (Carnitine Palmitoyl transferase 1b). Hypertension 2019; 75:79-90. [PMID: 31735087 DOI: 10.1161/hypertensionaha.119.13173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transcribed ultraconserved regions (T-UCRs) are a novel class of long noncoding RNAs transcribed from UCRs, which exhibit 100% DNA sequence conservation among humans, mice, and rats. However, whether T-UCRs regulate cardiac hypertrophy remains unclear. We aimed to explore the effects of T-UCRs on cardiac hypertrophy. First, we performed long noncoding RNA microarray analysis on hearts of mice subjected to sham surgery or aortic banding and found that the T-UCR uc.323 was decreased significantly in mice with aortic banding-induced cardiac hypertrophy. In vitro loss- and gain-of-function experiments demonstrated that uc.323 protected cardiomyocytes against hypertrophy induced by phenylephrine. Additionally, we discovered that mammalian target of rapamycin 1 contributed to phenylephrine-induced uc.323 downregulation and uc.323-mediated cardiomyocyte hypertrophy. We further mapped the possible target genes of uc.323 through global microarray mRNA expression analysis after uc.323 knockdown and found that uc.323 regulated the expression of cardiac hypertrophy-related genes such as CPT1b (Carnitine Palmitoyl transferase 1b). Then, chromatin immunoprecipitation proved that EZH2 (enhancer of zeste homolog 2) bound to the promoter of CPT1b via H3K27me3 (trimethylation of lysine 27 of histone H3) to induce CPT1b downregulation. And overexpression of CPT1b could block uc.323-mediated cardiomyocyte hypertrophy. Finally, we found that uc.323 deficiency induced cardiac hypertrophy. Our results reveal that uc.323 is a conserved T-UCR that inhibits cardiac hypertrophy, potentially by regulating the transcription of CPT1b via interaction with EZH2.
Collapse
Affiliation(s)
- Yu Sun
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,Department of Cardiology, the Second People's Hospital of Guangdong Province, Guangzhou, Guangdong, China (Y.S.).,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Wendong Fan
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Ruicong Xue
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Bin Dong
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Zhuomin Liang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Chen Chen
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Jiayong Li
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Yan Wang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Jingjing Zhao
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Huiling Huang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Jingzhou Jiang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Zexuan Wu
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Gang Dai
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Rong Fang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Youchen Yan
- Department of Cardiology, Center for Translational Medicine (Y.Y., T.Y.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tiqun Yang
- Department of Cardiology, Center for Translational Medicine (Y.Y., T.Y.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhan-Peng Huang
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Yugang Dong
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| | - Chen Liu
- From the Department of Cardiology (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.), the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China.,NHC Key Laboratory of Assisted Circulation (Sun Yat-sen University), Guangzhou, Guangdong, China (Y.S., W.F., R.X., B.D., Z.L., C.C., J.L., Y.W., J.Z., H.H., J.J., Z.W., G.D., R.F., Z.-p.H., Y.D., C.L.)
| |
Collapse
|
17
|
Pereira Zambalde E, Mathias C, Rodrigues AC, Souza Fonseca Ribeiro EM, Fiori Gradia D, Calin GA, Carvalho de Oliveira J. Highlighting transcribed ultraconserved regions in human diseases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1567. [DOI: 10.1002/wrna.1567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 12/18/2022]
Affiliation(s)
| | - Carolina Mathias
- Department of Genetics Universidade Federal do Paraná Curitiba Brazil
| | | | | | | | - George A. Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center University of Texas Houston Texas
| | | |
Collapse
|
18
|
The Transcribed-Ultra Conserved Regions: Novel Non-Coding RNA Players in Neuroblastoma Progression. Noncoding RNA 2019; 5:ncrna5020039. [PMID: 31167408 PMCID: PMC6631508 DOI: 10.3390/ncrna5020039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022] Open
Abstract
The Transcribed-Ultra Conserved Regions (T-UCRs) are a class of novel non-coding RNAs that arise from the dark matter of the genome. T-UCRs are highly conserved between mouse, rat, and human genomes, which might indicate a definitive role for these elements in health and disease. The growing body of evidence suggests that T-UCRs contribute to oncogenic pathways. Neuroblastoma is a type of childhood cancer that is challenging to treat. The role of non-coding RNAs in the pathogenesis of neuroblastoma, in particular for cancer development, progression, and therapy resistance, has been documented. Exosmic non-coding RNAs are also involved in shaping the biology of the tumor microenvironment in neuroblastoma. In recent years, the involvement of T-UCRs in a wide variety of pathways in neuroblastoma has been discovered. Here, we present an overview of the involvement of T-UCRs in various cellular pathways, such as DNA damage response, proliferation, chemotherapy response, MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian)) amplification, gene copy number, and immune response, as well as correlate it to patient survival in neuroblastoma.
Collapse
|
19
|
KIFC1 Inhibitor CW069 Induces Apoptosis and Reverses Resistance to Docetaxel in Prostate Cancer. J Clin Med 2019; 8:jcm8020225. [PMID: 30744126 PMCID: PMC6407017 DOI: 10.3390/jcm8020225] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 12/17/2022] Open
Abstract
Kinesin family member C1 (KIFC1) is a minus end-directed motor protein that plays an essential role in centrosome clustering. Previously, we reported that KIFC1 is involved in cancer progression in prostate cancer (PCa). We designed this study to assess the involvement of KIFC1 in docetaxel (DTX) resistance in PCa and examined the effect of KIFC1 on DTX resistance. We also analyzed the possible role of a KIFC1 inhibitor (CW069) in PCa. We used DTX-resistant PCa cell lines in DU145 and C4-2 cells to analyze the effect of KIFC1 on DTX resistance in PCa. Western blotting showed that KIFC1 expression was higher in the DTX-resistant cell lines than in the parental cell lines. Downregulation of KIFC1 re-sensitized the DTX-resistant cell lines to DTX treatment. CW069 treatment suppressed cell viability in both parental and DTX-resistant cell lines. DTX alone had little effect on cell viability in the DTX-resistant cells. However, the combination of DTX and CW069 significantly reduced cell viability in the DTX-resistant cells, indicating that CW069 re-sensitized the DTX-resistant cell lines to DTX treatment. These results suggest that a combination of CW069 and DTX could be a potential strategy to overcome DTX resistance.
Collapse
|
20
|
Sekino Y, Oue N, Mukai S, Shigematsu Y, Goto K, Sakamoto N, Sentani K, Hayashi T, Teishima J, Matsubara A, Yasui W. Protocadherin B9 promotes resistance to bicalutamide and is associated with the survival of prostate cancer patients. Prostate 2019; 79:234-242. [PMID: 30324761 DOI: 10.1002/pros.23728] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Abstract
Background Prostate cancer (PCa) is a common malignancy worldwide and is the second leading cause of cancer death in men. The standard therapy for advanced PCa is androgen deprivation therapy (ADT). Although ADT, including bicalutamide treatment, is initially effective, resistance to bicalutamide frequently occurs and leads to the development of castration-resistant PCa. Thus, clarifying the mechanisms of bicalutamide resistance is urgently needed. We designed this study to assess the expression and function of PCDHB9, which encodes the protocadherin B9 protein. Methods The expression of PCDHB9 was determined using immunohistochemistry and a qRT-PCR. The effects of the overexpression or knockdown of PCDHB9 on cell growth, migration, adhesion were evaluated. To evaluate the PCDHB9-mediated effects in PCa, we performed a gene expression analysis using DU145 transfected with PCDHB9. We examined the effects of PCDHB9 inhibition on bicalutamide resistance. Results The qRT-PCR revealed that the expression of PCDHB9 was much higher in PCa than that in non-neoplastic prostate tissues. In 152 clinically localized PCa cases immunohistochemistry showed that 59% of PCa cases were positive for protocadherin B9. A Kaplan-Meier analysis showed that the high expression of protocadherin B9 was associated with PSA recurrence after radical prostatectomy. A functional analysis showed that PCDHB9 modulated cell migration and adhesion. We also found that PCDHB9 induced the expression of ITGB6 based on a gene expression analysis. The effect of PCDHB9 inhibition on bicalutamide sensitivity was examined using MTT assays. The IC50 value of PCDHB9 siRNA-transfected PCa cells was significantly lower than that of negative control siRNA-transfected cells. Furthermore, immunohistochemical staining of protocadherin B9 in 74 PCa patients who were treated with androgen depletion therapy, including bicalutamide treatment, demonstrated that the high expression of protocadherin B9 was significantly associated with poor overall survival. Conclusions PCDHB9 plays an important role in the progression of PCa and bicalutamide resistance. Collectively, our results suggest that PCDHB9 targeted therapy may be more effective than bicalutamide alone.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Shoichiro Mukai
- Department of Gastroenterological and Transplant Surgery, Applied Life Sciences, Graduate School of Biomedical and Health Sciences, Minami-ku, Hiroshima, Japan
| | - Yoshinori Shigematsu
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Keisuke Goto
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Naoya Sakamoto
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Tetsutaro Hayashi
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Jun Teishima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| |
Collapse
|
21
|
Sekino Y, Sakamoto N, Goto K, Honma R, Shigematsu Y, Quoc TP, Sentani K, Oue N, Teishima J, Kawakami F, Karam JA, Sircar K, Matsubara A, Yasui W. Uc.416 + A promotes epithelial-to-mesenchymal transition through miR-153 in renal cell carcinoma. BMC Cancer 2018; 18:952. [PMID: 30286729 PMCID: PMC6172711 DOI: 10.1186/s12885-018-4863-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
Background The transcribed ultraconserved regions (T-UCRs) are a novel class of non-coding RNAs that are absolutely conserved across species and are involved in carcinogenesis in some cancers. However, the expression and biological role of T-UCRs in renal cell carcinoma (RCC) remain poorly understood. This study aimed to examine the expression and functional role of Uc.416 + A and analyze the association between Uc.416 + A and epithelial-to-mesenchymal transition in RCC. Methods Expression of Uc.416 + A in 35 RCC tissues, corresponding normal kidney tissues and 13 types of normal tissue samples was determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). We performed a cell growth and migration assay in RCC cell line 786-O transfected with negative control and siRNA for Uc.416 + A. We evaluated the relation between Uc.416 + A and miR-153, which has a complimentary site of Uc.416 + A. Results qRT-PCR analysis revealed that the expression of Uc.416 + A was higher in RCC tissues than that in corresponding normal kidney tissues. Inhibition of Uc.416 + A reduced cell growth and cell migration activity. There was an inverse correlation between Uc.416 + A and miR-153. Western blot analysis showed Uc.416 + A modulated E-cadherin, vimentin and snail. The expression of Uc.416 + A was positively associated with the expression of SNAI1, VIM and inversely associated with the expression of CDH1. Conclusions The expression of Uc.416 + A was upregulated in RCC and especially in RCC tissues with sarcomatoid change. Uc.416 + A promoted epithelial-to-mesenchymal transition through miR-153. These results suggest that Uc.416 + A may be a promising therapeutic target. Electronic supplementary material The online version of this article (10.1186/s12885-018-4863-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Department of Urology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Naoya Sakamoto
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Keisuke Goto
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Ririno Honma
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yoshinori Shigematsu
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.,Department of Urology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Thang Pham Quoc
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazuhiro Sentani
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Naohide Oue
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Jun Teishima
- Department of Urology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Fumi Kawakami
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jose A Karam
- Departments of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kanishka Sircar
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Departments of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akio Matsubara
- Department of Urology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Wataru Yasui
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| |
Collapse
|
22
|
Regulation of Intestinal Epithelial Barrier Function by Long Noncoding RNA uc.173 through Interaction with MicroRNA 29b. Mol Cell Biol 2018; 38:MCB.00010-18. [PMID: 29632078 DOI: 10.1128/mcb.00010-18] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
The mammalian intestinal epithelium establishes a selectively permeable barrier that supports nutrient absorption and prevents intrusion by noxious luminal substances and microbiota. The effectiveness and integrity of the barrier function are tightly regulated via well-controlled mechanisms. Long noncoding RNAs transcribed from ultraconserved regions (T-UCRs) control diverse cellular processes, but their roles in the regulation of gut permeability remain largely unknown. Here we report that the T-UCR uc.173 enhances intestinal epithelial barrier function by antagonizing microRNA 29b (miR-29b). Decreasing the levels of uc.173 by gene silencing led to dysfunction of the intestinal epithelial barrier in cultured cells and increased the vulnerability of the gut barrier to septic stress in mice. uc.173 specifically stimulated translation of the tight junction (TJ) claudin-1 (CLDN1) by associating with miR-29b rather than by binding directly to CLDN1 mRNA. uc.173 acted as a natural decoy RNA for miR-29b, which interacts with CLDN1 mRNA via the 3' untranslated region and represses its translation. Ectopically expressed uc.173 abolished the association of miR-29b with CLDN1 mRNA and restored claudin-1 expression to normal levels in cells overexpressing miR-29b, thus rescuing the barrier function. These results highlight a novel function of uc.173 in controlling gut permeability and define a mechanism by which uc.173 stimulates claudin-1 translation, by decreasing the availability of miR-29b to CLDN1 mRNA.
Collapse
|