1
|
Zhou M, Wei L, Lu R. Emerging role of sirtuins in non‑small cell lung cancer (Review). Oncol Rep 2024; 52:127. [PMID: 39092574 PMCID: PMC11304160 DOI: 10.3892/or.2024.8786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Non‑small cell lung cancer (NSCLC) is a highly prevalent lung malignancy characterized by insidious onset, rapid progression and advanced stage at the time of diagnosis, making radical surgery impossible. Sirtuin (SIRT) is a histone deacetylase that relies on NAD+ for its function, regulating the aging process through modifications in protein activity and stability. It is intricately linked to various processes, including glycolipid metabolism, inflammation, lifespan regulation, tumor formation and stress response. An increasing number of studies indicate that SIRTs significantly contribute to the progression of NSCLC by regulating pathophysiological processes such as energy metabolism, autophagy and apoptosis in tumor cells through the deacetylation of histones or non‑histone proteins. The present review elaborates on the roles of different SIRTs and their mechanisms in NSCLC, while also summarizing novel therapeutic agents based on SIRTs. It aims to present new ideas and a theoretical basis for NSCLC treatment.
Collapse
Affiliation(s)
- Min Zhou
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, P.R. China
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| | - Lin Wei
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, P.R. China
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| | - Renfu Lu
- Department of Cardiothoracic Surgery, Chongqing University Central Hospital, Chongqing 400014, P.R. China
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing 400014, P.R. China
| |
Collapse
|
2
|
Yapryntseva MA, Maximchik PV, Zhivotovsky B, Gogvadze V. Mitochondrial sirtuin 3 and various cell death modalities. Front Cell Dev Biol 2022; 10:947357. [PMID: 35938164 PMCID: PMC9354933 DOI: 10.3389/fcell.2022.947357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Sirtuin 3, a member of the mammalian sirtuin family of proteins, is involved in the regulation of multiple processes in cells. It is a major mitochondrial NAD+-dependent deacetylase with a broad range of functions, such as regulation of oxidative stress, reprogramming of tumor cell energy pathways, and metabolic homeostasis. One of the intriguing functions of sirtuin 3 is the regulation of mitochondrial outer membrane permeabilization, a key step in apoptosis initiation/progression. Moreover, sirtuin 3 is involved in the execution of various cell death modalities, which makes sirtuin 3 a possible regulator of crosstalk between them. This review is focused on the role of sirtuin 3 as a target for tumor cell elimination and how mitochondria and reactive oxygen species (ROS) are implicated in this process.
Collapse
Affiliation(s)
| | - Polina V. Maximchik
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
| | - Vladimir Gogvadze
- Faculty of Basic Medicine, Lomonosov Moscow State University, Moscow, Russia
- Karolinska Institutet, Institute of Environmental Medicine, Stockholm, Sweden
- *Correspondence: Vladimir Gogvadze,
| |
Collapse
|
3
|
Karavyraki M, Porter RK. Evidence of a role for interleukin-6 in anoikis resistance in oral squamous cell carcinoma. Med Oncol 2022; 39:60. [PMID: 35484352 PMCID: PMC9050791 DOI: 10.1007/s12032-022-01664-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/18/2022] [Indexed: 01/16/2023]
Abstract
In an endeavour to understand metastasis from oral squamous cell carcinomas, we characterised the metastatic potential of a human tongue derived cell line (SCC-4 cells) and compared this phenotype to pre-cancerous dysplastic oral keratinocyte (DOK) cells derived from human tongue and primary gingival keratinocytes (PGK). We demonstrate that SCC-4 cells constitutively synthesize and release significant amounts of IL-6, a process that is enhanced by the addition of the TLR2/TLR6 agonist, Pam2CSK4. The expression of TLR2/6 and IL-6Ra/gp130 receptors was also confirmed in SCC-4 cells. Cancerous SCC-4 human tongue cells also have a classic EMT profile, unlike precancerous human tongue DOK cells. We also established that IL-6 is driving anoikis resistance in an autocrine fashion and that anti-IL-6 neutralising antibodies, anti-IL-6 receptor antibodies and anti-TLR2 receptor antibodies inhibit anoikis resistance in cancerous SCC-4 human tongue cells. The data suggest a promising role for anti-IL-6 receptor antibody and anti-TLR2 receptor antibody treatment for oral cancer.
Collapse
Affiliation(s)
- Marilena Karavyraki
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Science Institute (TBSI), Pearse Street, Dublin, D02 R590, Ireland
| | - Richard K Porter
- School of Biochemistry and Immunology, Trinity College Dublin, Trinity Biomedical Science Institute (TBSI), Pearse Street, Dublin, D02 R590, Ireland.
| |
Collapse
|
4
|
Kim MC, Hwang SH, Yang Y, Kim NY, Kim Y. Reduction in mitochondrial oxidative stress mediates hypoxia-induced resistance to cisplatin in human transitional cell carcinoma cells. Neoplasia 2021; 23:653-662. [PMID: 34134082 PMCID: PMC8208898 DOI: 10.1016/j.neo.2021.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/04/2022] Open
Abstract
Tumor hypoxia is known to promote the acquisition of more aggressive phenotypes in human transitional cell carcinoma (TCC), including drug resistance. Accumulating evidence suggests that mitochondria play a central role in the chemoresistance of TCC. However, the role of mitochondria in the hypoxia-induced drug resistance in TCC remains elusive. The present study investigated the function of mitochondria in the drug resistance using a TCC cell line under hypoxic conditions. In vitro hypoxia (0.1% O2, 48 h) was achieved by incubating TCC cells in air chamber. Mitochondrial events involving hypoxia-induced drug resistance were assessed. Hypoxia significantly reduced the cisplatin-induced apoptosis of TCC cells. Additionally, hypoxia substantially decreased the level of mitochondrial reactive oxygen species (ROS) generated by cisplatin treatment. Analogously, elimination of mitochondrial ROS significantly rescued cells from cisplatin-induced apoptosis. Hypoxia enhanced mitochondrial hyperpolarization, which was not related to ATP production or the reversal of ATP synthase activity. The mitochondrial DNA (mtDNA) amplification efficiency data illustrated that hypoxia significantly prevented oxidative damage to the mitogenome. Moreover, transmission electron microscopy revealed that cisplatin-induced disruption of the mitochondrial ultrastructure was abated under hypoxic conditions. Notably, depletion of mtDNA by ethidium bromide abrogated hypoxia-induced resistance to cisplatin. Taken together, the present study demonstrated that TCC cells exposed to hypoxic conditions rendered mitochondria less sensitive to oxidative stress induced by cisplatin treatment, leading to enhanced drug resistance.
Collapse
Affiliation(s)
- Myung-Chul Kim
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, The Republic of Korea; BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, The Republic of Korea; Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sung-Hyun Hwang
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, The Republic of Korea; BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, The Republic of Korea
| | - Yeseul Yang
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, The Republic of Korea; BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, The Republic of Korea
| | - Na-Yon Kim
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, The Republic of Korea; BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, The Republic of Korea
| | - Yongbaek Kim
- Laboratory of Clinical Pathology, College of Veterinary Medicine, Seoul National University, Seoul, The Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, The Republic of Korea.
| |
Collapse
|
5
|
Mirzaei S, Hushmandi K, Zabolian A, Saleki H, Torabi SMR, Ranjbar A, SeyedSaleh S, Sharifzadeh SO, Khan H, Ashrafizadeh M, Zarrabi A, Ahn KS. Elucidating Role of Reactive Oxygen Species (ROS) in Cisplatin Chemotherapy: A Focus on Molecular Pathways and Possible Therapeutic Strategies. Molecules 2021; 26:2382. [PMID: 33921908 PMCID: PMC8073650 DOI: 10.3390/molecules26082382] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
The failure of chemotherapy is a major challenge nowadays, and in order to ensure effective treatment of cancer patients, it is of great importance to reveal the molecular pathways and mechanisms involved in chemoresistance. Cisplatin (CP) is a platinum-containing drug with anti-tumor activity against different cancers in both pre-clinical and clinical studies. However, drug resistance has restricted its potential in the treatment of cancer patients. CP can promote levels of free radicals, particularly reactive oxygen species (ROS) to induce cell death. Due to the double-edged sword role of ROS in cancer as a pro-survival or pro-death mechanism, ROS can result in CP resistance. In the present review, association of ROS with CP sensitivity/resistance is discussed, and in particular, how molecular pathways, both upstream and downstream targets, can affect the response of cancer cells to CP chemotherapy. Furthermore, anti-tumor compounds, such as curcumin, emodin, chloroquine that regulate ROS and related molecular pathways in increasing CP sensitivity are described. Nanoparticles can provide co-delivery of CP with anti-tumor agents and by mediating photodynamic therapy, and induce ROS overgeneration to trigger CP sensitivity. Genetic tools, such as small interfering RNA (siRNA) can down-regulate molecular pathways such as HIF-1α and Nrf2 to promote ROS levels, leading to CP sensitivity. Considering the relationship between ROS and CP chemotherapy, and translating these findings to clinic can pave the way for effective treatment of cancer patients.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran 1477893855, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417466191, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Seyed Mohammad Reza Torabi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Adnan Ranjbar
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - SeyedHesam SeyedSaleh
- Student Research Committee, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran 1477893855, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Kwang-Seok Ahn
- Department of Science in Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
6
|
Wan X, Wang C, Huang Z, Zhou D, Xiang S, Qi Q, Chen X, Arbely E, Liu CY, Du P, Yu W. Cisplatin inhibits SIRT3-deacetylation MTHFD2 to disturb cellular redox balance in colorectal cancer cell. Cell Death Dis 2020; 11:649. [PMID: 32811824 PMCID: PMC7434776 DOI: 10.1038/s41419-020-02825-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 12/28/2022]
Abstract
The folate-coupled metabolic enzyme MTHFD2 (the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase) confers redox homeostasis and drives cancer cell proliferation and migration. Here, we show that MTHFD2 is hyperacetylated and lysine 88 is the critical acetylated site. SIRT3, the major deacetylase in mitochondria, is responsible for MTHFD2 deacetylation. Interestingly, chemotherapeutic agent cisplatin inhibits expression of SIRT3 to induce acetylation of MTHFD2 in colorectal cancer cells. Cisplatin-induced acetylated K88 MTHFD2 is sufficient to inhibit its enzymatic activity and downregulate NADPH levels in colorectal cancer cells. Ac-K88-MTHFD2 is significantly decreased in human colorectal cancer samples and is inversely correlated with the upregulated expression of SIRT3. Our findings reveal an unknown regulation axis of cisplatin-SIRT3-MTHFD2 in redox homeostasis and suggest a potential therapeutic strategy for cancer treatments by targeting MTHFD2.
Collapse
Affiliation(s)
- Xingyou Wan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Chao Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Zhenyu Huang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Dejian Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Sheng Xiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Qian Qi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Xinyuan Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Eyal Arbely
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Peng Du
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
7
|
Jung HS, Cho KJ, Ryu SJ, Takagi Y, Roche PA, Neuman KC. Biocompatible Fluorescent Nanodiamonds as Multifunctional Optical Probes for Latent Fingerprint Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6641-6650. [PMID: 31939655 PMCID: PMC8370203 DOI: 10.1021/acsami.9b19245] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
There is an immense literature on detection of latent fingerprints (LFPs) with fluorescent nanomaterials because fluorescence is one of the most sensitive detection methods. Although many fluorescent probes have been developed for latent fingerprint detection, many challenges remain, including the low selectivity, complicated processing, high background, and toxicity of nanoparticles used to visualize LFPs. In this study, we demonstrate biocompatible, efficient, and low background LFP detection with poly(vinylpyrrolidone) (PVP) coated fluorescent nanodiamonds (FNDs). PVP-coated FND (FND@PVP) is biocompatible at the cellular level. They neither inhibit cellar proliferation nor induce cell death via apoptosis or other cell killing pathways. Moreover, they do not elicit an immune response in cells. PVP coating enhances the physical adhesion of FND to diverse substrates and in particular results in efficient binding of FND@PVP to fingerprint ridges due to the intrinsic amphiphilicity of PVP. Clear, well-defined ridge structures with first, second, and third-level of LFP details are revealed within minutes by FND@PVP. The combination of this binding specificity and the remarkable optical properties of FND@PVP permits the detection of LPFs with high contrast, efficiency, selectivity, sensitivity, and reduced background interference. Our results demonstrate that background-free imaging via multicolor emission and dual-modal imaging of FND@PVP nanoparticles have great potential for high-resolution imaging of LFPs.
Collapse
Affiliation(s)
- Hak-Sung Jung
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kyung-Jin Cho
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Seung-Jin Ryu
- Forensic Science Research Center, Korean National Police University, 100-50 Hwang-san-gil, Sinchang-myeon, Asan-si, Chuncheongnan-do, 31539, South Korea
| | - Yasuharu Takagi
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Paul A. Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
8
|
Urso L, Cavallari I, Sharova E, Ciccarese F, Pasello G, Ciminale V. Metabolic rewiring and redox alterations in malignant pleural mesothelioma. Br J Cancer 2020; 122:52-61. [PMID: 31819191 PMCID: PMC6964675 DOI: 10.1038/s41416-019-0661-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/21/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare malignancy of mesothelial cells with increasing incidence, and in many cases, dismal prognosis due to its aggressiveness and lack of effective therapies. Environmental and occupational exposure to asbestos is considered the main aetiological factor for MPM. Inhaled asbestos fibres accumulate in the lungs and induce the generation of reactive oxygen species (ROS) due to the presence of iron associated with the fibrous silicates and to the activation of macrophages and inflammation. Chronic inflammation and a ROS-enriched microenvironment can foster the malignant transformation of mesothelial cells. In addition, MPM cells have a highly glycolytic metabolic profile and are positive in 18F-FDG PET analysis. Loss-of-function mutations of BRCA-associated protein 1 (BAP1) are a major contributor to the metabolic rewiring of MPM cells. A subset of MPM tumours show loss of the methyladenosine phosphorylase (MTAP) locus, resulting in profound alterations in polyamine metabolism, ATP and methionine salvage pathways, as well as changes in epigenetic control of gene expression. This review provides an overview of the perturbations in metabolism and ROS homoeostasis of MPM cells and the role of these alterations in malignant transformation and tumour progression.
Collapse
Affiliation(s)
- Loredana Urso
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | | | | | | | | | - Vincenzo Ciminale
- Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy.
- Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.
| |
Collapse
|
9
|
Li L, Zhang H, Wang X, Wang J, Wei H. Long non-coding RNA CASC2 enhanced cisplatin-induced viability inhibition of non-small cell lung cancer cells by regulating the PTEN/PI3K/Akt pathway through down-regulation of miR-18a and miR-21. RSC Adv 2018; 8:15923-15932. [PMID: 35542225 PMCID: PMC9080181 DOI: 10.1039/c8ra00549d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA cancer susceptibility candidate 2 (lncRNA CASC2) is a tumor suppressor and has been proved to contribute to chemotherapy efficacy. However, the effect of CASC2 on cisplatin cytotoxicity in non-small cell lung cancer (NSCLC) is unclear. The present study aimed to investigate the role of CASC2 in regulating cisplatin cytotoxicity in NSCLC cells. Herein, we found that CASC2 was low-expressed, while miR-18a and miR-21 were over-expressed in NSCLC cell lines. CASC2 enhanced the inhibition effect of cisplatin on cell viability. Down-regulation of miR-18a and miR-21 exhibited the similar effect to CASC2 and mimics of miR-18a and miR-21 displayed the opposite effect to CASC2. MiR-18a and miR-21 were two targets of CASC2 in NSCLC. PTEN was found to be a target of miR-18a and miR-21 in NSCLC. CASC2 overexpression increased PTEN expression level and reduced the ratio of p-Akt/Akt. MiR-18a or miR-21 mimics attenuated the effect of CASC2 overexpression on the PTEN expression and ratio of p-Akt/Akt. The results suggested that CASC2 enhanced cisplatin-induced viability inhibition of NSCLC cells via PTEN/PI3K/Akt pathway through suppressing miR-18a and miR-21 expression. Long non-coding RNA cancer susceptibility candidate 2 (lncRNA CASC2) is a tumor suppressor and has been proved to contribute to chemotherapy efficacy.![]()
Collapse
Affiliation(s)
- Li Li
- School of Nursing and Health
- Henan University
- Kaifeng 475004
- P. R. China
| | - Haifeng Zhang
- Department of Thoracic Surgery
- Huaihe Hospital of Henan University
- Kaifeng 475000
- P. R. China
| | - Xiaolong Wang
- Department of Thoracic Surgery
- Huaihe Hospital of Henan University
- Kaifeng 475000
- P. R. China
| | - Jiali Wang
- Department of Surgery
- Huaihe Hospital of Henan University
- Kaifeng 475000
- P. R. China
| | - Haitao Wei
- Department of Thoracic Surgery
- Huaihe Hospital of Henan University
- Kaifeng 475000
- P. R. China
| |
Collapse
|