1
|
Koukourakis IM, Platoni K, Kouloulias V, Arelaki S, Zygogianni A. Prostate Cancer Stem Cells: Biology and Treatment Implications. Int J Mol Sci 2023; 24:14890. [PMID: 37834336 PMCID: PMC10573523 DOI: 10.3390/ijms241914890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Stem cells differentiate into mature organ/tissue-specific cells at a steady pace under normal conditions, but their growth can be accelerated during the process of tissue healing or in the context of certain diseases. It is postulated that the proliferation and growth of carcinomas are sustained by the presence of a vital cellular compartment resembling stem cells residing in normal tissues: 'stem-like cancer cells' or cancer stem cells (CSCs). Mutations in prostate stem cells can lead to the formation of prostate cancer. Prostate CSCs (PCSCs) have been identified and partially characterized. These express surface markers include CD44, CD133, integrin α2β1, and pluripotency factors like OCT4, NANOG, and SOX2. Several signaling pathways are also over-activated, including Notch, PTEN/Akt/PI3K, RAS-RAF-MEK-ERK and HH. Moreover, PCSCs appear to induce resistance to radiotherapy and chemotherapy, while their presence has been linked to aggressive cancer behavior and higher relapse rates. The development of treatment policies to target PCSCs in tumors is appealing as radiotherapy and chemotherapy, through cancer cell killing, trigger tumor repopulation via activated stem cells. Thus, blocking this reactive stem cell mobilization may facilitate a positive outcome through cytotoxic treatment.
Collapse
Affiliation(s)
- Ioannis M. Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece; (I.M.K.); (A.Z.)
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 12462 Athens, Greece
| | - Vassilis Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 12462 Athens, Greece;
| | - Stella Arelaki
- Translational Functional Cancer Genomics, National Center for Tumor Diseases, German Cancer Research Center, 69120 Heidelberg, Germany;
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion Hospital, School of Medicine, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece; (I.M.K.); (A.Z.)
| |
Collapse
|
2
|
Zhou Y, Li T, Jia M, Dai R, Wang R. The Molecular Biology of Prostate Cancer Stem Cells: From the Past to the Future. Int J Mol Sci 2023; 24:ijms24087482. [PMID: 37108647 PMCID: PMC10140972 DOI: 10.3390/ijms24087482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Prostate cancer (PCa) continues to rank as the second leading cause of cancer-related mortality in western countries, despite the golden treatment using androgen deprivation therapy (ADT) or anti-androgen therapy. With decades of research, scientists have gradually realized that the existence of prostate cancer stem cells (PCSCs) successfully explains tumor recurrence, metastasis and therapeutic failure of PCa. Theoretically, eradication of this small population may improve the efficacy of current therapeutic approaches and prolong PCa survival. However, several characteristics of PCSCs make their diminishment extremely challenging: inherent resistance to anti-androgen and chemotherapy treatment, over-activation of the survival pathway, adaptation to tumor micro-environments, escape from immune attack and being easier to metastasize. For this end, a better understanding of PCSC biology at the molecular level will definitely inspire us to develop PCSC targeted approaches. In this review, we comprehensively summarize signaling pathways responsible for homeostatic regulation of PCSCs and discuss how to eliminate these fractional cells in clinical practice. Overall, this study deeply pinpoints PCSC biology at the molecular level and provides us some research perspectives.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Tian Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Man Jia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Gogola S, Rejzer M, Bahmad HF, Alloush F, Omarzai Y, Poppiti R. Anti-Cancer Stem-Cell-Targeted Therapies in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15051621. [PMID: 36900412 PMCID: PMC10000420 DOI: 10.3390/cancers15051621] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Prostate cancer (PCa) is the second-most commonly diagnosed cancer in men around the world. It is treated using a risk stratification approach in accordance with the National Comprehensive Cancer Network (NCCN) in the United States. The main treatment options for early PCa include external beam radiation therapy (EBRT), brachytherapy, radical prostatectomy, active surveillance, or a combination approach. In those with advanced disease, androgen deprivation therapy (ADT) is considered as a first-line therapy. However, the majority of cases eventually progress while receiving ADT, leading to castration-resistant prostate cancer (CRPC). The near inevitable progression to CRPC has spurred the recent development of many novel medical treatments using targeted therapies. In this review, we outline the current landscape of stem-cell-targeted therapies for PCa, summarize their mechanisms of action, and discuss avenues of future development.
Collapse
Affiliation(s)
- Samantha Gogola
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Michael Rejzer
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
- Correspondence: or ; Tel.: +1-305-674-2277
| | - Ferial Alloush
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Yumna Omarzai
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| | - Robert Poppiti
- Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA
| |
Collapse
|
4
|
Kilmister EJ, Koh SP, Weth FR, Gray C, Tan ST. Cancer Metastasis and Treatment Resistance: Mechanistic Insights and Therapeutic Targeting of Cancer Stem Cells and the Tumor Microenvironment. Biomedicines 2022; 10:biomedicines10112988. [PMID: 36428556 PMCID: PMC9687343 DOI: 10.3390/biomedicines10112988] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer metastasis and treatment resistance are the main causes of treatment failure and cancer-related deaths. Their underlying mechanisms remain to be fully elucidated and have been attributed to the presence of cancer stem cells (CSCs)-a small population of highly tumorigenic cancer cells with pluripotency and self-renewal properties, at the apex of a cellular hierarchy. CSCs drive metastasis and treatment resistance and are sustained by a dynamic tumor microenvironment (TME). Numerous pathways mediate communication between CSCs and/or the surrounding TME. These include a paracrine renin-angiotensin system and its convergent signaling pathways, the immune system, and other signaling pathways including the Notch, Wnt/β-catenin, and Sonic Hedgehog pathways. Appreciation of the mechanisms underlying metastasis and treatment resistance, and the pathways that regulate CSCs and the TME, is essential for developing a durable treatment for cancer. Pre-clinical and clinical studies exploring single-point modulation of the pathways regulating CSCs and the surrounding TME, have yielded partial and sometimes negative results. This may be explained by the presence of uninhibited alternative signaling pathways. An effective treatment of cancer may require a multi-target strategy with multi-step inhibition of signaling pathways that regulate CSCs and the TME, in lieu of the long-standing pursuit of a 'silver-bullet' single-target approach.
Collapse
Affiliation(s)
| | - Sabrina P. Koh
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Freya R. Weth
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Clint Gray
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
5
|
SHORT COMMUNICATIONAlteration of primary cilia morphology and associated signalling in ameloblastoma. Arch Oral Biol 2022; 142:105499. [DOI: 10.1016/j.archoralbio.2022.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 11/20/2022]
|
6
|
Giridharan M, Rupani V, Banerjee S. Signaling Pathways and Targeted Therapies for Stem Cells in Prostate Cancer. ACS Pharmacol Transl Sci 2022; 5:193-206. [PMID: 35434534 PMCID: PMC9003388 DOI: 10.1021/acsptsci.2c00019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 12/30/2022]
Abstract
Prostate cancer (PCa) is one of the most frequently occurring cancers among men, and the current statistics show that it is the second leading cause of cancer-related deaths among men. Over the years, research in PCa treatment and therapies has made many advances. Despite these efforts, the standardized therapies such as radiation, chemotherapy, hormonal therapy and surgery are not considered completely effective in treating advanced and metastatic PCa. In most situations, fast-dividing tumor cells are targeted, leaving behind relatively slowly dividing, chemoresistant cells known as cancer stem cells. Therefore, following the seemingly successful treatments, the lingering quiescent cancer stem cells are able to renew themselves, undergo differentiation into mature tumor cells, and sufficiently reinitiate the disease, leading to cancer relapse. Thus, prostate cancer stem cells (PCSCs) have been reported to play a vital role in controlling the dynamics of tumorigenesis, progression, and resistance to therapies in PCa. However, the complete knowledge on the mechanisms regulating the stemness of PCSCs is still unclear. Thus, studying the stemness of PCSCs will allow for the development of more effective cancer therapies due to the durable response, resulting in a reduction in recurrences of cancer. In this Review, we will specifically describe the molecular mechanisms responsible for regulating the stemness of PCSCs. Furthermore, current developments in stem cell-specific therapeutic approaches along with future prospects will also be discussed.
Collapse
Affiliation(s)
- Madhuvanthi Giridharan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632104, Tamil Nadu, India
| | - Vasu Rupani
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632104, Tamil Nadu, India
| | - Satarupa Banerjee
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore-632104, Tamil Nadu, India
| |
Collapse
|
7
|
Chu X, Bu Y, Yang X. Recent Research Progress of Chiral Small Molecular Antitumor-Targeted Drugs Approved by the FDA From 2011 to 2019. Front Oncol 2021; 11:785855. [PMID: 34976824 PMCID: PMC8718447 DOI: 10.3389/fonc.2021.785855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Chiral drugs usually contain chiral centers, which are present as single enantiomers or racemates. Compared with achiral drugs, they have significant advantages in safety and efficacy with high stereoselectivity. Of these drugs, chirality not only exerts influence on the solubility and pharmacokinetic characteristics but also has specific mechanistic characteristics on their targets. We noted that small molecules with unique chiral properties have emerged as novel components of antitumor drugs approved by the FDA in decade. Since approved, these drugs have been continuously explored for new indications, new mechanisms, and novel combinations. In this mini review, recent research progress of twenty-two FDA-approved chiral small molecular-targeted antitumor drugs from 2011 to 2019 is summarized with highlighting the potential and advantages of their applications. We believe that these updated achievements may provide theoretical foundation and stimulate research interests for optimizing drug efficacy, expanding clinical application, overcoming drug resistance, and advancing safety in future clinical administrations of these chiral targeted drugs.
Collapse
Affiliation(s)
| | | | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
8
|
Chai JY, Sugumar V, Alshawsh MA, Wong WF, Arya A, Chong PP, Looi CY. The Role of Smoothened-Dependent and -Independent Hedgehog Signaling Pathway in Tumorigenesis. Biomedicines 2021; 9:1188. [PMID: 34572373 PMCID: PMC8466551 DOI: 10.3390/biomedicines9091188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/22/2022] Open
Abstract
The Hedgehog (Hh)-glioma-associated oncogene homolog (GLI) signaling pathway is highly conserved among mammals, with crucial roles in regulating embryonic development as well as in cancer initiation and progression. The GLI transcription factors (GLI1, GLI2, and GLI3) are effectors of the Hh pathway and are regulated via Smoothened (SMO)-dependent and SMO-independent mechanisms. The SMO-dependent route involves the common Hh-PTCH-SMO axis, and mutations or transcriptional and epigenetic dysregulation at these levels lead to the constitutive activation of GLI transcription factors. Conversely, the SMO-independent route involves the SMO bypass regulation of GLI transcription factors by external signaling pathways and their interacting proteins or by epigenetic and transcriptional regulation of GLI transcription factors expression. Both routes of GLI activation, when dysregulated, have been heavily implicated in tumorigenesis of many known cancers, making them important targets for cancer treatment. Hence, this review describes the various SMO-dependent and SMO-independent routes of GLI regulation in the tumorigenesis of multiple cancers in order to provide a holistic view of the paradigms of hedgehog signaling networks involving GLI regulation. An in-depth understanding of the complex interplay between GLI and various signaling elements could help inspire new therapeutic breakthroughs for the treatment of Hh-GLI-dependent cancers in the future. Lastly, we have presented an up-to-date summary of the latest findings concerning the use of Hh inhibitors in clinical developmental studies and discussed the challenges, perspectives, and possible directions regarding the use of SMO/GLI inhibitors in clinical settings.
Collapse
Affiliation(s)
- Jian Yi Chai
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
| | - Vaisnevee Sugumar
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia;
| | | | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Aditya Arya
- School of Biosciences, Faculty of Science, Building 184, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia; (J.Y.C.); (P.P.C.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, 1 Jalan Taylors, Subang Jaya 47500, Malaysia
| |
Collapse
|
9
|
Abstract
Patients with high-risk localized prostate cancer benefit from multimodality therapy of curative intent. Androgen-deprivation therapy (ADT) combined with radiation improves survival in this population. However, prior clinical trials of neoadjuvant ADT and surgery failed to consistently demonstrate a survival advantage. The development of novel, more potent hormonal agents presents an opportunity to revisit the potential for neoadjuvant therapy to improve long-term outcomes for patients with localized prostate cancer. We review recent advances in neoadjuvant approaches for prostate cancer and emerging clinical trials data supporting the use of neoadjuvant therapy prior to radical prostatectomy.
Collapse
|
10
|
Pooler DB, Ness DB, Sarantopoulos J, Squittieri N, Ravichandran S, Britten CD, Amaravadi RK, Vaishampayan U, LoRusso P, Shapiro GI, Olszanski AJ, Perez R, Gutierrez M, O'Rourke MA, Chung V, Lee JJ, Lewis LD. The effect of sonidegib (LDE225) on the pharmacokinetics of bupropion and warfarin in patients with advanced solid tumours. Br J Clin Pharmacol 2020; 87:1291-1302. [PMID: 32736411 DOI: 10.1111/bcp.14508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 01/05/2023] Open
Abstract
AIMS We evaluated the potential effect of sonidegib at an oral dose of 800 mg once daily (QD) on the pharmacokinetics (PK) of the probe drugs warfarin (CYP2C9) and bupropion (CYP2B6). METHODS This was a multicentre, open-label study to evaluate the effect of sonidegib on the PK of the probe drugs warfarin and bupropion in patients with advanced solid tumours. Cohort 1 patients received a single warfarin 15-mg dose on Day 1 of the run-in period and on Cycle 2 Day 22 (C2D22) of sonidegib administration. Cohort 2 patients received a single bupropion 75-mg dose on Day 1 of run-in period and on C2D22 of sonidegib administration. Sonidegib 800 mg QD oral dosing began on Cycle 1 Day 1 of a 28-day cycle after the run-in period in both cohorts. RESULTS The geometric means ratios [90% confidence interval] for (S)-warfarin with and without sonidegib were: area under the concentration-time curve from time 0 to infinity (AUCinf ) 1.15 [1.07, 1.24] and maximum plasma concentration (Cmax ) 0.88 [0.81, 0.97]; and for (R)-warfarin were: AUCinf 1.10 [0.98, 1.24] and Cmax 0.93 [0.87, 1.0]. The geometric means ratios [90% confidence interval] of bupropion with and without sonidegib were: AUCinf 1.10 [0.99, 1.23] and Cmax 1.16 [0.95, 1.42]. Sonidegib 800 mg had a safety profile that was similar to that of lower dose sonidegib 200 mg and was unaffected by single doses of the probe drugs. CONCLUSIONS Sonidegib dosed orally at 800 mg QD (higher than the Food and Drug Administration-approved dose) did not impact the PK or pharmacodynamics of warfarin (CYP2C9 probe substrate) or the PK of bupropion (CYP2B6 probe substrate).
Collapse
Affiliation(s)
- Darcy B Pooler
- Norris Cotton Cancer Center & Department of Medicine, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Dylan B Ness
- Norris Cotton Cancer Center & Department of Medicine, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - John Sarantopoulos
- Cancer Therapy and Research Center at University of Texas Health Science Center, San Antonio, Texas
| | | | | | | | - Ravi K Amaravadi
- Abramson Cancer Center University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | - Raymond Perez
- University of Kansas Medical Center, Fairway, Kansas
| | | | | | - Vincent Chung
- City of Hope National Medical Center, Duarte, California
| | - James J Lee
- University of Pittsburgh Cancer Institute, Pittsburg, Pennsylvania
| | - Lionel D Lewis
- Norris Cotton Cancer Center & Department of Medicine, The Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
11
|
Hedgehog Pathway Inhibitors: A New Therapeutic Class for the Treatment of Acute Myeloid Leukemia. Blood Cancer Discov 2020; 1:134-145. [DOI: 10.1158/2643-3230.bcd-20-0007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/06/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
|
12
|
Safety and efficacy of the combination of sonidegib and ruxolitinib in myelofibrosis: a phase 1b/2 dose-finding study. Blood Adv 2020; 4:3063-3071. [PMID: 32634234 DOI: 10.1182/bloodadvances.2019001212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
The sonidegib and ruxolitinib combination was assessed in an open-label study in JAK inhibitor-naive patients with myelofibrosis (MF). The primary objective of phase 1b was to establish the maximum tolerated dose (MTD) and/or recommended phase 2 dose (RP2D) and phase 2 was to assess spleen volume reduction at weeks 24 and 48. Fifty patients were enrolled. In the dose-escalation phase (n = 23), doses for sonidegib once daily/ruxolitinib twice daily were 400/10 mg (level 1, n = 8), 400/15 mg (level 2, n = 10), and 400/20 mg (level 3, n = 5). Two patients had dose-limiting toxicity at level 2: increased blood creatine phosphokinase (grades 3 and 4, n = 1 each). MTD/RP2D was determined as sonidegib 400 mg daily + ruxolitinib 20 mg twice daily. In phase 1b expansion and phase 2 stage 1 (n = 27), by weeks 24 and 48, ≥35% reduction in spleen volume was observed in 44.4% and 29.6% patients, respectively. By weeks 24 and 48, 42.0% and 26.0% patients had ≥50% reduction in Myelofibrosis Symptom Assessment Form total symptom score, respectively. Most common treatment-related adverse events (grade 3/4) were increased blood creatine phosphokinase (18%), anemia (14%), and thrombocytopenia (12%). Four deaths were reported due to multiple organ dysfunction syndrome (on-treatment; no relationship with study treatment), acute myeloid leukemia, MF progression, and aspiration pneumonia. Although well tolerated, this combination will not be further developed in MF patients due to modest overall benefit compared with historical ruxolitinib monotherapy. This trial was registered at www.clinicaltrials.gov as #NCT01787552.
Collapse
|
13
|
Tsao T, Beretov J, Ni J, Bai X, Bucci J, Graham P, Li Y. Cancer stem cells in prostate cancer radioresistance. Cancer Lett 2019; 465:94-104. [DOI: 10.1016/j.canlet.2019.08.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 01/08/2023]
|
14
|
Lee CH, Decker AM, Cackowski FC, Taichman RS. Bone microenvironment signaling of cancer stem cells as a therapeutic target in metastatic prostate cancer. Cell Biol Toxicol 2019; 36:115-130. [PMID: 31250347 DOI: 10.1007/s10565-019-09483-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers and the second leading cause of cancer death among US males. When diagnosed in an early disease stage, primary tumors of PCa may be treated with surgical resection or radiation, sometimes combined with androgen deprivation therapy, with favorable outcomes. Unfortunately, the treatment efficacy of each approach decreases significantly in later stages of PCa that involve metastasis to soft tissues and bone. Metastatic PCa is a heterogeneous disease containing host cells, mature cancer cells, and subpopulation of cancer stem cells (CSC). CSCs are highly tumorigenic due to their self-renewing and differentiating potential, clinically resulting in recurrence and resistance to standard therapies. Therefore, there is a large unmet clinical need to develop therapies, which target CSC activity. In this review, we summarize the main signaling pathways that are implicated in the current pre-clinical and clinical studies of recurrent metastatic PCa within the bone microenvironment targeting CSCs and discuss the trajectory of therapeutics moving forward.
Collapse
Affiliation(s)
- Clara H Lee
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Ann M Decker
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA
| | - Frank C Cackowski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA.,Department of Internal Medicine, Division of Hematology/Oncology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, 48109, USA. .,Department of Periodontology, University of Alabama Birmingham School of Dentistry, Birmingham, Alabama, USA.
| |
Collapse
|
15
|
Saad F, Shore N, Zhang T, Sharma S, Cho HK, Jacobs IA. Emerging therapeutic targets for patients with advanced prostate cancer. Cancer Treat Rev 2019; 76:1-9. [DOI: 10.1016/j.ctrv.2019.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
|
16
|
Cortes JE, Gutzmer R, Kieran MW, Solomon JA. Hedgehog signaling inhibitors in solid and hematological cancers. Cancer Treat Rev 2019; 76:41-50. [PMID: 31125907 DOI: 10.1016/j.ctrv.2019.04.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The hedgehog signaling pathway is normally tightly regulated. Mutations in hedgehog pathway components may lead to abnormal activation. Aberrantly activated hedgehog signaling plays a major role in the development of solid and hematological cancer. In recent years, inhibitors have been developed that attenuate hedgehog signaling; 2 have been approved for use in basal cell carcinoma (BCC), while others are under development or in clinical trials. The aim of this review is to provide an overview of known hedgehog inhibitors (HHIs) and their potential for the treatment of hematological cancers and solid tumors beyond BCC. DESIGN Published literature was searched to identify articles relating to HHIs in noncutaneous cancer. Both preclinical and clinical research articles were included. In addition, relevant clinical trial results were identified from www.clinicaltrials.gov. Information on the pharmacology of HHIs is also included. RESULTS HHIs show activity in a variety of solid and hematological cancers. In preclinical studies, HHIs demonstrated efficacy in pancreatic cancer, rhabdomyosarcoma, breast cancer, and acute myeloid leukemia (AML). In clinical studies, HHIs showed activity in medulloblastoma, as well as prostate, pancreatic, and hematological cancers. Current clinical trials testing the efficacy of HHIs are underway for prostate, pancreatic, and breast cancers, as well as multiple myeloma and AML. CONCLUSIONS As clinical trial results become available, it will be possible to discern which additional tumor types are suited to HHI mono- or combination therapy with other anticancer agents. The latter strategy may be useful for delaying or overcoming drug resistance.
Collapse
Affiliation(s)
- Jorge E Cortes
- Department of Leukemia, MD Anderson Cancer Center, 1515 Holcombe Blvd. #428, Houston, TX 77030, USA.
| | - Ralf Gutzmer
- Skin Cancer Center Hannover, Department of Dermatology, Hannover Medical School, Carl-Neuberg Str 1, D-30625 Hannover, Germany.
| | - Mark W Kieran
- Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
| | - James A Solomon
- Ameriderm Research, 725 W Granada Blvd Ste 44, Ormond Beach, FL 32174, USA; University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
17
|
Raleigh DR, Reiter JF. Misactivation of Hedgehog signaling causes inherited and sporadic cancers. J Clin Invest 2019; 129:465-475. [PMID: 30707108 DOI: 10.1172/jci120850] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Hedgehog pathway is critical for the development of diverse organs. Misactivation of the Hedgehog pathway can cause developmental abnormalities and cancers, including medulloblastoma, the most common pediatric brain tumor, and basal cell carcinoma, the most common cancer in the United States. Here, we review how basic, translational, and clinical studies of the Hedgehog pathway have helped reveal how cells communicate, how intercellular communication controls development, how signaling goes awry to cause cancer, and how to use targeted molecular agents to treat both inherited and sporadic cancers.
Collapse
Affiliation(s)
- David R Raleigh
- Department of Radiation Oncology.,Department of Neurological Surgery, and
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| |
Collapse
|
18
|
Abstract
First described in Drosophila, Hedgehog signalling is a key regulator of embryonic development and tissue homeostasis and its dysfunction underlies a variety of human congenital anomalies and diseases. Although now recognised as a major target for cancer therapy as well as a mediator of directed stem cell differentiation, the unveiling of the function and mechanisms of Hedgehog signalling was driven largely by an interest in basic developmental biology rather than clinical need. Here, I describe how curiosity about embryonic patterning led to the identification of the family of Hedgehog signalling proteins and the pathway that transduces their activity, and ultimately to the development of drugs that block this pathway.
Collapse
Affiliation(s)
- Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921
| |
Collapse
|
19
|
Tosco L, Briganti A, D'amico AV, Eastham J, Eisenberger M, Gleave M, Haustermans K, Logothetis CJ, Saad F, Sweeney C, Taplin ME, Fizazi K. Systematic Review of Systemic Therapies and Therapeutic Combinations with Local Treatments for High-risk Localized Prostate Cancer. Eur Urol 2018; 75:44-60. [PMID: 30286948 DOI: 10.1016/j.eururo.2018.07.027] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023]
Abstract
CONTEXT Systemic therapies, combined with local treatment for high-risk prostate cancer, are recommended by the international guidelines for specific subgroups of patients; however, for many of the clinical scenarios, it remains a research field. OBJECTIVE To perform a systematic review, and describe current evidence and perspectives about the multimodal treatment of high-risk prostate cancer. EVIDENCE ACQUISITION We performed a systematic review of PubMED, Embase, Cochrane Library, European Society of Medical Oncology/American Society of Clinical Oncology Annual proceedings, and clinicalTrial.gov between January 2010 and February 2018 following the Preferred Reporting Items for Systematic Reviews and Meta-analysis statement. EVIDENCE SYNTHESIS Seventy-seven prospective trials were identified. According to multiple randomized trials, combining androgen deprivation therapy (ADT) with external-beam radiotherapy (EBRT) outperforms EBRT alone for both relapse-free and overall survival. Neoadjuvant ADT did not show significant improvement compared with prostatectomy alone. The role of adjuvant ADT after prostatectomy in patients with high-risk disease is still debated, with lack of data from phase 3 trials in pN0 patients. Novel androgen pathway inhibitors have been tested only in early-phase trials in addition to primary treatment. GETUG 12, RTOG 0521, and nonmetastatic subgroup of the STAMPEDE trial showed improved relapse-free survival for docetaxel in patients treated with EBRT plus ADT, although mature metastasis-free survival data are still pending. Both the SPCG-12 and the VACSP#553 trial showed no improvement in relapse-free survival for adjuvant docetaxel after prostatectomy. CONCLUSIONS In contrast to the clearly demonstrated survival benefits of long-term adjuvant ADT when used with EBRT, its role after prostatectomy remains unclear especially in pN0 patients. Adding docetaxel to EBRT-ADT improves relapse-free survival, with immature results on overall survival. Novel androgen receptor pathway inhibitors are currently being tested in the neoadjuvant and adjuvant setting. PATIENT SUMMARY Treatment of high-risk prostate cancer is based on a multimodality approach that includes systemic treatments. The best treatment or therapy combination remains to be defined.
Collapse
Affiliation(s)
- Lorenzo Tosco
- Department of Urology, University Hospitals Leuven, Leuven, Belgium; Nuclear Medicine & Molecular Imaging, KU Leuven, Leuven, Belgium.
| | - Alberto Briganti
- Division of Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Antony Vincent D'amico
- Department of Radiation Oncology, Brigham and Women's Hospital and Dana Farber Cancer Institute, Boston, MA, USA
| | - James Eastham
- Urology Service at the Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mario Eisenberger
- Department of Oncology in the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Martin Gleave
- The Vancouver Prostate Centre & Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Karin Haustermans
- Department of Radiation Oncology, University Hospitals Leuven, Leuven, Belgium
| | - Christopher J Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fred Saad
- Department of Urology, Centre Hospitalier de l'Université de Montréal, University of Montreal, Montreal, Quebec, Canada
| | | | | | - Karim Fizazi
- Institut Gustave Roussy, University of Paris Sud, Villejuif, France
| |
Collapse
|