1
|
Karademir D, Özgür A. Small molecule heat shock protein 27 inhibitor J2 decreases ovarian cancer cell proliferation via induction of apoptotic pathways. Med Oncol 2023; 40:250. [PMID: 37493998 DOI: 10.1007/s12032-023-02126-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Heat shock protein 27 (Hsp27) is an important member of the chaperone protein family and its overexpression promotes cancer cell survival. Here, we investigated the apoptosis inducer role of the J2 compound (Hsp27 inhibitor) in human ovarian cancer cell lines (SKOV3 and OVCAR-3). Cell proliferation was measured by MTT assay. The parameters of J2-Hsp27 interaction were determined with molecular docking calculation. The inhibitory effect of the J2 compound on Hsp27 chaperone activity was investigated by luciferase activity assay. Finally, the apoptotic inducer role of the J2 compound on SKOV3 and OVCAR-3 cells was determined by RT-PCR and caspase-3 activity assay. J2 compound decreased SKOV3 and OVCAR-3 cell proliferation in a dose-dependent manner at 48 h with IC50 values of 17.34 µM and 12.63 µM, respectively. J2 inhibited the refolding process of denatured luciferase as an Hsp27 inhibitor. Molecular docking calculation was carried out to determine the interaction between Hsp27 and J2. The results indicated that J2 selectively binds to the phosphorylation site of the Hsp27 and inhibits the phosphorylation process of Hsp27. To determine the apoptotic potential of the J2 compound against ovarian cancer cells, the mRNA expression levels of apoptotic and antiapoptotic markers (Bax, Bcl-2, Bcl-xL, Cyt-c, p53, Apaf-1, Cas-3, Cas-8, Cas-9, TNF-α, DAXX, and Ask-1) were measured using RT-PCR. While J2 increased the expressions of apoptotic genes, it decreased the expressions of anti-apoptotic genes. Further, the J2 compound increased Cas-3 activity in SKOV3 and OVCAR-3 at 5.52 and 4.12 folds, respectively. These results confirm that J2 has great potential and significance in the stimulation of apoptosis in ovarian cancer cells as an Hsp27 inhibitor.
Collapse
Affiliation(s)
- Dilay Karademir
- Faculty of Medicine, Department of Gynecology and Obstetrics, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Aykut Özgür
- Artova Vocational School, Department of Veterinary Medicine, Laboratory and Veterinary Health Program, Tokat Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
2
|
Yoo YJ, Jeon S, Jin H, Won HY, Jeong MG, Cho Y, Hwang ES, Na Y, Cho J, Lee YS. Drug like HSP27 cross linkers with chromenone structure ameliorates pulmonary fibrosis. Front Pharmacol 2023; 14:1203033. [PMID: 37469871 PMCID: PMC10352808 DOI: 10.3389/fphar.2023.1203033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
Background: Pulmonary fibrosis (PF) is a progressive lung disease characterized by fibroblast accumulation and collagen deposition, resulting in lung scarring and impaired gas exchange. Current treatments for idiopathic pulmonary fibrosis (IPF) have limited efficacy and significant side effects. Heat shock protein 27 (HSP27) has emerged as a potential therapeutic target for PF due to its involvement in fibrotic processes. However, effective HSP27 inhibitors for PF treatment are still lacking. Methods: To assess the anti-fibrotic effects of NA49, we utilized murine PF models induced by radiation (IR) or bleomycin (BLM). We administered NA49 to the PF mice and evaluated its impact on lung fibrosis progression. We also investigated the molecular mechanisms underlying NA49's effects, focusing on its inhibition of EMT-related signaling pathways. Results: In our study, we evaluated the potential of a novel HSP27 inhibitor, NA49, in preclinical models of PF. NA49 effectively suppressed PF development in radiation and bleomycin-induced PF models. It reduced fibrosis, inhibited NFkB signaling, and downregulated EMT-related molecules. Importantly, we evaluated the safety profile of NA49 by assessing its impact on DNA strand breakage. Compared to previous HSP27 inhibitors, NA49 showed lower levels of DNA damage in human lung epithelial cells, and suggests that NA49 may have reduced toxicity compared to other HSP27 inhibitors. Overall, our results demonstrate that NA49 effectively inhibits PF development in preclinical models. It reduces lung fibrosis, inhibits EMT-related signaling pathways, and exhibits improved safety profiles. These findings highlight the potential of NA49 as a promising candidate for the treatment of PF. Conclusion: NA49 exhibited significant anti-fibrotic effects, inhibiting fibrosis development and EMT-related signaling pathways. Moreover, NA49 showed improved safety profiles compared to previous HSP27 inhibitors.
Collapse
Affiliation(s)
- Young Jo Yoo
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Seulgi Jeon
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hee Jin
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Hee Yeon Won
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Mi Gyeong Jeong
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Yeseul Cho
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Eun Sook Hwang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, Republic of Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University Health System, Seoul, Republic of Korea
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Rizvi SF, Hasan A, Parveen S, Mir SS. Untangling the complexity of heat shock protein 27 in cancer and metastasis. Arch Biochem Biophys 2023; 736:109537. [PMID: 36738981 DOI: 10.1016/j.abb.2023.109537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/27/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Heat shock protein 27 is a type of molecular chaperone whose expression gets up-regulated due to reaction towards different stressful triggers including anticancer treatments. It is known to be a major player of resistance development in cancer cells, whereby cells are sheltered against the therapeutics that normally activate apoptosis. Heat shock protein 27 (HSP27) is one of the highly expressed proteins during various cellular insults and is a strong tumor survival factor. HSP27 influences various cellular pathways associated with cancer cell survival and growth such as apoptosis, autophagy, metastasis, angiogenesis, epithelial to mesenchymal transition, etc. HSP27 is molecular machinery which prevents the clumping of numerous substrates or client proteins which get mutated in cancer. It has been reported in several studies that targeting HSP27 is difficult because of its dynamic structure and absence of an ATP-binding site. Here, in this review, we have summarized different modulators of HSP27 and their mechanism of action as well. Effect of deregulated HSP27 in various cancer models, limitations of targeting HSP27, resistance against the conventional drugs generated due to the overexpression of HSP27, and measures to counteract this effect have also been discussed here in detail.
Collapse
Affiliation(s)
- Suroor Fatima Rizvi
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Sana Parveen
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, 226026, India.
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow, 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow, 226026, India.
| |
Collapse
|
4
|
Jeon S, Jin H, Kim JM, Hur Y, Song EJ, Lee YJ, Na Y, Cho J, Lee YS. The miR-15b-Smurf2-HSP27 axis promotes pulmonary fibrosis. J Biomed Sci 2023; 30:2. [PMID: 36611161 PMCID: PMC9824921 DOI: 10.1186/s12929-023-00896-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Heat shock protein 27 (HSP27) is overexpressed during pulmonary fibrosis (PF) and exacerbates PF; however, the upregulation of HSP27 during PF and the therapeutic strategy of HSP27 inhibition is not well elucidated. METHODS We have developed a mouse model simulating clinical stereotactic body radiotherapy (SBRT) with focal irradiation and validated the induction of RIPF. HSP25 (murine form of HSP27) transgenic (TG) and LLC1-derived orthotropic lung tumor models were also used. Lung tissues of patients with RIPF and idiopathic pulmonary fibrosis, and lung tissues from various fibrotic mouse models, as well as appropriated cell line systems were used. Public available gene expression datasets were used for therapeutic response rate analysis. A synthetic small molecule HSP27 inhibitor, J2 was also used. RESULTS HSP27 expression with its phosphorylated form (pHSP27) increased during PF. Decreased mRNA expression of SMAD-specific E3 ubiquitin-protein ligase 2 (Smurf2), which is involved in ubiquitin degradation of HSP27, was responsible for the increased expression of pHSP27. In addition, increased expression of miRNA15b was identified with decreased expression of Smurf2 mRNA in PF models. Inverse correlation between pHSP27 and Smurf2 was observed in the lung tissues of PF animals, an irradiated orthotropic lung cancer models, and PF tissues from patients. Moreover, a HSP27 inhibitor cross-linked with HSP27 protein to ameliorate PF, which was more effective when targeting the epithelial to mesenchymal transition (EMT) stage of PF. CONCLUSIONS Our findings identify upregulation mechanisms of HSP27 during PF and provide a therapeutic strategy for HSP27 inhibition for overcoming PF.
Collapse
Affiliation(s)
- Seulgi Jeon
- grid.255649.90000 0001 2171 7754Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Republic of Korea ,grid.418982.e0000 0004 5345 5340Inhalation Toxicity Research Group, Korea Institute of Toxicology, Jeongeup-si, Jeollabuk-do 56212 Republic of Korea
| | - Hee Jin
- grid.255649.90000 0001 2171 7754Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Republic of Korea
| | - Jin-Mo Kim
- grid.413046.40000 0004 0439 4086Department of Radiation Oncology, Yonsei University Health System, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Manufacturing Pharmacy, Natural Product Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826 Republic of Korea
| | - Youmin Hur
- grid.255649.90000 0001 2171 7754Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Republic of Korea
| | - Eun Joo Song
- grid.255649.90000 0001 2171 7754Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Republic of Korea
| | - Yoon-Jin Lee
- grid.415464.60000 0000 9489 1588Korea Institute of Radiological and Medical Science, Seoul, 01812 Republic of Korea
| | - Younghwa Na
- grid.410886.30000 0004 0647 3511College of Pharmacy, CHA University, 120, Haeryong-ro, Pocheon-si, Gyeonggi-do 11160 Republic of Korea
| | - Jaeho Cho
- grid.413046.40000 0004 0439 4086Department of Radiation Oncology, Yonsei University Health System, 50, Yonsei-ro, Seodaemun-gu, Seoul, 03722 Republic of Korea
| | - Yun-Sil Lee
- grid.255649.90000 0001 2171 7754Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760 Republic of Korea
| |
Collapse
|
5
|
Choi SK, Hwang SY, Jeon S, Yoo H, Lee J, Shin JH, Na Y, Kwon Y, Lee YS. Design, synthesis, and biological evaluation of novel HSP27 inhibitors to sensitize lung cancer cells to clinically available anticancer agents. Bioorg Chem 2023; 130:106260. [PMID: 36410114 DOI: 10.1016/j.bioorg.2022.106260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Expression of heat shock protein (HSP) correlates with the oncogenic status of malignant cells and plays an important role in tumorigenesis. HSP27 is constitutively expressed at specific stages of cancer development, and several clinical trials have reported correlations between HSP27 expression and tumor progression, metastasis, and chemoresistance in various types of cancer cells. These findings indicate that HSP27 is a major drug target, particularly in chemo-resistant cancers. As part of our ongoing efforts to improve the previously identified J2, a HSP27 cross-linker, we, in this study, report the identification of NK16 as a novel inducer of abnormal HSP27 dimers that did not affect the expression of HSP90 in an NCI-H460 lung cancer cell model. When NCI-H460 cells were treated with NK16 in combination with the anticancer drug cisplatin or paclitaxel, cleavage of PARP and caspase-3 was increased compared to administration of cisplatin or paclitaxel alone. Similar results were obtained in an NCI-H460-xenografted mouse model, in which tumor growth was suppressed more by co-administration of NK16 and paclitaxel than by paclitaxel alone. We propose NK16 as a meaningful strategy to improve the anticancer efficacy of cisplatin and paclitaxel.
Collapse
Affiliation(s)
- Seul-Ki Choi
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo-Yeon Hwang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seulgi Jeon
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hawon Yoo
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Joohyun Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jae-Ho Shin
- College of Pharmacy, CHA University, Pocheon 11160, Republic of Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon 11160, Republic of Korea.
| | - Youngjoo Kwon
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Yun-Sil Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
6
|
Javid H, Hashemian P, Yazdani S, Sharbaf Mashhad A, Karimi-Shahri M. The role of heat shock proteins in metastatic colorectal cancer: A review. J Cell Biochem 2022; 123:1704-1735. [PMID: 36063530 DOI: 10.1002/jcb.30326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
Heat shock proteins (HSPs) are a large molecular chaperone family classified by their molecular weights, including HSP27, HSP40, HSP60, HSP70, HSP90, and HSP110. HSPs are likely to have antiapoptotic properties and participate actively in various processes such as tumor cell proliferation, invasion, metastases, and death. In this review, we discuss comprehensively the functions of HSPs associated with the progression of colorectal cancer (CRC) and metastasis and resistance to cancer therapy. Taken together, HSPs have numerous clinical applications as biomarkers for cancer diagnosis and prognosis and potential therapeutic targets for CRC and its related metastases.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Shaghayegh Yazdani
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Sharbaf Mashhad
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
7
|
Asgharzadeh F, Moradi-Marjaneh R, Marjaneh MM. The Role of Heat Shock Protein 27 in Carcinogenesis and Treatment of Colorectal Cancer. Curr Pharm Des 2022; 28:2677-2685. [PMID: 35490324 DOI: 10.2174/1381612828666220427140640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/10/2022] [Indexed: 12/16/2022]
Abstract
The incidence of colorectal cancer (CRC) has significantly increased in recent decades, which has made this disease an important global health issue. Despite many efforts, there is no useful prognostic or diagnostic biomarker for CRC. Heat shock protein 27 (Hsp27) is one of the most studied members of the Hsp family. It has attracted particular attention in CRC pathogenesis since it is involved in fundamental cell functions for cell survival. Evidence shows that Hsp27 plays important role in CRC progression and metastasis. Hsp27 overexpression has been observed in CRC and is suggested to be associated with CRC's poor prognosis. In the present review, we focus on the current knowledge of the role of Hsp27 in CRC carcinogenesis and the underlying mechanisms. In addition, we discuss the value of targeting Hsp27 in CRC treatment.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Moradi-Marjaneh
- Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahdi Moradi Marjaneh
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
8
|
Activation of the HSP27-AKT axis contributes to gefitinib resistance in non-small cell lung cancer cells independent of EGFR mutations. Cell Oncol (Dordr) 2022; 45:913-930. [PMID: 35931945 PMCID: PMC9579113 DOI: 10.1007/s13402-022-00696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/03/2022] Open
Abstract
PURPOSE Although epidermal growth factor receptor (EGFR)-activating mutations in non-small cell lung cancer (NSCLC) usually show sensitivity to first-generation EGFR-tyrosine kinase inhibitors (TKIs), most patients relapse because of drug resistance. Heat shock protein 27 (HSP27) has been reported to be involved in the resistance of EGFR-TKIs, although the underlying mechanism is unclear. Here, we explore the mechanisms of HSP27-mediated EGFR TKI resistance and propose novel therapeutic strategies. METHODS To determine the mechanism of HSP27 associated gefitinib resistance, differences were assessed using gefitinib-sensitive and -resistant NSCLC cell lines. In vivo xenograft experiments were conducted to elucidate the combinatorial effects of J2, a small molecule HSP27 inhibitor, and gefitinib. Analyses of human NSCLC tissues and PDX tissues were also used for comparison of HSP27 and phosphorylated AKT expression. RESULTS Large-scale cohort analysis of NSCLC cases revealed that HSP27 expression correlated well with the incidence of EGFR mutations and affected patient survival. Increased pAKT and HSP27 was observed in gefitinib-resistant cells compared with gefitinib-sensitive cells. Moreover, increased phosphorylation of HSP27 by gefitinib augmented its protein stability and potentiated its binding activity with pAKT, which resulted in increased gefitinib resistance. However, in gefitinib-sensitive cells, stronger binding activity between EGFR and HSP27 was observed. Moreover, these phenomena occurred regardless of EGFR mutation including secondary mutations, such as T790M. AKT knockdown switched HSP27-pAKT binding to HSP27-EGFR, which promoted gefitinib sensitivity in gefitinib-resistant cells. Functional inhibition of HSP27 yielded sensitization to gefitinib in gefitinib-resistant cells by inhibiting the interaction between HSP27 and pAKT. CONCLUSIONS Our results indicate that combination of EGFR-TKIs with HSP27 inhibitors may represent a good strategy to overcome resistance to EGFR-TKIs, especially in cancers exhibiting AKT pathway activation.
Collapse
|
9
|
Wakasa H, Tsugami Y, Koyama T, Han L, Nishimura T, Isobe N, Kobayashi K. Adverse Effects of High Temperature On Mammary Alveolar Development In Vitro. J Mammary Gland Biol Neoplasia 2022; 27:155-170. [PMID: 35581442 DOI: 10.1007/s10911-022-09518-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/26/2022] [Indexed: 10/18/2022] Open
Abstract
In the mammary glands during pregnancy, the alveolar buds are first branched from the mammary ducts after which they form the alveolar luminal structure for milk production postparturition. Body temperature could increase for several reasons, such as infectious disease and heat stress. We have previously reported that high temperature adversely effects on the lactation capacity of mouse mammary epithelial cells (MECs). However, it remains unclear how high temperature influences mammary morophogenesis during pregnancy. In this study, we investigated the effects of high temperature on this mammary alveolar development process using two types of culture models including embedded organoids of MECs in Matrigel; these models reproduced mammary alveolar bud induction and alveolar luminal formation. Results showed that a culture temperature of 41 °C repressed alveolar bud induction and inhibited alveolar luminal formation. In addition, the treatment at 41 °C decreased the number of proliferating mammary epithelial cells but did not affect cell migration. Levels of phosphorylated Akt, -ERK1/2, -HSP90, and -HSP27 were increased in organoids cultured at 41 °C. The specific inhibitors of HSP90 and HSP27 exacerbated the disruption of organoids at 41 °C but not at 37 °C. Furthermore, the organoids precultured at 37 and 41 °C in the alveolar luminal formation model showed differences in the expression levels of caseins and tight junction proteins, which express in MECs in lactating mammary glands, after induction of MEC differentiation by prolactin and dexamethasone treatment in vitro. These results suggest that elevated temperature directly hinders mammary alveolar development; however, heat shock proteins may mitigate the adverse effects of high temperatures.
Collapse
Affiliation(s)
- Haruka Wakasa
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Yusaku Tsugami
- Laboratory of Animal Histophysiology, Graduate School of Integrated Science for Life Faculty of Applied Biological Science, Hiroshima University, 1-4-4, Kagamiyama, 739-8528, Higashi-Hiroshima, Japan
| | - Taku Koyama
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Liang Han
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan
| | - Naoki Isobe
- Laboratory of Animal Histophysiology, Graduate School of Integrated Science for Life Faculty of Applied Biological Science, Hiroshima University, 1-4-4, Kagamiyama, 739-8528, Higashi-Hiroshima, Japan
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| |
Collapse
|
10
|
The role of heat shock proteins in neoplastic processes and the research on their importance in the diagnosis and treatment of cancer. Contemp Oncol (Pozn) 2021; 25:73-79. [PMID: 34667432 PMCID: PMC8506434 DOI: 10.5114/wo.2021.106006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/09/2021] [Indexed: 12/20/2022] Open
Abstract
Heat shock proteins (HSPs) are chaperones with highly conservative primary structure, necessary in the processes of protein folding to the most energetically advantageous conformation and maintaining their stability. HSPs perform a number of important functions in various cellular processes and are capable of modulating pathophysiological conditions at the cellular and systemic levels. An example is the high level of HSP expression in neoplastic tissues, which disrupts the apoptosis of transformed cells and promotes the processes of proliferation, invasion, and metastasis. In addition, an increasing amount of information is appearing about the participation of HSPs in the formation of multidrug resistance.This paper provides a review of the current state of research on the fundamental importance as well as the diagnostic and prognostic role of various classes of HSP in cancer treatment. It presents the prospects for using HSPs as biological markers of disease progression and targets in various cancer treatment strategies. However, the need for additional research is quite high. Only numerous joint efforts of research groups will allow the effective use of HSPs as a tool to combat cancer.
Collapse
|
11
|
Oh A, Jeon S, Jeong MG, Kim HK, Kang J, Lee YS, Hwang ES. HSPB1 inhibitor J2 attenuates lung inflammation through direct modulation of Ym1 production and paracrine signaling. Biomed Pharmacother 2021; 143:112225. [PMID: 34649353 DOI: 10.1016/j.biopha.2021.112225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 01/09/2023] Open
Abstract
Heat shock protein beta-1 (HSPB1) is a multifaceted protein that controls cellular stress, modulates cell differentiation and development, and inhibits apoptosis of cancer cells. Increased HSPB1 expression is highly associated with poor outcomes in lung cancer by enhancing cell migration and invasion; therefore, targeting HSPB1 may be a promising therapeutic for lung cancer and fibrosis. Although the HSPB1 inhibitor J2 has been reported to exhibit potent antifibrotic effects, it remains unclear whether and how J2 directly modulates inflammatory immune responses in pulmonary fibrosis. In this study, we found that J2 potently attenuated irradiation or bleomycin-induced pulmonary fibrosis by significantly inhibiting the infiltration and activation of T cells and macrophages. J2 inhibited T-cell proliferation and subsequently suppressed T helper cell development. Although there was no significant effect of J2 on cell proliferation of M1 and M2 macrophages, J2 specifically increased the expression of Ym1 in M2 macrophages without affecting the expression of other M2 markers. Interestingly, J2 increased lysosomal degradation of HSPB1 and inhibited HSPB1-induced repression of signal transducer and activator of transcription 6 (STAT6), which simultaneously increased STAT6 and Ym1 expression. Ym1 production and secretion by J2-treated M2 macrophages substantially decreased IL-8 production by airway epithelial cells in vitro and in vivo, resulting in attenuation of airway inflammation. Taken together, we suggest that J2 has potential as a therapeutic agent for pulmonary fibrosis with increased HSPB1 expression through direct immune suppression by Ym1 production by M2 macrophages as well as T-cell suppression.
Collapse
Affiliation(s)
- Areum Oh
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Seulgi Jeon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Jio Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Yun-Sil Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
12
|
Drug-Like Small Molecule HSP27 Functional Inhibitor Sensitizes Lung Cancer Cells to Gefitinib or Cisplatin by Inducing Altered Cross-Linked Hsp27 Dimers. Pharmaceutics 2021; 13:pharmaceutics13050630. [PMID: 33925114 PMCID: PMC8145107 DOI: 10.3390/pharmaceutics13050630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022] Open
Abstract
Relationships between heat shock protein 27 (HSP27) and cancer aggressiveness, metastasis, drug resistance, and poor patient outcomes in various cancer types including non-small cell lung cancer (NSCLC) were reported, and inhibition of HSP27 expression is suggested to be a possible strategy for cancer therapy. Unlike HSP90 or HSP70, HSP27 does not have an ATP-binding pocket, and no effective HSP27 inhibitors have been identified. Previously, NSCLC cancer cells were sensitized to radiation and chemotherapy when co-treated with small molecule HSP27 functional inhibitors such as zerumbone (ZER), SW15, and J2 that can induce abnormal cross-linked HSP27 dimer. In this study, cancer inhibition effects of NA49, a chromenone compound with better solubility, longer circulation time, and less toxicity than J2, were examined in combination with anticancer drugs such as cisplatin and gefitinib in NSCLC cell lines. When the cytotoxic drug cisplatin was treated in combination with NA49 in epidermal growth factor receptors (EGFRs) WT cell lines, sensitization was induced in an HSP27 expression-dependent manner. With gefitinib treatment, NA49 showed increased combination effects in both EGFR WT and Mut cell lines, also with HSP27 expression-dependent patterns. Moreover, NA49 induced sensitization in EGFR Mut cells with a secondary mutation of T790M when combined with gefitinib. Augmented tumor growth inhibition was shown with the combination of cisplatin or gefitinib and NA49 in nude mouse xenograft models. These results suggest the combination of HSP27 inhibitor NA49 and anticancer agents as a candidate for overcoming HSP27-mediated drug resistance in NSCLC patients.
Collapse
|
13
|
Simon S, Aissat A, Degrugillier F, Simonneau B, Fanen P, Arrigo AP. Small Hsps as Therapeutic Targets of Cystic Fibrosis Transmembrane Conductance Regulator Protein. Int J Mol Sci 2021; 22:ijms22084252. [PMID: 33923911 PMCID: PMC8072646 DOI: 10.3390/ijms22084252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Human small heat shock proteins are molecular chaperones that regulate fundamental cellular processes in normal and pathological cells. Here, we have reviewed the role played by HspB1, HspB4 and HspB5 in the context of Cystic Fibrosis (CF), a severe monogenic autosomal recessive disease linked to mutations in Cystic Fibrosis Transmembrane conductance Regulator protein (CFTR) some of which trigger its misfolding and rapid degradation, particularly the most frequent one, F508del-CFTR. While HspB1 and HspB4 favor the degradation of CFTR mutants, HspB5 and particularly one of its phosphorylated forms positively enhance the transport at the plasma membrane, stability and function of the CFTR mutant. Moreover, HspB5 molecules stimulate the cellular efficiency of currently used CF therapeutic molecules. Different strategies are suggested to modulate the level of expression or the activity of these small heat shock proteins in view of potential in vivo therapeutic approaches. We then conclude with other small heat shock proteins that should be tested or further studied to improve our knowledge of CFTR processing.
Collapse
Affiliation(s)
- Stéphanie Simon
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France; (A.A.); (F.D.); (B.S.); (P.F.)
- Correspondence:
| | - Abdel Aissat
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France; (A.A.); (F.D.); (B.S.); (P.F.)
- Département de Génétique, AP-HP, Henri Mondor Hospital, F-94010 Creteil, France
| | - Fanny Degrugillier
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France; (A.A.); (F.D.); (B.S.); (P.F.)
| | - Benjamin Simonneau
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France; (A.A.); (F.D.); (B.S.); (P.F.)
| | - Pascale Fanen
- INSERM, IMRB, Paris Est Creteil University, F-94010 Creteil, France; (A.A.); (F.D.); (B.S.); (P.F.)
- Département de Génétique, AP-HP, Henri Mondor Hospital, F-94010 Creteil, France
| | - André-Patrick Arrigo
- Apoptosis, Cancer and Development Laboratory, Lyon Cancer Research Center, INSERM U1052-CNRS UMR5286, Claude Bernard University Lyon 1, Centre Léon Bérard, F-69008 Lyon, France;
| |
Collapse
|
14
|
Small Heat Shock Proteins in Cancers: Functions and Therapeutic Potential for Cancer Therapy. Int J Mol Sci 2020; 21:ijms21186611. [PMID: 32927696 PMCID: PMC7555140 DOI: 10.3390/ijms21186611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Small heat shock proteins (sHSPs) are ubiquitous ATP-independent chaperones that play essential roles in response to cellular stresses and protein homeostasis. Investigations of sHSPs reveal that sHSPs are ubiquitously expressed in numerous types of tumors, and their expression is closely associated with cancer progression. sHSPs have been suggested to control a diverse range of cancer functions, including tumorigenesis, cell growth, apoptosis, metastasis, and chemoresistance, as well as regulation of cancer stem cell properties. Recent advances in the field indicate that some sHSPs have been validated as a powerful target in cancer therapy. In this review, we present and highlight current understanding, recent progress, and future challenges of sHSPs in cancer development and therapy.
Collapse
|
15
|
Zou T, Liu JY, She L, Yin JY, Li X, Li XP, Zhou HH, Chen J, Liu ZQ. The Association Between Heat-Shock Protein Polymorphisms and Prognosis in Lung Cancer Patients Treated With Platinum-Based Chemotherapy. Front Pharmacol 2020; 11:1029. [PMID: 32848724 PMCID: PMC7396685 DOI: 10.3389/fphar.2020.01029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022] Open
Abstract
Objective Lung cancer is one of the most prevalent cancers and the leading cause of cancer-related death in the world. Platinum-based chemotherapy plays an important role in lung cancer treatment, but the therapeutic effect varies from person to person. Heat shock proteins (HSPs) have been reported to be associated with the survival time of lung cancer patients, which may be a potential biomarker in lung cancer treatment. The aim of this study was to investigate the association between genetic polymorphisms and the prognosis in lung cancer patients treated with platinum-based chemotherapy. Methods We performed genotyping in 19 single nucleotide polymorphisms (SNPs) of HSP genes and Rho family genes of 346 lung cancer patients by SequenomMassARRAY. We used Cox proportional hazard models, state and plink to analyze the associations between SNPs and the prognosis of lung cancer patients. Results We found that the polymorphisms of HSPB1 rs2070804 and HSPA4 rs3088225 were significantly associated with lung cancer survival (p=0.015, p=0.049*, respectively). We also discovered the statistically significant differences between rs2070804 with age, gender, histology and stage, rs3088225 with gender and stage, which can affect lung cancer prognosis. Conclusion The results of our study suggest that HSPB1 rs2070804 (G>T) and HSPA4 rs3088225 (A>G) may be useful biomarkers for predicting the prognosis of lung cancer patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Ting Zou
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jun-Yan Liu
- Department of Orthopaedics, The First Affiliated Hospital of the University of South China, Hengyang, China
| | - Li She
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang-Ping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
16
|
Hoter A, Rizk S, Naim HY. The Multiple Roles and Therapeutic Potential of Molecular Chaperones in Prostate Cancer. Cancers (Basel) 2019; 11:cancers11081194. [PMID: 31426412 PMCID: PMC6721600 DOI: 10.3390/cancers11081194] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common cancer types in men worldwide. Heat shock proteins (HSPs) are molecular chaperones that are widely implicated in the pathogenesis, diagnosis, prognosis, and treatment of many cancers. The role of HSPs in PCa is complex and their expression has been linked to the progression and aggressiveness of the tumor. Prominent chaperones, including HSP90 and HSP70, are involved in the folding and trafficking of critical cancer-related proteins. Other members of HSPs, including HSP27 and HSP60, have been considered as promising biomarkers, similar to prostate-specific membrane antigen (PSMA), for PCa screening in order to evaluate and monitor the progression or recurrence of the disease. Moreover, expression level of chaperones like clusterin has been shown to correlate directly with the prostate tumor grade. Hence, targeting HSPs in PCa has been suggested as a promising strategy for cancer therapy. In the current review, we discuss the functions as well as the role of HSPs in PCa progression and further evaluate the approach of inhibiting HSPs as a cancer treatment strategy.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Sandra Rizk
- School of Arts and Sciences, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
17
|
Targeting Heat Shock Protein 27 in Cancer: A Druggable Target for Cancer Treatment? Cancers (Basel) 2019; 11:cancers11081195. [PMID: 31426426 PMCID: PMC6721579 DOI: 10.3390/cancers11081195] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/13/2022] Open
Abstract
Heat shock protein 27 (HSP27), induced by heat shock, environmental, and pathophysiological stressors, is a multi-functional protein that acts as a protein chaperone and an antioxidant. HSP27 plays a significant role in the inhibition of apoptosis and actin cytoskeletal remodeling. HSP27 is upregulated in many cancers and is associated with a poor prognosis, as well as treatment resistance, whereby cells are protected from therapeutic agents that normally induce apoptosis. This review highlights the most recent findings and role of HSP27 in cancer, as well as the strategies for using HSP27 inhibitors for therapeutic purposes.
Collapse
|
18
|
Kim JY, Jeon S, Yoo YJ, Jin H, Won HY, Yoon K, Hwang ES, Lee YJ, Na Y, Cho J, Lee YS. The Hsp27-Mediated IkBα-NFκB Signaling Axis Promotes Radiation-Induced Lung Fibrosis. Clin Cancer Res 2019; 25:5364-5375. [DOI: 10.1158/1078-0432.ccr-18-3900] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/12/2019] [Accepted: 05/21/2019] [Indexed: 11/16/2022]
|
19
|
Xu L, Lin X, Zheng Y, Zhou H. Silencing of heat shock protein 27 increases the radiosensitivity of non‑small cell lung carcinoma cells. Mol Med Rep 2019; 20:613-621. [PMID: 31115576 PMCID: PMC6580021 DOI: 10.3892/mmr.2019.10263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 02/28/2019] [Indexed: 01/04/2023] Open
Abstract
Radiotherapy is a useful treatment for malignant tumors, including lung carcinoma; however, non‑small cell lung carcinoma (NSCLC) is frequently insensitive to radiation. It has been reported that heat shock protein 27 (HSPB1) is a radioresistance‑associated protein in nasopharyngeal carcinoma. In the present study, the role of HSPB1 in NSCLC cells induced by irradiation was investigated. The viability of cells was determined by a Cell Counting Kit‑8 assay. The apoptotic activity, cell cycle distribution and mitochondrial membrane potential (MMP) of cells were evaluated via flow cytometry. Reverse transcription‑quantitative polymerase chain reaction and western blot analyses were employed to measure the expression of various genes and proteins. It was observed that knockdown of HSPB1 with small interfering RNA (si‑HSPB1) markedly decreased the viability of A549 NSCLC cells and induced cell cycle arrest in the G2/M phase following exposure to 6 Gy irradiation. Furthermore, it was revealed that si‑HSPB1 significantly downregulated cyclin B1 and cyclin G1 expression. Additionally, si‑HSPB1 promoted apoptosis and depolarized the MMP of cells exposed to 6 Gy irradiation. The expression levels of B‑cell lymphoma‑2 (Bcl‑2), mitochondrial cytochrome c (cyto c) and pro‑caspase‑8 were downregulated, whereas those of Bcl‑2 associated X protein (Bax), cytosolic cyto c and cleaved‑caspase‑8 were upregulated. Collectively, silencing of HSPB1 increased the radiosensitivity of NSCLC cells by reducing cell viability, depolarizing the MMP, arresting the cell cycle in the G2/M phase and promoting cell apoptosis. Therefore, HSPB1 may be a novel target for increasing radiosensitivity in the treatment of NSCLC.
Collapse
Affiliation(s)
- Liping Xu
- Department of Respiratory Disease, Jiangshan People's Hospital, Jiangshan, Zhejiang 324100, P.R. China
| | - Xuemei Lin
- Department of Respiratory Disease, Jiangshan People's Hospital, Jiangshan, Zhejiang 324100, P.R. China
| | - Yihua Zheng
- Department of Respiratory Disease, Jiangshan People's Hospital, Jiangshan, Zhejiang 324100, P.R. China
| | - Hua Zhou
- Department of Respiratory Disease, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|
20
|
Jo H, Hee Seo S, Na Y, Kwon Y. The synthesis and anticancer activities of chiral epoxy-substituted chromone analogs. Bioorg Chem 2018; 84:347-354. [PMID: 30530076 DOI: 10.1016/j.bioorg.2018.11.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/24/2018] [Accepted: 11/29/2018] [Indexed: 12/25/2022]
Abstract
Human DNA topoisomerases (topos) have been recognized as a good target molecule for the development of anticancer drugs because they play an important role in solving DNA topological problems caused by DNA strand separation during replication and transcription. In this study, we designed and synthesized 11 novel chromone backbone compounds possessing epoxy and halohydrin substituents with chirality. In the topos inhibition test, compounds 2, 9, 10, and 11 showed comparable topo I inhibitory activity at concentration of 100 μM compared to camptothecin, and all of the synthesized compounds showed moderate topo IIα inhibitory activity. Among them, compounds 9, 10 and 11 were more potent than the others in both topo I and IIα inhibitory activity. Compound 11 showed the most potent cell antiproliferative activity against all tested cancer cell lines with particularly strong inhibition (an IC50 of 0.04 µM) of K562 myelogenous leukemia cancer cell proliferation. In the brief structure-activity relationship analysis, there was no clear correlation between stereochemistry and topos inhibitory and cytotoxic activity. 5(R),7(S)-bisepoxy-substituted compound 11 was the most potent DNA cross-linker and induced G2/M arrest in a cell cycle assay in a dose- and time-dependent manner. After the treatment time period induced apoptosis in K562 cells without increasing G2/M-phase cells. Overall, compound 11 showed good consistent inhibitory biological activity related to cancer cell proliferation.
Collapse
Affiliation(s)
- Hyunji Jo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Seung Hee Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon 487-010, Republic of Korea.
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
21
|
Domínguez-Pérez M, Simoni-Nieves A, Rosales P, Nuño-Lámbarri N, Rosas-Lemus M, Souza V, Miranda RU, Bucio L, Uribe Carvajal S, Marquardt JU, Seo D, Gomez-Quiroz LE, Gutiérrez-Ruiz MC. Cholesterol burden in the liver induces mitochondrial dynamic changes and resistance to apoptosis. J Cell Physiol 2018; 234:7213-7223. [PMID: 30239004 DOI: 10.1002/jcp.27474] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a broad spectrum of histopathological changes ranging from non-inflammatory intracellular fat deposition to non-alcoholic steatohepatitis (NASH), which may progress into hepatic fibrosis, cirrhosis, or hepatocellular carcinoma. Recent data suggest that impaired hepatic cholesterol homeostasis and its accumulation are relevant to the pathogenesis of NAFLD/NASH. Despite a vital physiological function of cholesterol, mitochondrial dysfunction is an important consequence of dietary-induced hypercholesterolemia and was, subsequently, linked to many pathophysiological conditions. The aim in the current study was to evaluate the morphological and molecular changes of cholesterol overload in mouse liver and particularly, in mitochondria, induced by a high-cholesterol (HC) diet for one month. Histopathological studies revealed microvesicular hepatic steatosis and significantly elevated levels of liver cholesterol and triglycerides leading to impaired liver synthesis. Further, high levels of oxidative stress could be determined in liver tissue as well as primary hepatocyte culture. Transcriptomic changes induced by the HC diet involved disruption in key pathways related to cell death and oxidative stress as well as upregulation of genes related to glutathione homeostasis. Impaired liver function could be associated with a decrease in mitochondrial membrane potential and ATP content and significant alterations in mitochondrial dynamics. We demonstrate that cholesterol overload in the liver leads to mitochondrial changes which may render damaged hepatocytes proliferative and resistant to cell death whereby perpetuating liver damage.
Collapse
Affiliation(s)
- Mayra Domínguez-Pérez
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, CBS Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México.,Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México.,Laboratorio de Genómica de Enfermedades Cardiovasculares, Instituto Nacional de Medicina Genómica, Mexico City, México
| | - Arturo Simoni-Nieves
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, CBS Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México.,Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México
| | - Patricia Rosales
- Posgrado en Biología Experimental, DCBS, Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México
| | - Natalia Nuño-Lámbarri
- Unidad de Investigación Traslacional, Fundación Clínica Médica Sur, Mexico City, Mexico
| | - Mónica Rosas-Lemus
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, México City, Mexico
| | - Verónica Souza
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, CBS Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/ Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Roxana U Miranda
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, CBS Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/ Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Leticia Bucio
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, CBS Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/ Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - Salvador Uribe Carvajal
- Departamento de Genética Molecular, Instituto de Fisiología Celular, UNAM, México City, Mexico
| | - Jens U Marquardt
- First Department of Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Daekwan Seo
- Bioinformatics Department, Macrogen Corp, Rockville, Maryland
| | - Luis E Gomez-Quiroz
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, CBS Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/ Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Laboratorio de Fisiología Celular, Departamento de Ciencias de la Salud, CBS Universidad Autónoma Metropolitana Iztapalapa, Mexico City, México.,Laboratorio de Medicina Experimental, Unidad de Medicina Translacional, Instituto de Investigaciones Biomédicas, UNAM/ Instituto Nacional de Cardiología Ignacio Chavez, Mexico City, Mexico
| |
Collapse
|
22
|
Kim JY, An YM, Yoo BR, Kim JM, Han SY, Na Y, Lee YS, Cho J. HSP27 inhibitor attenuates radiation-induced pulmonary inflammation. Sci Rep 2018; 8:4189. [PMID: 29520071 PMCID: PMC5843649 DOI: 10.1038/s41598-018-22635-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 02/27/2018] [Indexed: 01/22/2023] Open
Abstract
Radiation therapy has been used to treat over 70% of thoracic cancer; however, the method usually causes radiation pneumonitis. In the current study, we investigated the radioprotective effects of HSP27 inhibitor (J2) on radiation-induced lung inflammation in comparison to amifostine. In gross and histological findings, J2 treatment significantly inhibited immune cell infiltration in lung tissue, revealing anti-inflammatory potential of J2. Normal lung volume, evaluated by micro-CT analysis, in J2-treated mice was higher compared to that in irradiated mice. J2-treated mice reversed radiation-induced respiratory distress. However, amifostine did not show significant radioprotective effects in comparison to that of J2. In HSP27 transgenic mice, we observed increased immune cells recruitment and decreased volume of normal lung compared to wild type mice. Increased ROS production and oxidative stress after IR were down-regulated by J2 treatment, demonstrating antioxidant property of J2. The entire data of this study collectively showed that J2 may be an effective therapeutic agent for radiation-induced lung injury.
Collapse
Affiliation(s)
- Jee-Youn Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Min An
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byeong Rok Yoo
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Mo Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Song Yee Han
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon, 487-010, Republic of Korea.
| | - Yun-Sil Lee
- College of Pharmacy and Division of Life and Pharmaceutical Science, Ewha Womans University, Seoul, Republic of Korea.
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|