1
|
Martínez-Aranzales JR, Córdoba-Agudelo M, Pérez-Jaramillo JE. Fecal microbiome and functional prediction profiles of horses with and without crib-biting behavior: A comparative study. J Equine Vet Sci 2024; 142:105198. [PMID: 39306146 DOI: 10.1016/j.jevs.2024.105198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Crib-biting is a stereotyped oral behavior with poorly understood etiology and pathophysiology. The relationship between the gut microbiome and brain function has been described in behavioral disorders such as schizophrenia, depression and anxiety in humans. In horses, studies of behavioral problems and the microbiome are very limited. This study aimed to characterize the fecal microbiome and the predicted functional profile of horses with and without aerophagia. Fecal samples were collected from 12 Colombian Creole Horses of both sexes, divided into two groups: group 1, composed of six horses with crib-biting (3 females and 3 males), average body weight of 330 ± 10 kg, age of 7.0 ± 1.2 years and body condition score (BCS) of 5/9 ± 1 and group 2, consisting of six horses without crib-biting (3 females and 3 males), average body weight of 335 ± 5 kg, age 6.5 ± 1 years and BCS of 6/9 ± 1. From each horse in both groups fecal total DNA was obtained and 16S ribosomal RNA gene amplicons were sequenced to characterize the bacterial community structure. Community structure and differential abundance analyses revealed significant differences between the two conditions (p < 0.05). Specifically, the fecal microbiota at the family level in crib-biting horses, showing a decrease in Bacteroidales and an increase in Bacillota and Clostridia, differed from that of healthy horses without crib-biting, consistent with findings from previous studies. Furthermore, metagenome prediction suggests metabolic profile changes in bacterial communities between both conditions in horses. Further studies are required to validate the role of the microbiota-gut-brain axis in the etiology of crib-biting and other abnormal and stereotyped behaviors.
Collapse
Affiliation(s)
- José R Martínez-Aranzales
- Equine Medicine and Surgery Research Line (LIMCE), CENTAURO Research Group, School of Veterinary Medicine, Faculty of Agricultural Sciences, Universidad de Antioquia, Medellin 050010, Colombia.
| | | | - Juan E Pérez-Jaramillo
- Institute of Biology, University of Antioquia, Medellin, Colombia; Unidad de Bioprospección y Estudio de Microbiomas, Programa de Estudio y Control de Enfermedades Tropicales (PECET), Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
2
|
Wang B, Chen SM, Yang SQ, Jiang JM, Zhang P, Zou W, Tang XQ. GDF11 mediates H 2S to prevent chronic stress-induced cognitive impairment by reducing hippocampal NLRP3/caspase-1-dependent pyroptosis. J Affect Disord 2024; 344:600-611. [PMID: 37827256 DOI: 10.1016/j.jad.2023.10.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/17/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND We previously revealed that hydrogen sulfide (H2S) attenuates chronic stress-induced cognitive impairment, but the underlying mechanism needs to be further clarified. Growth differentiation factor 11 (GDF11) plays an important regulatory role in cognitive function and that hippocampal NLRP3/caspase-1-mediated pyroptosis contributes to the pathogenesis of cognitive impairment. Hence, this research aimed to explore whether promoting GDF11 levels and suppressing hippocampal NLRP3/caspase-1-mediated pyroptosis mediate H2S to alleviate chronic stress-induced cognitive impairment. METHODS Sprague-Dawley rats were subjected to unpredictable chronic mild stress lasting four weeks to establish an animal model of chronic stress-induced cognitive impairment. Behavioral performance was assessed by the Y-maze test and the novel object recognition test. The expression levels of proteins were analyzed by Western blot analysis. The levels of IL-1β and IL-18 in the hippocampus were measured by ELISA. RESULTS NaHS upregulated the expression of GDF11 in the hippocampus of chronic unpredictable mild stress (CUMS)-exposed rats. Silencing GDF11 blocked NaHS-improved cognitive impairment in CUMS-exposed rats, according to the Y-maze test and the novel object recognition test. Furthermore, NaHS mitigated NLRP3/caspase-1-mediated pyroptosis in the hippocampus of CUMS-exposed rats and this effect was reversed by silencing GDF11. Moreover, overexpression of GDF11 alleviated CUMS-induced cognitive impairment and NLRP3/caspase-1-mediated hippocampal pyroptosis. CONCLUSIONS GDF11 mediates H2S to attenuate chronic stress-induced cognitive impairment via inhibiting hippocampal NLRP3/caspase-1-mediated pyroptosis.
Collapse
Affiliation(s)
- Bo Wang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China; The First Affiliated Hospital, Institute of Anesthesiology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Si-Min Chen
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - San-Qiao Yang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Jia-Mei Jiang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Wei Zou
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China.
| | - Xiao-Qing Tang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China; Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China; The Second Affiliated Hospital, Institute of Cerebral Disease, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
3
|
Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, Gasanov M. The Role of Hydrogen Sulfide in Regulation of Cell Death following Neurotrauma and Related Neurodegenerative and Psychiatric Diseases. Int J Mol Sci 2023; 24:10742. [PMID: 37445920 DOI: 10.3390/ijms241310742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Injuries of the central (CNS) and peripheral nervous system (PNS) are a serious problem of the modern healthcare system. The situation is complicated by the lack of clinically effective neuroprotective drugs that can protect damaged neurons and glial cells from death. In addition, people who have undergone neurotrauma often develop mental disorders and neurodegenerative diseases that worsen the quality of life up to severe disability and death. Hydrogen sulfide (H2S) is a gaseous signaling molecule that performs various cellular functions in normal and pathological conditions. However, the role of H2S in neurotrauma and mental disorders remains unexplored and sometimes controversial. In this large-scale review study, we examined the various biological effects of H2S associated with survival and cell death in trauma to the brain, spinal cord, and PNS, and the signaling mechanisms underlying the pathogenesis of mental illnesses, such as cognitive impairment, encephalopathy, depression and anxiety disorders, epilepsy and chronic pain. We also studied the role of H2S in the pathogenesis of neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, we reviewed the current state of the art study of H2S donors as neuroprotectors and the possibility of their therapeutic uses in medicine. Our study showed that H2S has great neuroprotective potential. H2S reduces oxidative stress, lipid peroxidation, and neuroinflammation; inhibits processes associated with apoptosis, autophagy, ferroptosis and pyroptosis; prevents the destruction of the blood-brain barrier; increases the expression of neurotrophic factors; and models the activity of Ca2+ channels in neurotrauma. In addition, H2S activates neuroprotective signaling pathways in psychiatric and neurodegenerative diseases. However, high levels of H2S can cause cytotoxic effects. Thus, the development of H2S-associated neuroprotectors seems to be especially relevant. However, so far, all H2S modulators are at the stage of preclinical trials. Nevertheless, many of them show a high neuroprotective effect in various animal models of neurotrauma and related disorders. Despite the fact that our review is very extensive and detailed, it is well structured right down to the conclusions, which will allow researchers to quickly find the proper information they are interested in.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Tushev
- Neurosurgical Department, Rostov State Medical University Clinic, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinic Therapy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| |
Collapse
|
4
|
Silent information regulator 1 mediates H 2 S-inhibited chronic restraint stress-induced depressive-like behaviors by regulating hippocampal autophagy. Neuroreport 2023; 34:128-136. [PMID: 36728843 DOI: 10.1097/wnr.0000000000001870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Our previous study has demonstrated that hydrogen sulfide (H 2 S), a novel gasotransmitter, attenuates excessive autophagy and depressive-like behaviors in chronic restraint stress (CRS)-exposed rats, but the underlying molecular mechanism remains to be elucidated. Silent information regulator 1 (SIRT1), a deacetylase at the consumption of NAD+ plays an important regulatory role in depression. Hence, this study aimed to investigate whether SIRT1 mediates the protective effect of H 2 S on CRS-induced depressive-like behaviors by regulating hippocampal autophagy. METHODS Adult male Sprague-Dawley (SD) rats were subjected to CRS (6 h × 28 days) to induce depression-like behavior. Rats were injected with sodium hydrosulfate (NaHS, 100 μmol/kg/d, i.p.), as a donor of H 2 S, alone or in combination with Sirtinol (a SIRT1 inhibitor; 10 nmol, i.c.v.) during CRS process. The depression-like characteristics of rats were assessed by the novelty-suppressed feeding test (NSFT), tail suspension test (TST), forced swimming test (FST) and open field test (OFT). The number of hippocampal autophagosomes was detected by transmission electron microscopy. The expressions of hippocampal autophagy-related proteins were measured by western blotting analysis. RESULTS Sirtinol blocked the inhibitory effect of H 2 S on depressive-like behaviors in CRS-exposed rats according to NSFT, TST, FST and OFT. In addition, sirtinol reversed the protective response of H 2 S to CRS-induced excessive autophagy, as proved by the increases in the number of autophagosomes and the expression of Beclin-1 as well as a decrease in the expression of P62 in the hippocampus. CONCLUSION These results indicated that SIRT1 contributes to the antidepressant-like function of H 2 S during CRS via reducing hippocampal autophagy.
Collapse
|
5
|
Hydrogen Sulfide Attenuates the Cognitive Dysfunction in Parkinson's Disease Rats via Promoting Hippocampal Microglia M2 Polarization by Enhancement of Hippocampal Warburg Effect. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2792348. [PMID: 35028004 PMCID: PMC8752224 DOI: 10.1155/2022/2792348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/06/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023]
Abstract
Identification of innovative therapeutic targets for the treatment of cognitive impairment in Parkinson's disease (PD) is urgently needed. Hydrogen sulfide (H2S) plays an important role in cognitive function. Therefore, this work is aimed at investigating whether H2S attenuates the cognitive impairment in PD and the underlying mechanisms. In the rotenone- (ROT-) established PD rat model, NaHS (a donor of H2S) attenuated the cognitive impairment and promoted microglia polarization from M1 towards M2 in the hippocampus of PD rats. NaHS also dramatically upregulated the Warburg effect in the hippocampus of PD rats. 2-Deoxyglucose (2-DG, an inhibitor of the Warburg effect) abolished NaHS-upregulated Warburg effect in the hippocampus of PD rats. Moreover, the inhibited hippocampal Warburg effect by 2-DG abrogated H2S-excited the enhancement of hippocampal microglia M2 polarization and the improvement of cognitive function in ROT-exposed rats. Our data demonstrated that H2S inhibits the cognitive dysfunction in PD via promoting microglia M2 polarization by enhancement of hippocampal Warburg effect.
Collapse
|
6
|
Wang H, Huang H, Jiang N, Zhang Y, Lv J, Liu X. Tenuifolin ameliorates chronic restraint stress-induced cognitive impairment in C57BL/6J mice. Phytother Res 2022; 36:1402-1412. [PMID: 35129236 DOI: 10.1002/ptr.7402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/07/2022] [Accepted: 01/15/2022] [Indexed: 12/31/2022]
Abstract
The general consensus is that stress affects the central nervous system and can lead to cognitive problems. The root of Polygala tenuifolia (P. tenuifolia) is a well-known traditional Chinese medicine used for improving brain function. Tenuifolin (TEN) is the major constituent of P. tenuifolia and has a promising neuroprotective property. The purpose of this study was to investigate the alleviating effect of TEN on cognitive impairment induced by chronic restraint stress (CRS) and its mechanism. Our results showed that CRS exposure resulted in impaired cognitive performance in C57BL/6J mice, as indicated by decreased responses in Y-maze, novel objects recognition, and step-through passive avoidance tests. TEN treated daily orally (10 and 20 mg/kg) for 30 days reversed these behavior changes. Meanwhile, TEN could significantly regulate interleukin (IL)-6 and IL-10 levels in the hippocampus. TEN inhibited the toll-like receptor 4/nuclear factor-kappa B-mediated inflammation, as well as adrenocorticotropic hormone and corticosterone levels in serum. Most importantly, we found that TEN also upregulated the expressions of brain-derived neurotrophic factor, tropomyosin kinase B, glucocorticoid receptor, glutamate receptor 1, and synapse-associated proteins. Collectively, these data suggest that TEN has a potential improvement effect on memory loss caused by CRS.
Collapse
Affiliation(s)
- Haixia Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.,Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Huang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiwen Zhang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Lv
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinmin Liu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Gao S, Tang YY, Jiang L, Lan F, Li X, Zhang P, Zou W, Chen YJ, Tang XQ. H 2S Attenuates Sleep Deprivation-Induced Cognitive Impairment by Reducing Excessive Autophagy via Hippocampal Sirt-1 in WISTAR RATS. Neurochem Res 2021; 46:1941-1952. [PMID: 33914232 DOI: 10.1007/s11064-021-03314-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/05/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022]
Abstract
Sleep deprivation (SD) is widespread in society causing serious damage to cognitive function. Hydrogen sulfide (H2S), the third gas signal molecule, plays important regulatory role in learning and memory functions. Inhibition of excessive autophagy and upregulation of silent information regulator 1 (Sirt-1) have been reported to prevent cognitive dysfunction. Therefore, this present work was to address whether H2S attenuates the cognitive impairment induced by SD in Wistar rats and whether the underlying mechanisms involve in inhibition of excessive autophagy and upregulation of Sirt-1. After treatment with SD for 72 h, the cognitive function of Wistar rats was evaluated by Y-maze, new object recognition, object location, and Morris water maze tests. The results shown that SD-caused cognitive impairment was reversed by treatment with NaHS (a donor of H2S). NaHS also prevented SD-induced hippocampal excessive autophagy, as evidenced by the decrease in autophagosomes, the down-regulation of Beclin1, and the up-regulation of p62 in the hippocampus of SD-exposed Wistar rats. Furthermore, Sirtinol, an inhibitor of Sirt-1, reversed the inhibitory roles of NaHS in SD-induced cognitive impairment and excessive hippocampal autophagy in Wistar rats. Taken together, our results suggested that H2S improves the cognitive function of SD-exposed rats by inhibiting excessive hippocampal autophagy in a hippocampal Sirt-1-dependent way.
Collapse
Affiliation(s)
- Shan Gao
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
| | - Yi-Yun Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
| | - Li Jiang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
| | - Fang Lan
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Xiang Li
- Department of Anesthesiology, the First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China
| | - Ping Zhang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China.
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China.
| | - Wei Zou
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
| | - Yong-Jun Chen
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, 336 E Dongfeng Road, Hengyang, 421001, Hunan, P. R. China
| | - Xiao-Qing Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, 28 W Changsheng Road, Hengyang, 421001, Hunan, P. R. China.
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, 421001, Hunan, P. R. China.
| |
Collapse
|
8
|
Tang QY, Li M, Chen L, Jiang JM, Gao SL, Xiao F, Zou W, Zhang P, Chen YJ. Adiponectin Mediates the Protection of H 2S Against Chronic Restraint Stress-Induced Cognitive Impairment via Attenuating Hippocampal Damage. Front Behav Neurosci 2021; 15:623644. [PMID: 34025367 PMCID: PMC8131522 DOI: 10.3389/fnbeh.2021.623644] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/07/2021] [Indexed: 01/11/2023] Open
Abstract
Emerging evidence shows that chronic restraint stress (CRS) can induce cognitive dysfunction, which involves in hippocampal damage. Our recent research reveals that hydrogen sulfide (H2S), a novel gasotransmitter, protects against CRS-induced cognitive impairment, but the underlying mechanism remains unclear. Adiponectin, the most abundant plasma adipokine, has been shown to elicit neuroprotective property and attenuate cognitive impairment. Hence, the present work was aimed to explore whether adiponectin mediates the protective effect of H2S on CRS-induced cognitive impairment by inhibiting hippocampal damage. Results found that administration of Anti-Acrp30, a neutralizing antibody of adiponectin, obviously reverses sodium hydrosulfide (NaHS, an exogenous H2S donor)-induced the inhibition on CRS-induced cognitive impairment according to Y-maze test, Novel object recognition (NOR) test, and Morris water maze (MWM) test. In addition, Anti-Acrp30 blocked the protective effect of NaHS on hippocampal apoptosis in rats-subjected with CRS as evidenced by the pathological changes in hippocampus tissues in hematoxylin and eosin (HE) staining and the increases in the amount of the condensed and stained to yellowish-brown or brownish yellow neuron nucleuses in terminal deoxynucleotidyl transferase transfer-mediated dUTP nick end-labeling (TUNEL) staining as well as the expression of hippocampal pro-apoptotic protein (Bax), and a decrease in the expression of hippocampal anti-apoptotic protein (Bcl-2). Furthermore, Anti-Acrp30 mitigated the inhibitory effect of NaHS on CRS-induced oxidative stress as illustrated by the up-regulation of malondialdehyde (MDA) content and the down-regulation of superoxide dismutase (SOD) activity and glutathione (GSH) level in the hippocampus. Moreover, Anti-Acrp30 eliminated NaHS-induced the reduction of endoplasmic reticulum (ER) stress-related proteins including binding immunoglobulin protein (BIP), C/EBP homologous protein (CHOP), and Cleaved Caspase-12 expressions in the hippocampus of rats-exposed to CRS. Taken together, these results indicated that adiponectin mediates the protection of H2S against CRS-induced cognitive impairment through ameliorating hippocampal damage.
Collapse
Affiliation(s)
- Qiong-Yan Tang
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Min Li
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Lei Chen
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Jia-Mei Jiang
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Sheng-Lan Gao
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Fan Xiao
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Zou
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Ping Zhang
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Yong-Jun Chen
- Department of Neurology, The Affiliated Nanhua Hospital, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
9
|
Li X, Yu P, Yu Y, Xu T, Liu J, Cheng Y, Yang X, Cui X, Yin C, Liu Y. Hydrogen sulfide ameliorates high glucose-induced pro-inflammation factors in HT-22 cells: Involvement of SIRT1-mTOR/NF-κB signaling pathway. Int Immunopharmacol 2021; 95:107545. [PMID: 33765609 DOI: 10.1016/j.intimp.2021.107545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/05/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Hyperglycemia-induced neuroinflammation promotes the progression of diabetic encephalopathy. Hydrogen sulfide (H2S) exerts anti-inflammatory and neuroprotective activities against neurodegenerative diseases. However, the effects of H2S on hyperglycemia-induced neuroinflammation has not been investigated in neurons. Herein, by using HT-22 neuronal cells, we found that high glucose decreased the levels of endogenous H2S and its catalytic enzyme, cystathionine-β-synthase (CBS). The administration of sodium hydrosulfide (NaHS, a H2S donor) or S-adenosylmethionine (SAMe, an allosteric activator of CBS) restored high glucose-induced downregulation of CBS and H2S levels. Importantly, H2S ameliorated high glucose-induced inflammation in HT-22 cells, evidenced by NaHS or SAMe inhibited the pro-inflammatory cytokines (IL-1β, IL-6, TNF-α) expression in HT-22 cells exposed to high glucose. Furthermore, NaHS or SAMe restored the SIRT1 level and the phosphorylation of mTOR and NF-κB p65 disturbed by high glucose in HT-22 cells, suggesting H2S reversed high glucose-induced alteration of SIRT1-mTOR/NF-κB signaling pathway. Our results demonstrated that exogenous H2S treatment or enhancing endogenous H2S synthesis prevents the inflammatory processes in the neurons with the exposure of high glucose. Therefore, increasing the H2S level using NaHS or SAMe might shed light on the prophylactic treatment of diabetic encephalopathy.
Collapse
Affiliation(s)
- Xinrui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Peiquan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Illawarra Health and Medical Research Institute, School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Ting Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiao Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yuan Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xia Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xiaoying Cui
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD 4113, Australia
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yi Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
10
|
He J, Chen Z, Kang X, Wu L, Jiang JM, Liu SM, Wei HJ, Chen YJ, Zou W, Wang CY, Zhang P. SIRT1 Mediates H 2S-Ameliorated Diabetes-Associated Cognitive Dysfunction in Rats: Possible Involvement of Inhibiting Hippocampal Endoplasmic Reticulum Stress and Synaptic Dysfunction. Neurochem Res 2021; 46:611-623. [PMID: 33534060 DOI: 10.1007/s11064-020-03196-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/27/2022]
Abstract
Diabetes-associated cognitive dysfunction (DACD) characterized by hippocampal injury increases the risk of major cerebrovascular events and death. Endoplasmic reticulum (ER) stress and synaptic dysfunction play vital roles in the pathological process. At present, no specific treatment exists for the prevention and/or the therapy of DACD. We have recently reported that hydrogen sulfide (H2S) exhibits therapeutic potential for DACD, but the underlying mechanism has not been fully elucidated. Silent information regulator 1 (SIRT1) has been shown to play a role in regulating the progression of diabetes and is also indispensable for memory formation and cognitive performance. Hence, the present study was performed to explore whether SIRT1 mediates the protective effect of H2S on streptozotocin (STZ)-induced cognitive deficits, an in vivo rat model of DACD, via inhibiting hippocampal ER stress and synaptic dysfunction. The results showed that administration of NaHS (an exogenous H2S donor) increased the expression of SIRT1 in the hippocampus of STZ-induced diabetic rats. Then, results proved that sirtinol, a special blocker of SIRT1, abrogated the inhibition of NaHS on STZ-induced cognitive deficits, as appraised by Morris water maze test, Y-maze test, and Novel object recognition behavioral test. In addition, administration of NaHS eliminated STZ-induced ER stress as evidenced by the decreases in the expressions of ER stress-related proteins including glucose-regulated protein 78, C/EBP homologous protein, and cleaved caspase-12 in the hippocampus, while these effects of NaHS were also reverted by sirtinol. Furthermore, the NaHS-induced up-regulation of hippocampal synapse-related protein (synapsin-1, SYN1) expression in STZ-induced diabetic rats was also abolished by sirtinol. Taken together, these results demonstrated that SIRT1 mediates the protection of H2S against cognitive dysfunction in STZ-diabetic rats partly via inhibiting hippocampal ER stress and synaptic dysfunction.
Collapse
Affiliation(s)
- Juan He
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Zhuo Chen
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Neurology, Yiyang Center Hospital, Yiyang, 413000, Hunan, People's Republic of China
| | - Xuan Kang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Neurology, the First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Lin Wu
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jia-Mei Jiang
- Department of Neurology, the First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China.
| | - Su-Mei Liu
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Hai-Jun Wei
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
- Department of Neurology, the First Affiliated Hospital, University of South China, No. 69 Chuanshan Road, Hengyang, 421001, Hunan, People's Republic of China
| | - Yong-Jun Chen
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Wei Zou
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Chun-Yan Wang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Ping Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, No. 336, Dongfeng South Road, Hengyang, 421001, Hunan, People's Republic of China.
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China.
| |
Collapse
|
11
|
Li P, Mao WW, Zhang S, Zhang L, Chen ZR, Lu ZD. Sodium hydrosulfide alleviates dexamethasone-induced cell senescence and dysfunction through targeting the miR-22/sirt1 pathway in osteoblastic MC3T3-E1 cells. Exp Ther Med 2021; 21:238. [PMID: 33603846 PMCID: PMC7851607 DOI: 10.3892/etm.2021.9669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/15/2020] [Indexed: 01/30/2023] Open
Abstract
Glucocorticoid-induced osteoporosis is characterized by osteoblastic cell and microarchitecture dysfunction, as well as a loss of bone mass. Cell senescence contributes to the pathological process of osteoporosis and sodium hydrosulfide (NaHS) regulates the potent protective effects through delaying cell senescence. The aim of the present study was to investigate whether senescence could contribute to dexamethasone (Dex)-induced osteoblast impairment and to examine the effect of NaHS on Dex-induced cell senescence and damage. It was found that the levels of the senescence-associated markers, p53 and p21, were markedly increased in osteoblasts exposed to Dex. A p53 inhibitor reversed Dex-induced osteoblast injury, a process that was mitigated by NaHS administration through alleviating osteoblastic cell senescence. MicroRNA (miR)-22 blocked the impact of NaHS on Dex-induced osteoblast damage and senescence through targeting the regulation of Sirtuin 1 (sirt1) expression, as shown by the decreased cell viability and alkaline phosphatase activity, as well as an increased expression of p53 and p21. It was revealed that the sirt1 gene was the target of miR-22 in osteoblastic MC3T3-E1 cells through combining the results of dual luciferase reporter assays and reverse transcription-quantitative PCR, as well as western blot analyses. Silencing of sirt1 abolished the protective effect of NaHS against Dex-associated osteoblast senescence and injury. Taken together, the present study showed that NaHS prevents Dex-induced cell senescence and damage through targeting the miR-22/sirt1 pathway in osteoblastic MC3T3-E1 cells.
Collapse
Affiliation(s)
- Peng Li
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| | - Wei-Wei Mao
- Clinical Skill Center of Yinchuan First People's Hospital, Yinchuan, Ningxia 750001, P.R. China
| | - Shuai Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| | - Liang Zhang
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| | - Zhi-Rong Chen
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| | - Zhi-Dong Lu
- Department of Orthopedics, General Hospital of Ningxia Medical University, Xingqing, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
12
|
Yang H, Tang L, Qu Z, Lei SH, Li W, Wang YH. Hippocampal insulin resistance and the Sirtuin 1 signaling pathway in diabetes-induced cognitive dysfunction. Neural Regen Res 2021; 16:2465-2474. [PMID: 33907035 PMCID: PMC8374594 DOI: 10.4103/1673-5374.313051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the peripheral nervous system, the activation of Sirtuin 1 can improve insulin resistance; however, the role played by Sirtuin 1 in the central nervous system remains unknown. In this study, rat models of diabetes mellitus were generated by a single injection of streptozotocin. At 8 weeks after streptozotocin injection, the Morris water maze test and western blot assays confirmed that the diabetic model rats had learning and memory deficits, insulin resistance, and Sirtuin 1 expression could be detected in the hippocampus. Insulin and the insulin receptor inhibitor S961 were intranasally administered to investigate the regulatory effects of insulin signaling on Sirtuin 1. The results showed that insulin administration improved the impaired cognitive function of diabetic model rats and increased the expression levels of phosphorylated insulin receptor, phosphorylated insulin receptor substrate 1, and Sirtuin 1 in the hippocampus. Conversely, S961 administration resulted in more severe cognitive dysfunction and reduced the expression levels of phosphorylated insulin receptor, phosphorylated insulin receptor substrate 1, and Sirtuin 1. The Sirtuin 1 activator SRT2104 and the inhibitor Sirtinol were injected into the lateral ventricle, which revealed that the activation of Sirtuin 1 increased the expression levels of target of rapamycin complex 1, phosphorylated cAMP-response element-binding protein, and brain-derived neurotrophic factor. Hippocampal dendritic length and spine density also increased in response to Sirtuin 1 activation. In contrast, Sirtinol decreased the expression levels of target of rapamycin complex 1, phosphorylated cAMP-response element-binding protein, and brain-derived neurotrophic factor and damaged the dendritic structure. These findings suggest that the Sirtuin 1 signaling pathway plays an important role in the development of insulin resistance-related cognitive deficits in diabetic rats. This study was approved by the Animal Ethics Welfare Committee of the First Affiliated Hospital of Hunan University of Chinese Medicine (approval No. ZYFY201811207) in November 2018.
Collapse
Affiliation(s)
- Hui Yang
- The First Hospital of Hunan University of Chinese Medicine; Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Lin Tang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Zhan Qu
- School of Nursing, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shi-Hui Lei
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Wei Li
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yu-Hong Wang
- Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
13
|
Chen SM, Li M, Xie J, Li S, Xiang SS, Liu HY, Chen Z, Zhang P, Kuang X, Tang XQ. Hydrogen sulfide attenuates postoperative cognitive dysfunction through promoting the pathway of Warburg effect-synaptic plasticity in hippocampus. Toxicol Appl Pharmacol 2020; 409:115286. [PMID: 33068621 DOI: 10.1016/j.taap.2020.115286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/01/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023]
Abstract
Postoperative cognitive dysfunction (POCD) is deemed to a severe surgical complication without effective treatment. Previous work has confirmed the important modulatory role of hydrogen sulfide (H2S) in cognitive function. This study was proposed to explore whether H2S relieves POCD and the possible mechanisms. We demonstrated that NaHS (a donor of H2S) reversed the inhibited endogenous H2S generation in the hippocampus of postoperative rats. NaHS attenuated the cognitive impairment of postoperative rats in the Y-maze, Novel object recognition, and Morris water maze tests. NaHS enhanced the expressions of synaptic plasticity-related proteins, synapsin-1 and PSD-95, increased the synaptic density, and decreased the destruction of synaptic structures in the hippocampus of postoperative rats. Moreover, NaHS promoted Warburg effect in the hippocampus of postoperative rats, as reflected by increases in the expressions of hexokinase 2, pyruvate kinase M2, lactate dehydrogenase A, and pyruvate dehydrogenase kinase 1, an enhancement in the content of lactate, and a reduction in the expression of pyruvate dehydrogenase. The inhibitor of Warburg effect, 2-Deoxy-D-glucose (2-DG), not only reversed NaHS-enhanced Warburg effect in the hippocampus of postoperative rats, but also significantly abolished NaHS-exerted protective effect on cognitive function. Furthermore, 2-DG reversed NaHS-exerted enhancement in the expressions of synapsin-1 and PSD-95, increase in the synaptic density, and decrease in the destruction of synaptic structures in the hippocampus of postoperative rats. Collectively, these results indicate that H2S alleviates POCD through enhancing hippocampal Warburg effect, which subsequently improves synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Si-Min Chen
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China; Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China
| | - Min Li
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China; Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Juan Xie
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China; Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Sha Li
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China; Department of Anesthesiology, the First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Shi-Shi Xiang
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China; Department of Anesthesiology, the First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Hai-Yao Liu
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China; Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Zhuo Chen
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China; Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Ping Zhang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China; Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang 421001, Hunan, PR China.
| | - Xin Kuang
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China; Department of Anesthesiology, the First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China
| | - Xiao-Qing Tang
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang 421001, Hunan, PR China; Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang 421001, Hunan, PR China.
| |
Collapse
|
14
|
Mach N, Ruet A, Clark A, Bars-Cortina D, Ramayo-Caldas Y, Crisci E, Pennarun S, Dhorne-Pollet S, Foury A, Moisan MP, Lansade L. Priming for welfare: gut microbiota is associated with equitation conditions and behavior in horse athletes. Sci Rep 2020; 10:8311. [PMID: 32433513 PMCID: PMC7239938 DOI: 10.1038/s41598-020-65444-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/04/2020] [Indexed: 12/17/2022] Open
Abstract
We simultaneously measured the fecal microbiota and multiple environmental and host-related variables in a cohort of 185 healthy horses reared in similar conditions during a period of eight months. The pattern of rare bacteria varied from host to host and was largely different between two time points. Among a suite of variables examined, equitation factors were highly associated with the gut microbiota variability, evoking a relationship between gut microbiota and high levels of physical and mental stressors. Behavioral indicators that pointed toward a compromised welfare state (e.g. stereotypies, hypervigilance and aggressiveness) were also associated with the gut microbiota, reinforcing the notion for the existence of the microbiota-gut-brain axis. These observations were consistent with the microbiability of behaviour traits (> 15%), illustrating the importance of gut microbial composition to animal behaviour. As more elite athletes suffer from stress, targeting the microbiota offers a new opportunity to investigate the bidirectional interactions within the brain gut microbiota axis.
Collapse
Affiliation(s)
- Núria Mach
- Animal Genetic and Integrative Biology, INRAE, University of Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France.
| | - Alice Ruet
- PRC, INRAE, CNRS, IFCE, University of Tours, 37380, Nouzilly, France
| | - Allison Clark
- Health Science Department, Open University of Catalonia, 08018, Barcelona, Spain
| | | | - Yuliaxis Ramayo-Caldas
- Animal Genetic and Integrative Biology, INRAE, University of Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France
- Animal Breeding and Genetics Program, Institute for Research and Technology in Food and Agriculture (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Elisa Crisci
- Animal Genetic and Integrative Biology, INRAE, University of Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, 27607, USA
| | - Samuel Pennarun
- US UMR 1426, INRAE, Genomic platform, 31326, Castanet-Tolosan, France
| | - Sophie Dhorne-Pollet
- Animal Genetic and Integrative Biology, INRAE, University of Paris-Saclay, AgroParisTech, 78350, Jouy-en-Josas, France
| | - Aline Foury
- University of Bordeaux, INRAE, NutriNeuro UMR 1286, 33076, Bordeaux, France
| | | | - Léa Lansade
- PRC, INRAE, CNRS, IFCE, University of Tours, 37380, Nouzilly, France
| |
Collapse
|
15
|
Yuan DS, Huang YQ, Fu YJ, Xie J, Huang YL, Zhou SS, Sun PY, Tang XQ. Hydrogen sulfide alleviates cognitive deficiency and hepatic dysfunction in a mouse model of acute liver failure. Exp Ther Med 2020; 20:671-677. [PMID: 32509026 DOI: 10.3892/etm.2020.8680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
Acute liver failure (ALF) is a devastating clinical syndrome with a high mortality rate if not treated promptly. Previous studies have demonstrated the beneficial effects of hydrogen sulfide (H2S) on the brain and liver. The present study aimed to investigate the potential protective effects of H2S in ALF. A mouse model of ALF was established following treatment with thioacetamide (TAA). Mice with TAA-induced ALF were intraperitoneally injected with 30 or 100 µmol/kg/day sodium hydrosulfide (NaHS; a H2S donor drug) for two weeks. According to results from novel object recognition and Y-maze tests, in the present study, NaHS treatment alleviated cognitive deficiency and preserved spatial orientation learning ability in TAA-induced ALF mice compared with those of untreated mice. In addition, NaHS treatment reduced serum levels of aspartate transaminase (AST), alanine transaminase (ALT) and the concentration of ammonia compared with those that received control treatment, resulting in weight loss prevention. These findings suggested a beneficial effect of H2S on liver function. In conclusion, results from the present study suggested that H2S treatment may alleviate cognitive deficiency and hepatic dysfunction in mice with ALF, indicating the potential therapeutic benefits of applying H2S for the treatment of ALF.
Collapse
Affiliation(s)
- Da-Sen Yuan
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yue-Qi Huang
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuan-Ji Fu
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Juan Xie
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yuan-Lu Huang
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Shi-Shan Zhou
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Pei-Yuan Sun
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiao-Qing Tang
- Institute of Neuroscience, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
16
|
Tabassum R, Jeong NY, Jung J. Therapeutic importance of hydrogen sulfide in age-associated neurodegenerative diseases. Neural Regen Res 2020; 15:653-662. [PMID: 31638087 PMCID: PMC6975154 DOI: 10.4103/1673-5374.266911] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/27/2019] [Accepted: 08/01/2019] [Indexed: 02/06/2023] Open
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter that acts as an antioxidant and exhibits a wide variety of cytoprotective and physiological functions in age-associated diseases. One of the major causes of age-related diseases is oxidative stress. In recent years, the importance of H2S has become clear, although its antioxidant function has not yet been fully explored. The enzymes cystathionine β-synthase, cystathionine γ-lya-se, and 3-mercaptopyruvate sulfurtransferase are involved in the enzymatic production of H2S. Previously, H2S was considered a neuromodulator, given its role in long-term hippocampal potentiation, but it is now also recognized as an antioxidant in age-related neurodegeneration. Due to aerobic metabolism, the central nervous system is vulnerable to oxidative stress in brain aging, resulting in age-associated degenerative diseases. H2S exerts its antioxidant effect by limiting free radical reactions through the activation of antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase, which protect against the effects of aging by regulating apoptosis-related genes, including p53, Bax, and Bcl-2. This review explores the implications and mechanisms of H2S as an antioxidant in age-associated neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Down syndrome.
Collapse
Affiliation(s)
- Rubaiya Tabassum
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Korea
- Department of Medicine, Graduate School, Dong-A University, Busan, Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, Busan, Korea
- Department of Medicine, Graduate School, Dong-A University, Busan, Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
17
|
Zuo JX, Li M, Jiang L, Lan F, Tang YY, Kang X, Zou W, Wang CY, Zhang P, Tang XQ. Hydrogen Sulfide Prevents Sleep Deprivation-Induced Hippocampal Damage by Upregulation of Sirt1 in the Hippocampus. Front Neurosci 2020; 14:169. [PMID: 32218719 PMCID: PMC7078349 DOI: 10.3389/fnins.2020.00169] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/14/2020] [Indexed: 11/13/2022] Open
Abstract
Sleep deprivation (SD) induces hippocampal damage. Hydrogen sulfide (H2S) is a neuronal protective factor. Silence information regulating factor 1 (Sirt1) plays an important role in neuroprotection. Therefore, this study was aimed at exploring whether H2S meliorates SD-induced hippocampal damage and whether Sirt1 mediates this protective role of H2S. We found that sodium hydrosulfide (NaHS, a donor of H2S) alleviated SD-generated hippocampal oxidative stress, including increases in the activation of SOD and the level of GSH as well as a decrease in the level of MDA. Meanwhile, we found that NaHS reduced SD-exerted hippocampal endoplasmic reticulum (ER) Stress, including downregulations of GRP78, CHOP, and cleaved-caspase-12 expression. Moreover, NaHS reduced the apoptosis in the SD-exposed hippocampus, and this included decreases in the number of apoptotic cells and the activation of caspase-3, downregulation of Bax expression, and upregulation of Bcl-2 expression. NaHS upregulated the expression of Sirt1 in the hippocampus of SD-exposed rats. Furthermore, Sirtinol, the inhibitor of Sirt1, abrogated the protection of NaHS against SD-exerted hippocampal oxidative stress, ER stress, and apoptosis. These results suggested that H2S alleviates SD-induced hippocampal damage by upregulation of hippocampal Sirt1.
Collapse
Affiliation(s)
- Jin-Xi Zuo
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Min Li
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Li Jiang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Fang Lan
- Department of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China.,Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yi-Yun Tang
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Xuan Kang
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China.,Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Zou
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Chun-Yan Wang
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| | - Ping Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Institute of Neurology, The First Affiliated Hospital, University of South China, Hengyang, China.,Department of Physiology, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
18
|
Guan R, Wang J, Cai Z, Li Z, Wang L, Li Y, Xu J, Li D, Yao H, Liu W, Deng B, Lu W. Hydrogen sulfide attenuates cigarette smoke-induced airway remodeling by upregulating SIRT1 signaling pathway. Redox Biol 2020; 28:101356. [PMID: 31704583 PMCID: PMC6854091 DOI: 10.1016/j.redox.2019.101356] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 11/30/2022] Open
Abstract
Airway remodeling is one of the characteristics for chronic obstructive pulmonary disease (COPD). The mechanism underlying airway remodeling is associated with epithelial-mesenchymal transition (EMT) in the small airways of smokers and patients with COPD. Sirtuin 1 (SIRT1) is able to reduce oxidative stress, and to modulate EMT. Here, we investigated the effects and mechanisms of hydrogen sulfide (H2S) on pulmonary EMT in vitro and in vivo. We found that H2S donor NaHS inhibited cigarette smoke (CS)-induced airway remodeling, EMT and collagen deposition in mouse lungs. In human bronchial epithelial 16HBE cells, NaHS treatment also reduced CS extract (CSE)-induced EMT, collagen deposition and oxidative stress. Mechanistically, NaHS upregulated SIRT1 expression, but inhibited activation of TGF-β1/Smad3 signaling in vivo and in vitro. SIRT1 inhibition by a specific inhibitor EX527 significantly attenuated or abolished the ability of NaHS to reverse the CSE-induced oxidative stress. SIRT1 inhibition also abolished the protection of NaHS against CSE-induced EMT. Moreover, SIRT1 activation attenuated CSE-induced EMT by modifying TGF-β1-mediated Smad3 transactivation. In conclusion, H2S prevented CS-induced airway remodeling in mice by reversing oxidative stress and EMT, which was partially ameliorated by SIRT1 activation. These findings suggest that H2S may have therapeutic potential for the prevention and treatment of COPD.
Collapse
Affiliation(s)
- Ruijuan Guan
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhou Cai
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ziying Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lan Wang
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuanyuan Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingyi Xu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Defu Li
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hongwei Yao
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Liu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bingxian Deng
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenju Lu
- State Key Laboratory of Respiratory Diseases, Guangdong Key Laboratory of Vascular Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Wu L, Chen Y, Wang CY, Tang YY, Huang HL, Kang X, Li X, Xie YR, Tang XQ. Hydrogen Sulfide Inhibits High Glucose-Induced Neuronal Senescence by Improving Autophagic Flux via Up-regulation of SIRT1. Front Mol Neurosci 2019; 12:194. [PMID: 31481873 PMCID: PMC6710442 DOI: 10.3389/fnmol.2019.00194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/25/2019] [Indexed: 01/31/2023] Open
Abstract
Hyperglycemia, a key characteristic and risk factor for diabetes mellitus (DM), causes neuronal senescence. Hydrogen sulfide (H2S) is a novel neuroprotectant. The present work was to investigate the potential effect of H2S on hyperglycemia-induced neuronal senescence and the underlying mechanisms. We found that NaHS, a donor of H2S, inhibited high glucose (HG)-induced cellular senescence in HT22 cells (an immortalized mouse hippocampal cell line), as evidenced by a decrease in the number of senescence associated-β-galactosidase (SA-β-gal) positive cells, increase in the growth of cells, and down-regulations of senescence mark proteins, p16INK4a and p21CIP1. NaHS improved the autophagic flux, which is judged by a decrease in the amount of intracellular autophagosome as well as up-regulations of LC3II/I and P62 in HG-exposed HT22 cells. Furthermore, blocked autophagic flux by chloroquine (CQ) significantly abolished NaHS-exerted improvement in the autophagic flux and suppression in the cellular senescence of GH-exposed HT22 cells, which indicated that H2S antagonizes HG-induced neuronal senescence by promoting autophagic flux. We also found that NaHS up-regulated the expression of silent mating type information regulation 2 homolog 1 (SIRT1), an important anti-aging protein, in HG-exposed HT22 cells. Furthermore, inhibition of SIRT1 by sirtinol reversed the protection of H2S against HG-induced autophagic flux blockade and cellular senescence in HT22 cells. These data indicated that H2S protects HT22 cells against HG-induced neuronal senescence by improving autophagic flux via up-regulation of SIRT1, suggesting H2S as a potential treatment strategy for hyperglycemia-induced neuronal senescence and neurotoxicity.
Collapse
Affiliation(s)
- Lei Wu
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Ying Chen
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Department of Pharmacology, The Central Hospital of Hengyang, Hengyang, China
| | - Chun-Yan Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Yi-Yun Tang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Hong-Lin Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China
| | - Xuan Kang
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, China
| | - Xiang Li
- Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, China
| | - Yu-Rong Xie
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology, University of South China, Hengyang, China.,Institute of Neurology, the First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
20
|
Yan X, Zhao F, Zhang S, Lei F, Wang W, Zheng Y. Hydrogen sulfide ameliorates disorders in the parafacial respiratory group region of neonatal rats caused by prenatal cigarette smoke exposure via an antioxidative effect. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:80-90. [PMID: 30878717 DOI: 10.1016/j.etap.2019.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
We previously found that hydrogen sulfide (H2S) ameliorated the dysfunction of central chemoreception caused by prenatal cigarette smoke exposure (CSE). In the present study, we further explored whether the parafacial respiratory group (pFRG) is involved in the protection of central chemoreception by H2S against prenatal CSE-induced injury. We found that NaHS, a donor of H2S, restored the expression of Phox2b, which was downregulated by prenatal CSE, in the pFRG region of neonatal rats. NaHS also relieved the prenatal CSE-induced excitatory synapse disturbance in the pFRG region of neonatal rats. Additionally, NaHS prevented the increase in the malondialdehyde level and suppression of antioxidase activity in the pFRG region of neonatal rats induced by prenatal CSE. Furthermore, NaHS prevented the downregulation of the expression of antioxidases and Nrf2 in the pFRG region of neonatal rats with prenatal CSE. These results suggest that H2S can protect the pFRG of neonatal rats against prenatal CSE-induced injury via an antioxidative effect.
Collapse
Affiliation(s)
- Xiang Yan
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Fusheng Zhao
- Department of Physiology, Mudanjiang Medical University, Mudanjiang, 157011 Heilongjiang, PR China
| | - Senfeng Zhang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Fang Lei
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Wen Wang
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan, PR China
| | - Yu Zheng
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041 Sichuan, PR China.
| |
Collapse
|
21
|
Role of hydrogen sulfide in cognitive deficits: Evidences and mechanisms. Eur J Pharmacol 2019; 849:146-153. [DOI: 10.1016/j.ejphar.2019.01.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 11/23/2022]
|
22
|
Liu Y, Li R, Xie J, Hu J, Huang X, Ren F, Li L. Protective Effect of Hydrogen on Sodium Iodate-Induced Age-Related Macular Degeneration in Mice. Front Aging Neurosci 2018; 10:389. [PMID: 30564112 PMCID: PMC6288204 DOI: 10.3389/fnagi.2018.00389] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Oxidative stress is one of the main causes of AMD. Hydrogen has anti-oxidative stress and apoptotic effects on retinal injury. However, the effect of hydrogen on AMD is not clear. In this study, fundus radiography, OCT, and FFA demonstrated that HRW reduced the deposition of drusen-like structures in RPE layer, prevented retina from thinning and leakage of ocular fundus vasculature induced by NaIO3. ERG analysis confirmed that HRW effectively reversed the decrease of a-wave and b-wave amplitude in NaIO3-mice. Mechanistically, HRW greatly reduced the oxidative stress reaction through decreased MDA levels, increased SOD production, and decreased ROS content. The OGG1 expression was downregulated which is a marker of oxidative stress. Involvement of oxidative stress was confirmed using oxidative stress inhibitor ALCAR. Moreover, oxidative stress reaction was associated with expression of Sirt1 level and HRW significantly inhibited the downregulation of Sirt1 expression. This result was further confirmed with AICAR which restore Sirt1 expression and activity. In addition, NaIO3-induced retinal damage was related to apoptosis via caspase 8 and caspase 9, but not the caspase 3 pathways, which led to upregulation of Bax and p53, downregulation of Bcl-2, and increase in Jc-1-positive cells in mice. However, HRW effectively reversed these effects that apoptosis induced. These results suggest that HRW protects retinal functions against oxidative stress injury through inhibiting downregulation of Sirt1 and reducing retinal apoptosis. Therefore, we speculated that hydrogen administration is a promising treatment for AMD therapy.
Collapse
Affiliation(s)
- Yanli Liu
- Department of Cell Biology, Taizhou University, Taizhou, China
| | - Ruichan Li
- Department of Cell Biology, Taizhou University, Taizhou, China
| | - Jing Xie
- Department of Cell Biology, Taizhou University, Taizhou, China
| | - Jiehua Hu
- Information Center, Logistics College, Naval University of Engineering, Tianjin, China
| | - Xudong Huang
- Chemistry and Life College, Chengdu Normal University, Chengdu, China
| | - Fu Ren
- Biological Anthropology Institute, Jinzhou Medical University, Jinzhou, China
| | - Lihua Li
- Department of Cell Biology, Taizhou University, Taizhou, China
| |
Collapse
|