1
|
Švecová M, Blahová L, Kostolný J, Birková A, Urdzík P, Mareková M, Dubayová K. Enhancing endometrial cancer detection: Blood serum intrinsic fluorescence data processing and machine learning application. Talanta 2024; 283:127083. [PMID: 39471720 DOI: 10.1016/j.talanta.2024.127083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/03/2024] [Accepted: 10/19/2024] [Indexed: 11/01/2024]
Abstract
Endometrial cancer (EC) is the most prevalent cancer within the female reproductive system in developed countries. Despite its high incidence, there is currently no established laboratory screening test for EC, making early detection challenging. This study introduces an innovative, minimally invasive, and cost-effective method utilizing three-dimensional fluorescence analysis combined with machine learning algorithms to enhance early EC detection. Intrinsic fluorescence of blood serum samples was measured using a luminescence spectrophotometer, which captured fluorescence spectra as synchronous excitation spectra and visualized them through wavelength contour matrices. The spectral data were processed using machine learning algorithms, including Random Forest (RF), Logistic Regression (LR), Support Vector Machine (SVM), and Stochastic Gradient Descent (SGD), along with exploratory techniques such as Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA). Fluorescence ratios R300/330 and R360/490, indicative of altered tryptophan metabolism and redox state changes, were identified as fluorescent spectral markers and represent key metabolic biomarkers. These ratios demonstrated high diagnostic efficacy with AUC values of 0.88 and 0.91, respectively. Among the ML algorithms, LR and RF exhibited high sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), showing significant promise for clinical application. After optimization, LR achieved a sensitivity of 0.94, specificity of 0.89, and an impressive AUC value of 0.94. The application of this novel approach in laboratory diagnostics has the potential to significantly enhance early detection and improve prognosis for EC patients.
Collapse
Affiliation(s)
- Monika Švecová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Tr. SNP 1, 040 01, Košice, Slovakia
| | - Linda Blahová
- Department of Informatics, Faculty of Management Sciences and Informatics, University of Žilina, Univerzitná 8215/1, 010 26, Žilina, Slovakia
| | - Jozef Kostolný
- Department of Informatics, Faculty of Management Sciences and Informatics, University of Žilina, Univerzitná 8215/1, 010 26, Žilina, Slovakia
| | - Anna Birková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Tr. SNP 1, 040 01, Košice, Slovakia
| | - Peter Urdzík
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Tr. SNP 1, 040 01, Košice, Slovakia
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Tr. SNP 1, 040 01, Košice, Slovakia
| | - Katarína Dubayová
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Tr. SNP 1, 040 01, Košice, Slovakia.
| |
Collapse
|
2
|
Mohammad-Rafiei F, Negahdari S, Tahershamsi Z, Gheibihayat SM. Interface between Resolvins and Efferocytosis in Health and Disease. Cell Biochem Biophys 2024; 82:53-65. [PMID: 37794303 DOI: 10.1007/s12013-023-01187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Acute inflammation resolution acts as a vital process for active host response, tissue support, and homeostasis maintenance, during which resolvin D (RvD) and E (RvE) as mediators derived from omega-3 polyunsaturated fatty acids display specific and stereoselective anti-inflammations like restricting neutrophil infiltration and pro-resolving activities. On the other side of the coin, potent macrophage-mediated apoptotic cell clearance, namely efferocytosis, is essential for successful inflammation resolution. Further studies mentioned a linkage between efferocytosis and resolvins. For instance, resolvin D1 (RvD1), which is endogenously formed from docosahexaenoic acid within the inflammation resolution, thereby provoking efferocytosis. There is still limited information regarding the mechanism of action of RvD1-related efferocytosis enhancement at the molecular level. The current review article was conducted to explore recent data on how the efferocytosis process and resolvins relate to each other during the inflammation resolution in illness and health. Understanding different aspects of this connection sheds light on new curative approaches for medical conditions caused by defective efferocytosis and disrupted inflammation resolution.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Samira Negahdari
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Munich, Germany.
| |
Collapse
|
3
|
Tajbakhsh A, Yousefi F, Farahani N, Savardashtaki A, Reiner Ž, Jamialahmadi T, Sahebkar A. Molecular Mechanisms and Therapeutic Potential of Resolvins in Cancer - Current Status and Perspectives. Curr Med Chem 2024; 31:5898-5917. [PMID: 37497711 DOI: 10.2174/0929867331666230727100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/26/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
Resolvins are specialized pro-resolving mediators derived from omega-3 fatty acids that can suppress several cancer-related molecular pathways, including important activation of transcription parameters in the tumor cells and their microenvironment, inflammatory cell infiltration, cytokines as well as chemokines. Recently, an association between resolvins and an important anti-inflammatory process in apoptotic tumor cell clearance (efferocytosis) was shown. The inflammation status or the oncogene activation increases the risk of cancer development via triggering the transcriptional agents, including nuclear factor kappa-light-chain-enhancer of activated B cells by generating the pro-inflammatory lipid molecules and infiltrating the tumor cells along with the high level of pro-inflammatory signaling. These events can cause an inflammatory microenvironment. Resolvins might decrease the leukocyte influx into the inflamed tissues. It is widely accepted that resolvins prohibit the development of debris-triggered cancer via increasing the clearance of debris, especially by macrophage phagocytosis in tumors without any side effects. Resolvins D2, D1, and E1 might suppress tumor-growing inflammation by activation of macrophages clearance of cell debris in the tumor. Resolvin D5 can assist patients with pain during treatment. However, the effects of resolvins as anti-inflammatory mediators in cancers are not completely explained. Thus, based on the most recent studies, we tried to summarize the most recent knowledge on resolvins in cancers.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Najmeh Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Savardashtaki
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Željko Reiner
- Department of Internal Medicine, University Hospital Center Zagreb, School of Medicine, University of Zagreb, Zagreb, Croatia
- Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Leite CBG, Merkely G, Charles JF, Lattermann C. From Inflammation to Resolution: Specialized Pro-resolving Mediators in Posttraumatic Osteoarthritis. Curr Osteoporos Rep 2023; 21:758-770. [PMID: 37615856 DOI: 10.1007/s11914-023-00817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE OF REVIEW To provide a comprehensive overview of the inflammatory response following anterior cruciate ligament (ACL) injury and to highlight the relationship between specialized pro-resolving mediators (SPMs) and inflammatory joint conditions, emphasizing the therapeutic potential of modulating the post-injury resolution of inflammation to prevent posttraumatic osteoarthritis (PTOA). RECENT FINDINGS The inflammatory response triggered after joint injuries such as ACL tear plays a critical role in posttraumatic osteoarthritis development. Inflammation is a necessary process for tissue healing, but unresolved or overactivated inflammation can lead to chronic diseases. SPMs, a family of lipid molecules derived from essential fatty acids, have emerged as active players in the resolution of inflammation and tissue repair. While their role in other inflammatory conditions has been studied, their relationship with PTOA remains underexplored. Proinflammatory mediators contribute to cartilage degradation and PTOA pathogenesis, while anti-inflammatory and pro-resolving mediators may have chondroprotective effects. Therapies aimed at suppressing inflammation in PTOA have limitations, as inflammation is crucial for tissue healing. SPMs offer a pro-resolving response without causing immunosuppression, making them a promising therapeutic option. The known onset date of PTOA makes it amenable to early interventions, and activating pro-resolving pathways may provide new possibilities for preventing PTOA progression. Harnessing the pro-resolving potential of SPMs may hold promise for preventing PTOA and restoring tissue homeostasis and function after joint injuries.
Collapse
Affiliation(s)
- Chilan B G Leite
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Gergo Merkely
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA.
| |
Collapse
|
5
|
Panigrahy D, Gilligan MM, Serhan CN, Kashfi K. Resolution of inflammation: An organizing principle in biology and medicine. Pharmacol Ther 2021; 227:107879. [PMID: 33915177 DOI: 10.1016/j.pharmthera.2021.107879] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023]
Abstract
The resolution of inflammation has emerged as a critical endogenous process that protects host tissues from prolonged or excessive inflammation that can become chronic. Failure of the resolution of inflammation is a key pathological mechanism that drives the progression of numerous inflammation-driven diseases. Essential polyunsaturated fatty acid (PUFA)-derived autacoid mediators termed 'specialized pro-resolving mediators' (SPMs) regulate endogenous resolution programs by limiting further neutrophil tissue infiltration and stimulating local immune cell (e.g., macrophage)-mediated clearance of apoptotic polymorphonuclear neutrophils, cellular debris, and microbes, as well as counter-regulating eicosanoid/cytokine production. The SPM superfamily encompasses lipoxins, resolvins, protectins, and maresins. Our understanding of the resolution phase of acute inflammation has grown exponentially in the past three decades with the discovery of novel pro-resolving lipid mediators, their pro-efferocytosis mechanisms, and their receptors. Technological advancement has further facilitated lipid mediator metabolipidomic based profiling of healthy and diseased human tissues, highlighting the extraordinary therapeutic potential of SPMs across a broad array of inflammatory diseases including cancer. As current front-line cancer therapies such as surgery, chemotherapy, and radiation may induce various unwanted side effects such as robust pro-inflammatory and pro-tumorigenic host responses, characterizing SPMs and their receptors as novel therapeutic targets may have important implications as a new direction for host-targeted cancer therapy. Here, we discuss the origins of inflammation resolution, key discoveries and the failure of resolution mechanisms in diseases with an emphasis on cancer, and future directions focused on novel therapeutic applications for this exciting and rapidly expanding field.
Collapse
Affiliation(s)
- Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Molly M Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York, School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
| |
Collapse
|
6
|
Lavy M, Gauttier V, Poirier N, Barillé-Nion S, Blanquart C. Specialized Pro-Resolving Mediators Mitigate Cancer-Related Inflammation: Role of Tumor-Associated Macrophages and Therapeutic Opportunities. Front Immunol 2021; 12:702785. [PMID: 34276698 PMCID: PMC8278519 DOI: 10.3389/fimmu.2021.702785] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammation is a fundamental physiological response orchestrated by innate immune cells to restore tissue homeostasis. Specialized pro-resolving mediators (SPMs) are involved in active resolution of inflammation but when inflammation is incomplete, chronic inflammation creates a favorable environment that fuels carcinogenesis and cancer progression. Conventional cancer therapy also strengthens cancer-related inflammation by inducing massive tumor cell death that activate surrounding immune-infiltrating cells such as tumor-associated macrophages (TAMs). Macrophages are key actors of both inflammation and its active resolution due to their plastic phenotype. In line with this high plasticity, macrophages can be hijacked by cancer cells to support tumor progression and immune escape, or therapy resistance. Impaired resolution of cancer-associated inflammation supported by TAMs may thus reinforces tumor progression. From this perspective, recent evidence suggests that stimulating macrophage's pro-resolving functions using SPMs can promote inflammation resolution in cancer and improve anticancer treatments. Thus, TAMs' re-education toward an antitumor phenotype by using SPMs opens a new line of attack in cancer treatment. Here, we review SPMs' anticancer capacities with special attention regarding their effects on TAMs. We further discuss how this new therapeutic approach could be envisioned in cancer therapy.
Collapse
|
7
|
Fishbein A, Hammock BD, Serhan CN, Panigrahy D. Carcinogenesis: Failure of resolution of inflammation? Pharmacol Ther 2021; 218:107670. [PMID: 32891711 PMCID: PMC7470770 DOI: 10.1016/j.pharmthera.2020.107670] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
Inflammation in the tumor microenvironment is a hallmark of cancer and is recognized as a key characteristic of carcinogens. However, the failure of resolution of inflammation in cancer is only recently being understood. Products of arachidonic acid and related fatty acid metabolism called eicosanoids, including prostaglandins, leukotrienes, lipoxins, and epoxyeicosanoids, critically regulate inflammation, as well as its resolution. The resolution of inflammation is now appreciated to be an active biochemical process regulated by endogenous specialized pro-resolving lipid autacoid mediators which combat infections and stimulate tissue repair/regeneration. Environmental and chemical human carcinogens, including aflatoxins, asbestos, nitrosamines, alcohol, and tobacco, induce tumor-promoting inflammation and can disrupt the resolution of inflammation contributing to a devastating global cancer burden. While mechanisms of carcinogenesis have focused on genotoxic activity to induce mutations, nongenotoxic mechanisms such as inflammation and oxidative stress promote genotoxicity, proliferation, and mutations. Moreover, carcinogens initiate oxidative stress to synergize with inflammation and DNA damage to fuel a vicious feedback loop of cell death, tissue damage, and carcinogenesis. In contrast, stimulation of resolution of inflammation may prevent carcinogenesis by clearance of cellular debris via macrophage phagocytosis and inhibition of an eicosanoid/cytokine storm of pro-inflammatory mediators. Controlling the host inflammatory response and its resolution in carcinogen-induced cancers will be critical to reducing carcinogen-induced morbidity and mortality. Here we review the recent evidence that stimulation of resolution of inflammation, including pro-resolution lipid mediators and soluble epoxide hydrolase inhibitors, may be a new chemopreventive approach to prevent carcinogen-induced cancer that should be evaluated in humans.
Collapse
Affiliation(s)
- Anna Fishbein
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Charles N. Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
8
|
Tokarz J, Adamski J, Lanišnik Rižner T. Metabolomics for Diagnosis and Prognosis of Uterine Diseases? A Systematic Review. J Pers Med 2020; 10:294. [PMID: 33371433 PMCID: PMC7767462 DOI: 10.3390/jpm10040294] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 12/24/2022] Open
Abstract
This systematic review analyses the contribution of metabolomics to the identification of diagnostic and prognostic biomarkers for uterine diseases. These diseases are diagnosed invasively, which entails delayed treatment and a worse clinical outcome. New options for diagnosis and prognosis are needed. PubMed, OVID, and Scopus were searched for research papers on metabolomics in physiological fluids and tissues from patients with uterine diseases. The search identified 484 records. Based on inclusion and exclusion criteria, 44 studies were included into the review. Relevant data were extracted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) checklist and quality was assessed using the QUADOMICS tool. The selected metabolomics studies analysed plasma, serum, urine, peritoneal, endometrial, and cervico-vaginal fluid, ectopic/eutopic endometrium, and cervical tissue. In endometriosis, diagnostic models discriminated patients from healthy and infertile controls. In cervical cancer, diagnostic algorithms discriminated patients from controls, patients with good/bad prognosis, and with/without response to chemotherapy. In endometrial cancer, several models stratified patients from controls and recurrent from non-recurrent patients. Metabolomics is valuable for constructing diagnostic models. However, the majority of studies were in the discovery phase and require additional research to select reliable biomarkers for validation and translation into clinical practice. This review identifies bottlenecks that currently prevent the translation of these findings into clinical practice.
Collapse
Affiliation(s)
- Janina Tokarz
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Centre for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (J.T.); (J.A.)
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Centre for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (J.T.); (J.A.)
- German Centre for Diabetes Research, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, 85764 Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Tea Lanišnik Rižner
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Njoku K, Sutton CJ, Whetton AD, Crosbie EJ. Metabolomic Biomarkers for Detection, Prognosis and Identifying Recurrence in Endometrial Cancer. Metabolites 2020; 10:E314. [PMID: 32751940 PMCID: PMC7463916 DOI: 10.3390/metabo10080314] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/24/2022] Open
Abstract
Metabolic reprogramming is increasingly recognised as one of the defining hallmarks of tumorigenesis. There is compelling evidence to suggest that endometrial cancer develops and progresses in the context of profound metabolic dysfunction. Whilst the incidence of endometrial cancer continues to rise in parallel with the global epidemic of obesity, there are, as yet, no validated biomarkers that can aid risk prediction, early detection, prognostic evaluation or surveillance. Advances in high-throughput technologies have, in recent times, shown promise for biomarker discovery based on genomic, transcriptomic, proteomic and metabolomic platforms. Metabolomics, the large-scale study of metabolites, deals with the downstream products of the other omics technologies and thus best reflects the human phenotype. This review aims to provide a summary and critical synthesis of the existing literature with the ultimate goal of identifying the most promising metabolite biomarkers that can augment current endometrial cancer diagnostic, prognostic and recurrence surveillance strategies. Identified metabolites and their biochemical pathways are discussed in the context of what we know about endometrial carcinogenesis and their potential clinical utility is evaluated. Finally, we underscore the challenges inherent in metabolomic biomarker discovery and validation and provide fresh perspectives and directions for future endometrial cancer biomarker research.
Collapse
Affiliation(s)
- Kelechi Njoku
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 5th Floor Research, St Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK;
- Stoller Biomarker Discovery Centre, Institute of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Caroline J.J Sutton
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester M13 9WL, UK;
| | - Anthony D. Whetton
- Stoller Biomarker Discovery Centre, Institute of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Emma J. Crosbie
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 5th Floor Research, St Mary’s Hospital, Oxford Road, Manchester M13 9WL, UK;
- Department of Obstetrics and Gynaecology, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| |
Collapse
|
10
|
Signaling lipids as diagnostic biomarkers for ocular surface cicatrizing conjunctivitis. J Mol Med (Berl) 2020; 98:751-760. [PMID: 32313985 PMCID: PMC7220886 DOI: 10.1007/s00109-020-01907-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/24/2020] [Accepted: 04/02/2020] [Indexed: 12/23/2022]
Abstract
Abstract Metabolomics has been applied to diagnose diseases, predict disease progression, and design therapeutic strategies in various areas of medicine. However, it remains to be applied to the ocular surface diseases, where biological samples are often of limited quantities. We successfully performed proof-of-concept metabolomics assessment of volume-limited cytology samples from a clinical form of chronic inflammatory cicatrizing conjunctivitis, i.e., ocular MMP and discovered metabolic changes of signaling lipid mediators upon disease onset and progression. The metabolomics assessment revealed active oxylipins, lysophospholipids, fatty acids, and endocannabinoids alterations, from which potential biomarkers linked to inflammatory processes were identified. Possible underlying mechanisms such as dysregulated enzyme activities (e.g., lipoxygenases, cytochrome P450, and phospholipases) were suggested which may be considered as potential therapeutic targets in future studies. Key messages Metabolic profile of the ocular surface can be measured using impression cytology samples. Metabolomics analysis of ocular pemphigoid is presented for the first time. The metabolomics assessment of OCP patients revealed active oxylipins, lysophospholipids, fatty acids, and endocannabinoids alterations. Several oxylipins are identified as diagnostic biomarkers for OCP.
Collapse
|
11
|
Blood Metabolites Associate with Prognosis in Endometrial Cancer. Metabolites 2019; 9:metabo9120302. [PMID: 31847385 PMCID: PMC6949989 DOI: 10.3390/metabo9120302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022] Open
Abstract
Endometrial cancer has a high prevalence among post-menopausal women in developed countries. We aimed to explore whether certain metabolic patterns could be related to the characteristics of aggressive disease and poorer survival among endometrial cancer patients in Western Norway. Patients with endometrial cancer with short survival (n = 20) were matched according to FIGO (International Federation of Gynecology and Obstetrics, 2009 criteria) stage, histology, and grade, with patients with long survival (n = 20). Plasma metabolites were measured on a multiplex system including 183 metabolites, which were subsequently determined using liquid chromatography-mass spectrometry. Partial least square discriminant analysis, together with hierarchical clustering, was used to identify patterns which distinguished short from long survival. A proposed signature of metabolites related to survival was suggested, and a multivariate receiver operating characteristic (ROC) analysis yielded an area under the curve (AUC) of 0.820–0.965 (p ≤ 0.001). Methionine sulfoxide seems to be particularly strongly associated with poor survival rates in these patients. In a subgroup with preoperative contrast-enhanced computed tomography data, selected metabolites correlated with the estimated abdominal fat distribution parameters. Metabolic signatures may predict prognosis and be promising supplements when evaluating phenotypes and exploring metabolic pathways related to the progression of endometrial cancer. In the future, this may serve as a useful tool in cancer management.
Collapse
|
12
|
Song Z, Wang H, Yin X, Deng P, Jiang W. Application of NMR metabolomics to search for human disease biomarkers in blood. Clin Chem Lab Med 2019; 57:417-441. [PMID: 30169327 DOI: 10.1515/cclm-2018-0380] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/16/2018] [Indexed: 02/05/2023]
Abstract
Recently, nuclear magnetic resonance spectroscopy (NMR)-based metabolomics analysis and multivariate statistical techniques have been incorporated into a multidisciplinary approach to profile changes in small molecules associated with the onset and progression of human diseases. The purpose of these efforts is to identify unique metabolite biomarkers in a specific human disease so as to (1) accurately predict and diagnose diseases, including separating distinct disease stages; (2) provide insights into underlying pathways in the pathogenesis and progression of the malady and (3) aid in disease treatment and evaluate the efficacy of drugs. In this review we discuss recent developments in the application of NMR-based metabolomics in searching disease biomarkers in human blood samples in the last 5 years.
Collapse
Affiliation(s)
- Zikuan Song
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Haoyu Wang
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Xiaotong Yin
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.,West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Pengchi Deng
- Analytical and Testing Center, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Wei Jiang
- Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
13
|
Serhan CN, Levy BD. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest 2018; 128:2657-2669. [PMID: 29757195 DOI: 10.1172/jci97943] [Citation(s) in RCA: 827] [Impact Index Per Article: 137.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Countless times each day, the acute inflammatory response protects us from invading microbes, injuries, and insults from within, as in surgery-induced tissue injury. These challenges go unnoticed because they are self-limited and naturally resolve without progressing to chronic inflammation. Peripheral blood markers of inflammation are present in many common diseases, including inflammatory bowel disease, cardiovascular disease, neurodegenerative disease, and cancer. While acute inflammation is protective, excessive swarming of neutrophils amplifies collateral tissue damage and inflammation. Hence, understanding the mechanisms that control the resolution of acute inflammation provides insight into preventing and treating inflammatory diseases in multiple organs. This Review focuses on the resolution phase of inflammation with identification of specialized pro-resolving mediators (SPMs) that involve three separate biosynthetic and potent mediator families, which are defined using the first quantitative resolution indices to score this vital process. These are the resolvins, protectins, and maresins: bioactive metabolomes that each stimulate self-limited innate responses, enhance innate microbial killing and clearance, and are organ-protective. We briefly address biosynthesis of SPMs and their activation of endogenous resolution programs as terrain for new therapeutic approaches that are not, by definition, immunosuppressive, but rather new immunoresolvent therapies.
Collapse
Affiliation(s)
- Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, and
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|