1
|
Tao R, Liu C, Zhang W, Zhu Y, Ma Y, Hao S. Selinexor With Anti-PD-1 Antibody as a Potentially Effective Regimen for Patients With Natural Killer/T-Cell Lymphoma Failing Prior L-Asparaginase and PD-1 Blockade. Oncologist 2024; 29:e90-e96. [PMID: 37616529 PMCID: PMC10769782 DOI: 10.1093/oncolo/oyad241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Natural killer/T-cell lymphoma (NKTCL) is a rare and heterogeneous tumor type of non-Hodgkin's lymphoma (NHL) with a poor clinical outcome. There is no standardized salvage treatment failing l-asparaginase-based regimens. Here we report our retrospective results of the combined use of selinexor and PD-1 blockade (tislelizumab) in 5 patients with NKTCL who had exhausted almost all available treatments. PATIENTS AND METHODS A total of 5 patients with relapsed/refractory(R/R) NK/T-cell lymphomas failing prior l-asparaginase and anti-PD-1 antibody were retrospectively collected. They were treated with at least one cycle of XPO1 inhibitor plus the same anti-PD-1 antibody. Anti-PD-1 antibody (Tislelizumab) was administrated at 200 mg on day 1 every 3 weeks and selinexor doses and schedules ranged from 40 mg weekly for 2 weeks per 21-day cycle to 60 mg weekly per cycle. RESULTS Five patients with relapsed NKTCL with extensive organ involvement including 4 central nervous system (CNS) infiltration patients were included. Four patients achieved objective responses including 3 complete responses (CR) and 1 partial response (PR). After a median follow-up time of 14.5 (range, 5-22) months, 1 patient was still in remission with CR, and the other 4 patients discontinued due to disease progression with a median progression-free survival (PFS) of 6 months and median overall survival (OS) of 12 months. Four patients with CNS involvement achieved a median OS of 8 months. Our data suggest that selinexor in combination with an anti-PD-1 antibody is a promising small molecule and immunotherapy combination regimen for patients with relapsed or refractory NKTCL.
Collapse
Affiliation(s)
- Rong Tao
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Chuanxu Liu
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Wenhao Zhang
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Yang Zhu
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yujie Ma
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Siguo Hao
- Department of Hematology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Sellin M, Berg S, Hagen P, Zhang J. The molecular mechanism and challenge of targeting XPO1 in treatment of relapsed and refractory myeloma. Transl Oncol 2022; 22:101448. [PMID: 35660848 PMCID: PMC9166471 DOI: 10.1016/j.tranon.2022.101448] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Significant progress has been made on the treatment of MM during past two decades. Acquired drug-resistance continues to drive early relapse in primary refractory MM. XPO1 over-expression and cargo mislocalization are associated with drug-resistance. XPO1 inhibitor selinexor restores drug sensitivity to subsets of RR-MM cells.
Multiple myeloma (MM) treatment regimens have vastly improved since the introduction of immunomodulators, proteasome inhibitors, and anti-CD38 monoclonal antibodies; however, MM is considered an incurable disease due to inevitable relapse and acquired drug resistance. Understanding the molecular mechanism by which drug resistance is acquired will help create novel strategies to prevent relapse and help develop novel therapeutics to treat relapsed/refractory (RR)-MM patients. Currently, only homozygous deletion/mutation of TP53 gene due to “double-hits” on Chromosome 17p region is consistently associated with a poor prognosis. The exciting discovery of XPO1 overexpression and mislocalization of its cargos in the RR-MM cells has led to a novel treatment options. Clinical studies have demonstrated that the XPO1 inhibitor selinexor can restore sensitivity of RR-MM to PIs and dexamethasone. We will elaborate on the problems of MM treatment strategies and discuss the mechanism and challenges of using XPO1 inhibitors in RR-MM therapies while deliberating potential solutions.
Collapse
Affiliation(s)
- Mark Sellin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, USA
| | - Stephanie Berg
- Loyola University Chicago, Department of Cancer Biology and Internal Medicine, Cardinal Bernardin Cancer Center, Stritch School of Medicine, Maywood, IL, USA.
| | - Patrick Hagen
- Department of Medicine, Division of Hematology/Oncology, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, USA
| |
Collapse
|
3
|
Xu H, Li H, Wada R, Bader JC, Tang S, Shah J, Shacham S. Selinexor population pharmacokinetic and exposure-response analyses to support dose optimization in patients with diffuse large B-cell lymphoma. Cancer Chemother Pharmacol 2021; 88:69-79. [PMID: 33770229 DOI: 10.1007/s00280-021-04258-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/11/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Characterize the population PK and exposure-response (ER) relationships of selinexor in patients with diffuse large B-cell lymphoma (DLBCL) (efficacy endpoints) or other non-Hodgkin's lymphoma (NHL) patients (safety endpoints) to determine the optimal dose in patients with DLBCL. METHODS This work included patients from seven clinical studies, with 800 patients for PK, 175 patients for efficacy and 322 patients for safety analyses. Logistic regression models and Cox-regression models were used for binary and time-to-event endpoints, respectively. Model-based simulations were performed to justify dose based on balance between efficacy and safety outcome. RESULTS Selinexor pharmacokinetics were well-described by a two-compartment model with body weight as a significant covariate on clearance and central volume of distribution and gender on clearance. Overall response rate (ORR) in patients with DLBCL increased with day 1 Cmax and decreased in patients with higher baseline tumor size (p < 0.05). Significant exposure-safety relationships (p < 0.05) in NHL patients were identified for the frequency of the following safety endpoints: dose modifications, decreased appetite Grade ≥ 3 (Gr3+), fatigue Gr2+, vision blurred Gr1+, and vomiting Gr2+. Similar exposure-safety relationships were found for time-to-onset of the adverse events. CONCLUSIONS Simulations of the safety and efficacy ER models suggested that, compared to a starting dose of 60 mg twice weekly (BIW), a 40 mg BIW regimen resulted in an absolute decrease in AE probabilities between 1.9 and 5.3%, with a clinically significant absolute efficacy decrease of 4.7% in ORR. The modeling results support that 60 mg BIW is the optimal dose in patients with DLBCL.
Collapse
Affiliation(s)
- Hongmei Xu
- Karyopharm Therapeutics, 85 Wells Avenue, Suite 210, Newton, MA, 02459, USA.
| | | | | | - Justin C Bader
- Karyopharm Therapeutics, 85 Wells Avenue, Suite 210, Newton, MA, 02459, USA
| | - Shijie Tang
- Karyopharm Therapeutics, 85 Wells Avenue, Suite 210, Newton, MA, 02459, USA
| | - Jatin Shah
- Karyopharm Therapeutics, 85 Wells Avenue, Suite 210, Newton, MA, 02459, USA
| | - Sharon Shacham
- Karyopharm Therapeutics, 85 Wells Avenue, Suite 210, Newton, MA, 02459, USA
| |
Collapse
|
4
|
Benkova K, Mihalyova J, Hajek R, Jelinek T. Selinexor, selective inhibitor of nuclear export: Unselective bullet for blood cancers. Blood Rev 2021; 46:100758. [PMID: 32972802 DOI: 10.1016/j.blre.2020.100758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/26/2020] [Accepted: 08/13/2020] [Indexed: 11/25/2022]
Abstract
Exportin 1 (XPO1), also known as chromosome maintenance 1 protein (CRM1), is the main transporter for hundreds of proteins like tumor suppressors, growth regulatory factors, oncoprotein mRNAs and others. Its upregulation leads to the inactivation of the tumor suppressor anti-neoplastic function in many cancers and logically is associated with poor prognosis. Selective inhibitors of nuclear export (SINE) are a new generation of XPO1 inhibitors that are being investigated as a promising targeted anti-cancer therapy. Selinexor is the first generation of SINE compounds that is being evaluated in many clinical trials involving solid tumors and hematological malignancies with its two approved indications for relapsed multiple myeloma and relapsed diffuse large B-cell lymphoma. Here, we comprehensively review the current knowledge of selinexor and next generations of the SINE compounds in lymphoid and myeloid malignancies.
Collapse
Affiliation(s)
- Katerina Benkova
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790/5, Ostrava 708 52, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava 703 00, Czech Republic.
| | - Jana Mihalyova
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790/5, Ostrava 708 52, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava 703 00, Czech Republic.
| | - Roman Hajek
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790/5, Ostrava 708 52, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava 703 00, Czech Republic.
| | - Tomas Jelinek
- Department of Hematooncology, University Hospital Ostrava, 17. listopadu 1790/5, Ostrava 708 52, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava 703 00, Czech Republic.
| |
Collapse
|
5
|
Rubinstein MM, Grisham RN, Cadoo K, Kyi C, Tew WP, Friedman CF, O'Cearbhaill RE, Zamarin D, Zhou Q, Iasonos A, Nikolovski I, Xu H, Soldan KN, Caird I, Martin M, Guillen J, Eid KT, Aghajanian C, Makker V. A phase I open-label study of selinexor with paclitaxel and carboplatin in patients with advanced ovarian or endometrial cancers. Gynecol Oncol 2021; 160:71-76. [PMID: 33139041 PMCID: PMC7779742 DOI: 10.1016/j.ygyno.2020.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Selinexor, a selective inhibitor of nuclear export, monotherapy causes nuclear accumulation of tumor-suppressor proteins and has anti-tumor activity in ovarian and endometrial cancers. The safety and tolerability of oral selinexor plus intravenous carboplatin and paclitaxel chemotherapy (selinexor + CP) was evaluated in this population. PATIENTS AND METHODS This phase I, 3 + 3 dose-escalation study assessed 4 selinexor + CP regimens. Patients in cohorts of 3, regardless of disease type, were administered 1 of 4 alternating regimens (selinexor at 30 mg/m2 or 60 mg plus CP at AUC 5 and 175 mg/m2 or 80 mg/m2, respectively) for 6-10 cycles (1 cycle = 21 days), followed by selinexor maintenance. Enrolled patients with ovarian cancer had received 1 prior platinum-based therapy. Patients with endometrial cancer were chemotherapy-naive or had received 1 prior platinum-based therapy. Response was evaluated every 9 weeks. RESULTS Twenty-three patients were treated (5 serous ovarian cancer; 18 endometrial cancer, including 6 carcinosarcomas). The most common treatment-related adverse events (TRAEs) were thrombocytopenia (100%), leukopenia (91%), and hyperglycemia (87%). The most common grade 3/4 TRAEs were leukopenia (70%), neutropenia (70%), lymphopenia (61%), anemia (57%), and alanine transaminase increase (43%). One treatment-related dose-limiting toxicity (grade 3 syncope) occurred. Twelve patients achieved a partial response and 1 achieved a complete response. Responses to all four regimens were observed in ovarian and endometrial cancers. CONCLUSIONS Combination selinexor + CP was safe and tolerated in advanced ovarian and endometrial cancers.
Collapse
Affiliation(s)
- Maria M Rubinstein
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Rachel N Grisham
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Weill Cornell Medical College, New York, NY, United States of America
| | - Karen Cadoo
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Weill Cornell Medical College, New York, NY, United States of America
| | - Chrisann Kyi
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Weill Cornell Medical College, New York, NY, United States of America
| | - William P Tew
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Weill Cornell Medical College, New York, NY, United States of America
| | - Claire F Friedman
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Weill Cornell Medical College, New York, NY, United States of America
| | - Roisin E O'Cearbhaill
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Weill Cornell Medical College, New York, NY, United States of America
| | - Dmitriy Zamarin
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America; Weill Cornell Medical College, New York, NY, United States of America
| | - Qin Zhou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Alexia Iasonos
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Ines Nikolovski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Hongmei Xu
- Karyopharm Therapeutics Inc., Newton, MA, United States of America
| | - Krysten N Soldan
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Imogen Caird
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Madhuri Martin
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Joyce Guillen
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Khalil T Eid
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Carol Aghajanian
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Vicky Makker
- Gynecologic Medical Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America.
| |
Collapse
|
6
|
Muqbil I, Azmi AS, Mohammad RM. Nuclear Export Inhibition for Pancreatic Cancer Therapy. Cancers (Basel) 2018; 10:E138. [PMID: 29735942 PMCID: PMC5977111 DOI: 10.3390/cancers10050138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer is a deadly disease that is resistant to most available therapeutics. Pancreatic cancer to date has no effective drugs that could enhance the survival of patients once their disease has metastasized. There is a need for the identification of novel actionable drug targets in this unusually recalcitrant cancer. Nuclear protein transport is an important mechanism that regulates the function of several tumor suppressor proteins (TSPs) in a compartmentalization-dependent manner. High expression of the nuclear exporter chromosome maintenance region 1 (CRM1) or exportin 1 (XPO1), a common feature of several cancers including pancreatic cancer, results in excessive export of critical TSPs to the incorrect cellular compartment, leading to their functional inactivation. Small molecule inhibitors of XPO1 can block this export, retaining very important and functional TSPs in the nucleus and leading to the effective killing of the cancer cells. This review highlights the current knowledge on the role of XPO1 in pancreatic cancer and how this serves as a unique and clinically viable target in this devastating and by far incurable cancer.
Collapse
Affiliation(s)
- Irfana Muqbil
- Department of Chemistry, University of Detroit Mercy, Detroit, MI 48221, USA.
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|