1
|
ZHANG J, KANG J, WU L. The potential mechanism of treating IC/BPS with hyperbaric oxygen by reducing vascular endothelial growth inhibitor and hypoxia-inducible factor-1α. Turk J Med Sci 2023; 54:26-32. [PMID: 38812622 PMCID: PMC11031152 DOI: 10.55730/1300-0144.5762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/15/2024] [Accepted: 12/11/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim To investigate the roles of vascular endothelial growth inhibitor (VEGI) and hypoxia-inducible factor-1α (HIF-1α) in the treatment of refractory interstitial cystitis/bladder pain syndrome (IC/BPS) with hyperbaric oxygen (HBO). Materials and methods A total of 38 patients were included. They were assessed before and 6 months after HBO treatment. Three-day voiding diaries were recorded, and O'leary-Sant scores, visual analog scale (VAS) scores, quality of life (QoL) scores, pelvic pain, and urgency/frequency (PUF) scores were evaluated. Bladder capacity was assessed by cystoscopy. Bladder mucosa was collected for Western blot, qRT-PCR, and immunofluorescence staining to compare the expression of VEGI and HIF-1α before and after treatment. Results Compared with before treatment, patients showed significant improvements in 24-h voiding frequency (15.32 ± 5.38 times), nocturia (3.71 ± 1.80 times), O'leary-Sant score (20.45 ± 5.62 points), VAS score (41.76 ± 17.88 points), QoL score (3.03 ± 1.44 points), and PUF score (19.95 ± 6.46 points) after treatment (p < 0.05). There was no significant difference in bladder capacity before and after treatment (p ≥ 0.05). The expression levels of VEGI and HIF-1α protein and mRNA were significantly decreased 6 months after treatment compared with before treatment. Immunofluorescence staining results showed that the double positive expression of VEGI and HIF-1α protein in bladder tissue of IC/BPS patients after HBO treatment quantitatively decreased significantly. Conclusion This study identified a possible mechanism by which VEGI and HIF-1α expression decreased after HBO treatment due to hypoxia reversal, which improved symptoms in IC/BPS patients.
Collapse
Affiliation(s)
- Jing ZHANG
- Department of Hyperbaric Oxygen, Capital Medical University, Beijing Chao-Yang Hospital, Beijing,
China
| | - Jiarui KANG
- Department of Pathology, Fourth Medical Centre of Chinese People’s Liberation Army General Hospital, Beijing,
China
| | - Liyang WU
- Department of Urology, Capital Medical University, Beijing Chao-Yang Hospital, Beijing,
China
| |
Collapse
|
2
|
Wu X, You J, Chen X, Zhou M, Ma H, Zhang T, Huang C. An overview of hyperbaric oxygen preconditioning against ischemic stroke. Metab Brain Dis 2023; 38:855-872. [PMID: 36729260 PMCID: PMC10106353 DOI: 10.1007/s11011-023-01165-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Ischemic stroke (IS) has become the second leading cause of morbidity and mortality worldwide, and the prevention of IS should be given high priority. Recent studies have indicated that hyperbaric oxygen preconditioning (HBO-PC) may be a protective nonpharmacological method, but its underlying mechanisms remain poorly defined. This study comprehensively reviewed the pathophysiology of IS and revealed the underlying mechanism of HBO-PC in protection against IS. The preventive effects of HBO-PC against IS may include inducing antioxidant, anti-inflammation, and anti-apoptosis capacity; activating autophagy and immune responses; upregulating heat shock proteins, hypoxia-inducible factor-1, and erythropoietin; and exerting protective effects upon the blood-brain barrier. In addition, HBO-PC may be considered a safe and effective method to prevent IS in combination with stem cell therapy. Although the benefits of HBO-PC on IS have been widely observed in recent research, the implementation of this technique is still controversial due to regimen differences. Transferring the results to clinical application needs to be taken carefully, and screening for the optimal regimen would be a daunting task. In addition, whether we should prescribe an individualized preconditioning regimen to each stroke patient needs further exploration.
Collapse
Affiliation(s)
- Xuyi Wu
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Jiuhong You
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Xinxin Chen
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Mei Zhou
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Hui Ma
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Rehabilitation Sciences, West China School of Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Tianle Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Huang
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
3
|
Doerr V, Montalvo RN, Nguyen BL, Boeno FP, Sunshine MD, Bindi VE, Fuller DD, Smuder AJ. Effects of Hyperbaric Oxygen Preconditioning on Doxorubicin Cardiorespiratory Toxicity. Antioxidants (Basel) 2022; 11:antiox11102073. [PMID: 36290796 PMCID: PMC9598583 DOI: 10.3390/antiox11102073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiorespiratory dysfunction resulting from doxorubicin (DOX) chemotherapy treatment is a debilitating condition affecting cancer patient outcomes and quality of life. DOX treatment promotes cardiac and respiratory muscle pathology due to enhanced reactive oxygen species (ROS) production, mitochondrial dysfunction and impaired muscle contractility. In contrast, hyperbaric oxygen (HBO) therapy is considered a controlled oxidative stress that can evoke a substantial and sustained increase in muscle antioxidant expression. This HBO-induced increase in antioxidant capacity has the potential to improve cardiac and respiratory (i.e., diaphragm) muscle redox balance, preserving mitochondrial function and preventing muscle dysfunction. Therefore, we determined whether HBO therapy prior to DOX treatment is sufficient to enhance muscle antioxidant expression and preserve muscle redox balance and cardiorespiratory muscle function. To test this, adult female Sprague Dawley rats received HBO therapy (2 or 3 atmospheres absolute (ATA), 100% O2, 1 h/day) for 5 consecutive days prior to acute DOX treatment (20 mg/kg i.p.). Our data demonstrate that 3 ATA HBO elicits a greater antioxidant response compared to 2 ATA HBO. However, these effects did not correspond with beneficial adaptations to cardiac systolic and diastolic function or diaphragm muscle force production in DOX treated rats. These findings suggest that modulating muscle antioxidant expression with HBO therapy is not sufficient to prevent DOX-induced cardiorespiratory dysfunction.
Collapse
Affiliation(s)
- Vivian Doerr
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Ryan N. Montalvo
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Branden L. Nguyen
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
| | - Franccesco P. Boeno
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
| | - Michael D. Sunshine
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Victoria E. Bindi
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - David D. Fuller
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ashley J. Smuder
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611, USA
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
4
|
Mokhtari B, Badalzadeh R. Protective and deleterious effects of autophagy in the setting of myocardial ischemia/reperfusion injury: an overview. Mol Biol Rep 2022; 49:11081-11099. [DOI: 10.1007/s11033-022-07837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
|
5
|
Possibilities of using hyperbaric oxygen therapy at different stages of cardiac surgery. КЛИНИЧЕСКАЯ ПРАКТИКА 2022. [DOI: 10.17816/clinpract104667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Nowadays, the evolution of cardiac surgery is impossible without a continuous improvement of all the treatment stages. One of the promising ways to achieve this goal is the active use of hyperbaric oxygen therapy in the preoperative preparation and postoperative rehabilitation. In this review, we present a short history of the hyperbaric oxygen therapy development in cardiac surgery, the pathophysiological and pathobiochemical mechanisms of its therapeutic effect and the scenarios for its use in the preoperative preparation and postoperative rehabilitation of cardiac surgery patients. The introduction of hyperbaric oxygen therapy into cardiac surgery can improve the results of the surgical treatment, as well as reduce the times of the preoperative preparation and postoperative rehabilitation of cardiac surgery patients, that will significantly increase the quality and efficiency of cardiac surgery.
Collapse
|
6
|
Silva FS, de Souza KSC, Galdino OA, de Moraes MV, Ishikawa U, Medeiros MA, Lima JPMS, de Paula Medeiros KC, da Silva Farias NB, de Araújo Júnior RF, de Rezende AA, Abreu BJ, de Oliveira MF. Hyperbaric oxygen therapy mitigates left ventricular remodeling, upregulates MMP-2 and VEGF, and inhibits the induction of MMP-9, TGF-β1, and TNF-α in streptozotocin-induced diabetic rat heart. Life Sci 2022; 295:120393. [PMID: 35167880 DOI: 10.1016/j.lfs.2022.120393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022]
Abstract
AIMS Hyperbaric oxygen (HBO) therapy has been widely used for the adjunctive treatment of diabetic wounds, and is currently known to influence left ventricular (LV) function. However, morphological and molecular repercussions of the HBO in the diabetic myocardium remain to be described. We aimed to investigate whether HBO therapy would mitigate adverse LV remodeling caused by streptozotocin (STZ)-induced diabetes. MAIN METHODS Sixty-day-old Male Wistar rats were divided into four groups: Control (n = 8), HBO (n = 7), STZ (n = 10), and STZ + HBO (n = 8). Diabetes was induced by a single STZ injection (60 mg/kg, i.p.). HBO treatment (100% oxygen at 2.5 atmospheres absolute, 60 min/day, 5 days/week) lasted for 5 weeks. LV morphology was evaluated using histomorphometry. Gene expression analyzes were performed for LV collagens I (Col1a1) and III (Col3a1), matrix metalloproteinases 2 (Mmp2) and 9 (Mmp9), and transforming growth factor-β1 (Tgfb1). The Immunoexpression of cardiac tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF) were also quantified. KEY FINDINGS HBO therapy prevented LV concentric remodeling, heterogeneous myocyte hypertrophy, and fibrosis in diabetic rats associated with attenuation of leukocyte infiltration. HBO therapy also increased Mmp2 gene expression, and inhibited the induction of Tgfb1 and Mmp9 mRNAs caused by diabetes, and normalized TNF-α and VEGF protein expression. SIGNIFICANCE HBO therapy had protective effects for the LV structure in STZ-diabetic rats and ameliorated expression levels of genes involved in cardiac collagen turnover, as well as pro-inflammatory and pro-angiogenic signaling.
Collapse
Affiliation(s)
- Flávio Santos Silva
- Department of Health Sciences, Federal Rural University of the Semi-Arid, Mossoró, Brazil.
| | | | - Ony Araujo Galdino
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Uta Ishikawa
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | | | | | | | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Bento João Abreu
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
7
|
Lindenmann J, Smolle C, Kamolz LP, Smolle-Juettner FM, Graier WF. Survey of Molecular Mechanisms of Hyperbaric Oxygen in Tissue Repair. Int J Mol Sci 2021; 22:11754. [PMID: 34769182 PMCID: PMC8584249 DOI: 10.3390/ijms222111754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023] Open
Abstract
For more than six decades, hyperbaric oxygen (HBO) has been used for a variety of indications involving tissue repair. These indications comprise a wide range of diseases ranging from intoxications to ischemia-reperfusion injury, crush syndrome, central nervous injury, radiation-induced tissue damage, burn injury and chronic wounds. In a systematic review, the molecular mechanisms triggered by HBO described within the last two decades were compiled. They cover a wide range of pathways, including transcription, cell-to-cell contacts, structure, adhesion and transmigration, vascular signaling and response to oxidative stress, apoptosis, autophagy and cell death, as well as inflammatory processes. By analyzing 71 predominantly experimental publications, we established an overview of the current concepts regarding the molecular mechanisms underlying the effects of HBO. We considered both the abovementioned pathways and their role in various applications and indications.
Collapse
Affiliation(s)
- Joerg Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29/3, 8036 Graz, Austria;
| | - Christian Smolle
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29/2, 8036 Graz, Austria; (C.S.); (L.-P.K.)
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29/2, 8036 Graz, Austria; (C.S.); (L.-P.K.)
| | - Freyja Maria Smolle-Juettner
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, Auenbruggerplatz 29/3, 8036 Graz, Austria;
| | - Wolfgang F. Graier
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, 8010 Graz, Austria;
| |
Collapse
|
8
|
Lin KC, Yeh JN, Chen YL, Chiang JY, Sung PH, Lee FY, Guo J, Yip HK. Xenogeneic and Allogeneic Mesenchymal Stem Cells Effectively Protect the Lung Against Ischemia-reperfusion Injury Through Downregulating the Inflammatory, Oxidative Stress, and Autophagic Signaling Pathways in Rat. Cell Transplant 2021; 29:963689720954140. [PMID: 33050736 PMCID: PMC7784512 DOI: 10.1177/0963689720954140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study tested the hypothesis that both allogenic adipose-derived mesenchymal stem cells (ADMSCs) and human inducible pluripotent stem cell-derived MSCs (iPS-MSCs) offered a comparable effect for protecting the lung against ischemia-reperfusion (IR) injury in rodent through downregulating the inflammatory, oxidative stress, and autophagic signaling pathways. Adult male Sprague–Dawley rats (n = 32) were categorized into group 1 (sham-operated control), group 2 (IRI), group 3 [IRI + ADMSCs (1.0 × 106 cells)/tail-vein administration at 0.5/18/36 h after IR], and group 4 [IRI + iPS-MSCs (1.0 × 106 cells)/tail-vein administration at 0.5/18/36 h after IR], and lungs were harvested at 72 h after IR procedure. In vitro study demonstrated that protein expressions of three signaling pathways in inflammation (TLR4/MyD88/TAK1/IKK/I-κB/NF-κB/Cox-2/TNF-α/IL-1ß), mitochondrial damage/cell apoptosis (cytochrome C/cyclophilin D/DRP1/ASK1/APAF-1/mitochondrial-Bax/caspase3/8/9), and autophagy/cell death (ULK1/beclin-1/Atg5,7,12, ratio of LCB3-II/LC3B-I, p-AKT/m-TOR) were significantly higher in lung epithelial cells + 6h hypoxia as compared with the control, and those were significantly reversed by iPS-MSC treatment (all P < 0.001). Flow cytometric analysis revealed that percentages of the inflammatory cells in bronchioalveolar lavage fluid and circulation, and immune cells in circulation/spleen as well as circulatory early and late apoptotic cells were highest in group 2, lowest in group 1, and significantly higher in group 3 than in group 4 (all P < 0.0001). Microscopy showed the lung injury score and numbers of inflammatory cells and Western blot analysis showed the signaling pathways of inflammation, mitochondrial damage/cell apoptosis, autophagy, and oxidative stress exhibited an identical pattern of flow cytometric results among the four groups (all P < 0.0001). Both xenogeneic and allogenic MSCs protected the lung against IRI via suppressing the inflammatory, oxidative stress, and autophagic signaling.
Collapse
Affiliation(s)
- Kun-Chen Lin
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung
| | - Jun-Ning Yeh
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung
| | - Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung
| | - Fan-Yen Lee
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei
| | - Jun Guo
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China.,*Both the authors contributed equally to this article
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung.,Department of Nursing, Asia University, Taichung.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China.,*Both the authors contributed equally to this article
| |
Collapse
|
9
|
Bo-Htay C, Shwe T, Jaiwongkam T, Kerdphoo S, Pratchayasakul W, Pattarasakulchai T, Shinlapawittayatorn K, Chattipakorn SC, Chattipakorn N. Hyperbaric oxygen therapy effectively alleviates D-galactose-induced-age-related cardiac dysfunction via attenuating mitochondrial dysfunction in pre-diabetic rats. Aging (Albany NY) 2021; 13:10955-10972. [PMID: 33861726 PMCID: PMC8109141 DOI: 10.18632/aging.202970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/27/2021] [Indexed: 12/23/2022]
Abstract
Currently, the prevalence of obesity in aging populations is fast growing worldwide. Aging induced by D-galactose (D-gal) is proven to cause the worsening of cardiac dysfunction in pre-diabetic rats via deteriorating cardiac mitochondrial function. Hyperbaric oxygen therapy (HBOT) has been shown to attenuate D-gal-induced cognitive deterioration through decreased inflammation and apoptosis. We tested the hypothesis that HBOT alleviates D-gal induced cardiac dysfunction via improving mitochondrial function in pre-diabetic rats. Wistar rats (n=56) were fed normal diet or high-fat diet for 12 weeks. For subsequent 8 weeks, they were subcutaneously injected either vehicle (0.9% normal saline) or D-gal (150mg/kg/day). Rats were randomly subdivided into 7 groups at week 21: sham-treated (normal diet fed rats with vehicle (NDV), high-fat diet fed rats with vehicle (HFV), normal diet fed rats with D-gal (NDDg), high-fat diet fed rats with D-gal (HFDg)) and HBOT-treated (HFV, NDDg, HFDg). Sham rats received ambient pressure of oxygen while HBOT-treated ones received 100% oxygen given once daily for 60 minutes at 2 atmosphere absolute. HBOT reduced metabolic impairments, mitochondrial dysfunction and increased autophagy, resulting in an improvement of cardiac function in aged pre-diabetic rats.
Collapse
Affiliation(s)
- Cherry Bo-Htay
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thazin Shwe
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thidarat Jaiwongkam
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiwan Kerdphoo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasana Pratchayasakul
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thienchai Pattarasakulchai
- Hyperbaric Oxygen Therapy Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
10
|
Yan B, Liu S, Li X, Zhong Y, Tong F, Yang S. Preconditioning with endoplasmic reticulum stress alleviated heart ischemia/reperfusion injury via modulating IRE1/ATF6/RACK1/PERK and PGC-1α in diabetes mellitus. Biomed Pharmacother 2019; 118:109407. [PMID: 31545290 DOI: 10.1016/j.biopha.2019.109407] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to observe the functions of preconditioning with endoplasmic reticulum stress (ERS) whether alleviated heart ischemia/reperfusion injury (HI/RI) via modulating IRE1/ATF6/RACK1/PERK and PGC-1α expressions in diabetes mellitus (DM) or not. Diabetic rats were pretreated with 0.6 mg/kg tunicamycin (TM, 0.6 mg/kg tunicamycin was administered via intraperitoneal injection 30 minutes prior to the I/R procedures), and then subjected to 45 minutes of ischemia and 3 hours of reperfusion. Blood and myocardial tissues were collected, myocardial pathological injuries were investigated, serum creatine kinase-MB (CK-MB) and cardiac troponin T (cTnT) levels were measured, left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), maximum rate of left ventricular pressure rise (+dp/dtmax) and maximum rate of left ventricular pressure drop (-dp/dtmax) were evaluated, reactive oxygen species (ROS) and caspase-3 levels were observed, ΔΨm level and ROS expression were measured, and activated transcript factor 6 (ATF6), receptor for activated C kinase 1 (RACK1), PRK-like ER kinase (PERK), glucose regulated protein 78 (GRP78) and peroxisome proliferator-activated receptor γ co-activator 1-α (PGC-1α) expressions were assessed. The TM ameliorated the pathological damages, reduced myocardial oxidative stress damages, restrained apoptosis, and upregulated the expressions of ATF6, RACK1, PERK, GRP78 and PGC-1α compared with those of the ischemia/reperfusion (I/R) group in DM. This study suggested the preconditioning with endoplasmic reticulum stress (TM) strategy that could enhance protection against HI/RI in DM in clinical myocardial diseases.
Collapse
Affiliation(s)
- Bing Yan
- Xiamen Diabetes Institute, The First Affiliated Hospital, Xiamen University, Xiamen, 361000, China
| | - Suhuan Liu
- Xiamen Diabetes Institute, The First Affiliated Hospital, Xiamen University, Xiamen, 361000, China
| | - Xuejun Li
- Xiamen Diabetes Institute, The First Affiliated Hospital, Xiamen University, Xiamen, 361000, China
| | - Yali Zhong
- College of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Fei Tong
- Xiamen Diabetes Institute, The First Affiliated Hospital, Xiamen University, Xiamen, 361000, China; Department of Pathology and Pathophysiology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, China.
| | - Shuyu Yang
- Xiamen Diabetes Institute, The First Affiliated Hospital, Xiamen University, Xiamen, 361000, China.
| |
Collapse
|
11
|
Zhang C, Zhang C, Wang H, Qi Y, Kan Y, Ge Z. Effects of miR‑103a‑3p on the autophagy and apoptosis of cardiomyocytes by regulating Atg5. Int J Mol Med 2019; 43:1951-1960. [PMID: 30864677 PMCID: PMC6443343 DOI: 10.3892/ijmm.2019.4128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
Abstract
Autophagy and apoptosis are associated with cardiovascular diseases. Emerging evidence shows that microRNAs (miRs) are critical in the development of pathological processes underlying cardiovascular diseases by regulating the induction of apoptosis and autophagy. The present study aimed to investigate the role of miR-103a-3p in cardiomyocyte injury through autophagy and apoptosis. H9c2 cells were cultured under hypoxia and reoxygenation (H/R) conditions and were used to mimic cells under ischemia. The transfection of cells with miR-103a-3p (mimics and inhibitors) was performed to examine its function in cardiomyocytes. The expression levels of miR-103a-3p were evaluated by reverse transcription-quantitative polymerase chain reaction analysis. Cell viability was determined using an MTT assay, and the lactate dehydrogenase assay (LDH) was used to investigate cell injury. The expression levels of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein, Beclin-1, autophagy-related 5 (Atg5), cleaved caspase-3 and cleaved caspase-9 were detected using western blotting. Immunofluorescence assays were performed to detect the expression of LC3 as a marker of autophagy. The target gene of miR-103a-3p was identified using dual-luciferase reporter assays. The results revealed that the expression levels of miR-103a-3p were significantly downregulated in cardiomyocytes under H/R conditions. Injury of the cardiomyocytes was evaluated under H/R conditions. Following transfection of the cells with miR-103a-3p inhibitors, cell injury was increased, as determined by LDH and MTT assays. The expression levels of apoptotic proteins were consistent with the results obtained in the LDH and cell viability assays. The induction of autophagy was increased in cells under H/R conditions and cells with miR-103a-3p inhibitor transfection, whereas the induction of autophagy was decreased in cells transfected with miR-103a-3p mimics. In addition, the data indicated that miR-103a-3p directly targeted Atg5, which regulated the induction of autophagy and apoptosis. Taken together, these findings indicate that, following the inhibition of miR-103a-3p, Atg5 promotes autophagy and apoptosis in cardiomyocytes by directly targeting Atg5. Therefore, miR-103a-3p can be considered a potential therapeutic target for myocardial ischemia.
Collapse
Affiliation(s)
- Chenjun Zhang
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Chenjun Zhang
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Hairong Wang
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Yuan Qi
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Ying Kan
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| | - Zhiru Ge
- Department of Cardiology, Shanghai Pudong New Area Gongli Hospital, Shanghai 200135, P.R. China
| |
Collapse
|
12
|
Lu K, Wang H, Ge X, Liu Q, Chen M, Shen Y, Liu X, Pan S. Hyperbaric Oxygen Protects Against Cerebral Damage in Permanent Middle Cerebral Artery Occlusion Rats and Inhibits Autophagy Activity. Neurocrit Care 2019; 30:98-105. [PMID: 29987690 DOI: 10.1007/s12028-018-0577-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND To investigate the effects of hyperbaric oxygen (HBO) on brain damage and autophagy levels in a rat model of middle cerebral artery occlusion. METHODS Neurologic injury and infarcted areas were evaluated according to the modified neurological severity score and 2,3,5-triphenyltetrazolium chloride staining. Western blots were used to determine beclin1, caspase-3 and fodrin1 protein expression. Beclin1 protein expression (an autophagy marker), positive terminal dUTP nick-end labeling (TUNEL) staining (an apoptosis marker) and positive propidium iodide (PI) staining (a necrosis marker) were detected by immunofluorescence. RESULTS Our results indicated that HBO could decrease the infarct volume and speed up the recovery of the neurological deficit scores in ischemic rats. Beclin1 was down-regulated after HBO treatment. HBO treatment inhibited fodrin1 protein expression and decreased the number of PI-positive cells. HBO also down-regulated caspase-3 and decreased the number of TUNEL-positive cells. CONCLUSION Cerebral ischemia caused early neuronal death due to necrosis, followed by delayed neuronal death due to apoptosis. Consequently, autophagy might be involved in all processes of ischemia. HBO could protect the brain against ischemic injury, and the possible mechanisms might be correlated with decreased autophagy activity and decreased apoptosis and necrosis levels.
Collapse
Affiliation(s)
- KongMiao Lu
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- General ICU, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - HaiRong Wang
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - XiaoLi Ge
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - QingHua Liu
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Miao Chen
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yong Shen
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xuan Liu
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - ShuMing Pan
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
13
|
Chen W, Liang X, Nong Z, Li Y, Pan X, Chen C, Huang L. The Multiple Applications and Possible Mechanisms of the Hyperbaric Oxygenation Therapy. Med Chem 2018; 15:459-471. [PMID: 30569869 DOI: 10.2174/1573406415666181219101328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/23/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Hyperbaric Oxygenation Therapy (HBOT) is used as an adjunctive method for multiple diseases. The method meets the routine treating and is non-invasive, as well as provides 100% pure oxygen (O2), which is at above-normal atmospheric pressure in a specialized chamber. It is well known that in the condition of O2 deficiency, it will induce a series of adverse events. In order to prevent the injury induced by anoxia, the capability of offering pressurized O2 by HBOT seems involuntary and significant. In recent years, HBOT displays particular therapeutic efficacy in some degree, and it is thought to be beneficial to the conditions of angiogenesis, tissue ischemia and hypoxia, nerve system disease, diabetic complications, malignancies, Carbon monoxide (CO) poisoning and chronic radiation-induced injury. Single and combination HBOT are both applied in previous studies, and the manuscript is to review the current applications and possible mechanisms of HBOT. The applicability and validity of HBOT for clinical treatment remain controversial, even though it is regarded as an adjunct to conventional medical treatment with many other clinical benefits. There also exists a negative side effect of accepting pressurized O2, such as oxidative stress injury, DNA damage, cellular metabolic, activating of coagulation, endothelial dysfunction, acute neurotoxicity and pulmonary toxicity. Then it is imperative to comprehensively consider the advantages and disadvantages of HBOT in order to obtain a satisfying therapeutic outcome.
Collapse
Affiliation(s)
- Wan Chen
- Department of Emergency, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Xingmei Liang
- Department of Pharmacy, Guangxi Medical College, Nanning, Guangxi 530021, China
| | - Zhihuan Nong
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning 530022, China
| | - Yaoxuan Li
- Department of Neurology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530022, China
| | - Xiaorong Pan
- Department of Hyperbaric oxygen, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Chunxia Chen
- Department of Hyperbaric oxygen, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| | - Luying Huang
- Department of Respiratory Medicine, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi 530021, China
| |
Collapse
|
14
|
Ding Y, Wang L, Zhao Q, Wu Z, Kong L. MicroRNA‑93 inhibits chondrocyte apoptosis and inflammation in osteoarthritis by targeting the TLR4/NF‑κB signaling pathway. Int J Mol Med 2018; 43:779-790. [PMID: 30569118 PMCID: PMC6317687 DOI: 10.3892/ijmm.2018.4033] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 12/07/2018] [Indexed: 01/16/2023] Open
Abstract
Osteoarthritis (OA) is a serious disease of the articular cartilage, and inflammation has been implicated in its pathogenesis. Previously, microRNAs (miRNAs) have been proposed as novel regulators of inflammation, however, the functional role of microRNAs in regulating inflammation in OA remains to be fully elucidated. The aim of the present study was to investigate the roles of miRNAs in OA inflammation and the underlying molecular mechanism. Firstly, the miRNA expression patterns were analyzed in the articular cartilage tissues from experimental OA mice using an miRNA microarray. miRNA (miR)-93 was identified with particular interest due to its reported effects on apoptosis and inflammation suppression. Subsequently, the expression of miR-93 was further validated in the articular cartilage tissues of OA mice and lipopolysaccharide (LPS)-stimulated primary chondrocytes. Using this LPS-induced chondrocyte injury model, the overexpression of miR-93 enhanced cell viability, improved cell apoptosis and attenuated the inflammatory response, as reflected by reductions in pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6. In addition, Toll-like receptor 4 (TLR4), an important regulator of the nuclear factor-κB (NF-κB) signaling pathway, was identified as a direct target of miR-93 in chondrocytes. Furthermore, the restoration of TLR4 markedly abrogated the inhibitory effects of miR-93 on the chondrocyte apoptosis and inflammation induced by LPS. In addition, the overexpression of miR-93 by agomir-miR-93 significantly inhibited the levels of pro-inflammatory cytokines and cell apoptosis, whereas antagomir-93 exacerbated apoptosis and inflammation in vivo. Taken together, the results of the study suggested that miR-93 may be a promising therapeutic target for the treatment of human OA.
Collapse
Affiliation(s)
- Yanjie Ding
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Laifang Wang
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Qing Zhao
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Zhenzhen Wu
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Lingli Kong
- Department of Rheumatology and Immunology, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| |
Collapse
|
15
|
Sun Y, Wang Y, Yang H, Lu Y, Zhu G, Yang L, Zhao Y, Hu B, Ying T. Interleukin 8 targeted contrast echocardiography is effective to evaluate myocardial ischemia-reperfusion injury in the rabbits. Biomed Pharmacother 2018; 109:1346-1350. [PMID: 30551385 DOI: 10.1016/j.biopha.2018.10.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 11/26/2022] Open
Abstract
Interleukin 8 (IL-8) is an important pro-inflammatory cytokine that recruits neutrophil to the areas of inflammation and has been implicated in myocardial ischemia reperfusion injury (MIRI). This study aimed to apply IL-8 targeted myocardial contrast echocardiography (MCE) to evaluate MIRI in rabbits. MCE imaging with IL-8 targeted microbubbles (MBIL-8) and control microbubbles (MBc) was performed in 40 Japanese white rabbits after brief proximal left anterior descending (LAD) partial occlusion for 30 min and subsequent reperfusion for 30 min, 60 min, 120 min and 180 min. Electrocardiogram and regional wall motion were assessed during occlusion and reperfusion. MCE demonstrated that IL-8 level rapidly increased in reperfused myocardial tissue and reached the peak after 120 min of reperfusion and lasted to 180 min of reperfusion. ELISA showed that the tendency of MCE data to change with reperfusion time was the same as that of IL-8 content. Taken together, these results suggest that targeted MCE with IL-8 antibody provides a new approach to noninvasive evaluation of MIRI using ultrasound imaging techniques.
Collapse
Affiliation(s)
- Yue Sun
- Department of Ultrasound, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Yuxue Wang
- Department of Ultrasound, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Hanning Yang
- Department of Ultrasound, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Yongping Lu
- Department of Ultrasound, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming, China.
| | - Guimin Zhu
- Department of Ultrasound, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Lihong Yang
- Department of Ultrasound, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Yifan Zhao
- Department of Ultrasound, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Bing Hu
- Department of Ultrasound, Shanghai Sixth People's Hospital, Shanghai, China
| | - Tao Ying
- Department of Ultrasound, Shanghai Sixth People's Hospital, Shanghai, China
| |
Collapse
|
16
|
Fauzia E, Barbhuyan TK, Shrivastava AK, Kumar M, Garg P, Khan MA, Robertson AAB, Raza SS. Chick Embryo: A Preclinical Model for Understanding Ischemia-Reperfusion Mechanism. Front Pharmacol 2018; 9:1034. [PMID: 30298003 PMCID: PMC6160536 DOI: 10.3389/fphar.2018.01034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/27/2018] [Indexed: 12/19/2022] Open
Abstract
Ischemia-reperfusion (I/R)-related disorders, such as stroke, myocardial infarction, and peripheral vascular disease, are among the most frequent causes of disease and death. Tissue injury or death may result from the initial ischemic insult, primarily determined by the magnitude and duration of the interruption in blood supply and then by the subsequent reperfusion-induced damage. Various in vitro and in vivo models are currently available to study I/R mechanism in the brain and other tissues. However, thus far, no in ovo I/R model has been reported for understanding the I/R mechanisms and for faster drug screening. Here, we developed an in ovo Hook model of I/R by occluding and releasing the right vitelline artery of a chick embryo at 72 h of development. To validate the model and elucidate various underlying survival and death mechanisms, we employed imaging (Doppler blood flow imaging), biochemical, and blotting techniques and evaluated the cell death mechanism: autophagy and inflammation caused by I/R. In conclusion, the present model is useful in parallel with established in vitro and in vivo I/R models to understand the mechanisms of I/R development and its treatment.
Collapse
Affiliation(s)
- Eram Fauzia
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Tarun Kumar Barbhuyan
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Amit Kumar Shrivastava
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Manish Kumar
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Paarth Garg
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Mohsin Ali Khan
- Era's Lucknow Medical College and Hospital, Era University, Lucknow, India
| | - Avril A B Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Syed Shadab Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College and Hospital, Era University, Lucknow, India.,Department of Stem Cell Biology and Regenerative Medicine, Era University, Lucknow, India
| |
Collapse
|