1
|
Lastraioli E, Iorio J, Piazza F, Capitani C, Santillo M, Duranti C, Bianchi S, Meattini I, Fraser SP, Djamgoz MBA, Becchetti A, Arcangeli A. Clinical relevance of macromolecular complexes involving integrins, potassium and sodium ion channels and the sodium/proton antiporter in human breast cancer. Cancer Cell Int 2025; 25:24. [PMID: 39865220 PMCID: PMC11765915 DOI: 10.1186/s12935-025-03653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K+ channel, the neonatal form of the Na+ channel NaV 1.5 (nNaV1.5) and the Na+/H+ antiporter NHE1 (NHE1/hERG1/β1/nNaV1.5 complex) has been recently described to be expressed and regulate relevant cancer related behaviors in Breast Cancer (BCa) cells. METHODS We analyzed the expression and impact on outcome of the genes encoding the four proteins forming the NHE1/hERG1/β1/nNaV1.5 complex (SLC9A1, KCNH2, ITGB1 and SCN5A) in public datasets. The corresponding proteins were also evaluated by immunohistochemistry and their expression was correlated with clinic-pathological and molecular characteristics and patients' survival. RESULTS The expression of KCNH2 and SCN5A was significantly correlated in primary BCa as occurs in the heart, although with a broader distribution, forming a functional network which also included ITGB1 and SLC9A1. The co-expression proteins emerged from the immunohistochemistry analysis. Interestingly, hERG1, nNav1.5 and the hERG1/β1 integrin complex associated with several clinical features, including molecular subtype and hormone receptor status. Moreover, hERG1 and the combination of hERG1 and nNav1.5 had impact on prognosis, contributing to identifying a group of patients with worse prognosis. CONCLUSIONS hERG1 and nNav1.5 channels along with β1 integrins and the NHE1 antiporter are co-expressed in BCa both at gene and protein levels, assembling into a macromolecular complex. The NHE1/hERG1/β1/nNaV1.5 complex can be considered a novel biomarker and potential target for therapy for BCa patients.
Collapse
Affiliation(s)
- Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
- CSDC (Center for the Study of complex dynamics), University of Florence, Florence, Italy.
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Piazza
- CSDC (Center for the Study of complex dynamics), University of Florence, Florence, Italy
- Department of Physics, University of Florence and Florence Section of INFN, Florence, Italy
| | - Chiara Capitani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michele Santillo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- MCK Therapeutics Srl, Pistoia, Italy
| | - Simonetta Bianchi
- Department of Health Sciences, Division of Pathological Anatomy, University of Florence, Florence, Italy
| | - Icro Meattini
- Department of Experimental and Clinical Biomedical Sciences Mario Serio, University of Florence, Florence, Italy
- Radiation Oncology Unit, Oncology Department, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Scott P Fraser
- Department of Life Sciences, Imperial College London, London, UK
| | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, UK
- Biotechnology Research Centre, Cyprus International University, Mersin 10, Haspolat, TRNC, Turkey
| | - Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- CSDC (Center for the Study of complex dynamics), University of Florence, Florence, Italy
- MCK Therapeutics Srl, Pistoia, Italy
| |
Collapse
|
2
|
Yu Y, Zhu C, Wang X, Shi Y, Gao Y, Yu Z. hERG activators exhibit antitumor effects in breast cancer through calcineurin and β-catenin-mediated signaling pathways. Front Pharmacol 2025; 16:1545300. [PMID: 39917621 PMCID: PMC11799564 DOI: 10.3389/fphar.2025.1545300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025] Open
Abstract
Background Breast cancer remains a leading cause of mortality among women worldwide, with existing therapeutic options often accompanied by significant side effects and a persistent risk of disease recurrence. This highlights the need for novel drug candidates with new mechanisms of action by targeting alternative signaling pathways. While hERG channel is notoriously regarded as an off-target due to drug-induced cardiotoxicity, its therapeutic potential as a drug target remains largely unexplored. Methods This study investigated the role of hERG in breast cancer progression and its impact on patient survival. The anti-proliferative, anti-migratory, anti-invasive and pro-apoptotic effects of hERG activators were evaluated using the Cell Counting Kit-8, wound healing assay, transwell assay and cell apoptosis assay, respectively. Western blotting, Ca2+ imaging and immunofluorescence assays were employed to study their antitumor mechanisms of actions. Results We identified two novel hERG activators, SDUY429 and SDUY436, which effectively inhibited the proliferation and migration of MDA-MB-231 and MCF-7 cells. In addition, SDUY436 demonstrated significant anti-invasive and pro-apoptotic effects in MDA-MB-231 cells. Mechanistically, the anti-proliferative activity of hERG activators were mediated through calcineurin activation via enhanced calcium ion influx, which facilitated the nuclear translocation of nuclear factor of activated T cells (NFAT) and upregulated p21Waf/Cip expression. Furthermore, both SDUY429 and SDUY436 remarkably suppressed the migration and invasion of MDA-MB-231 cells by downregulating the protein kinase B (AKT)/glycogen synthase kinase-3 beta (GSK3β)/β-catenin signaling pathway. The observed reduction in phospho-AKT-Ser473 (pAKTS473) expression resulted in the decreased levels of phospho-GSK3β-Ser9 (pGSK3βS9), thereby limiting the nuclear localization of β-catenin, which led to the inhibition of cell migration and invasion. Notably, combining SDUY429 or SDUY436 with the AKT inhibitor MK-2206 produced synergistic anti-proliferative effects. Conclusion These findings suggest that hERG activators hold promise as new potential therapeutic agents for the treatment of breast cancer, paving the way for future investigations into their clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiyi Yu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
3
|
Benn KW, Yuan PH, Chong HK, Stylii SS, Luwor RB, French CR. hERG channel agonist NS1643 strongly inhibits invasive astrocytoma cell line SMA-560. PLoS One 2024; 19:e0309438. [PMID: 39240809 PMCID: PMC11379238 DOI: 10.1371/journal.pone.0309438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 09/08/2024] Open
Abstract
Gliomas are highly malignant brain tumours that remain refractory to treatment. Treatment is typically surgical intervention followed by concomitant temozolomide and radiotherapy; however patient prognosis remains poor. Voltage gated ion channels have emerged as novel targets in cancer therapy and inhibition of a potassium selective subtype (hERG, Kv11.1) has demonstrated antitumour activity. Unfortunately blockade of hERG has been limited by cardiotoxicity, however hERG channel agonists have produced similar chemotherapeutic benefit without significant side effects. In this study, electrophysiological recordings suggest the presence of hERG channels in the anaplastic astrocytoma cell line SMA-560, and treatment with the hERG channel agonist NS1643, resulted in a significant reduction in the proliferation of SMA-560 cells. In addition, NS1643 treatment also resulted in a reduction of the secretion of matrix metalloproteinase-9 and SMA-560 cell migration. When combined with temozolomide, an additive impact was observed, suggesting that NS1643 may be a suitable adjuvant to temozolomide and limit the invasiveness of glioma.
Collapse
Affiliation(s)
- Kieran W Benn
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Patrick H Yuan
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Harvey K Chong
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Stanley S Stylii
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurosurgery, Royal Melbourne Hospital, The University of Melbourne, Victoria, Australia
| | - Rodney B Luwor
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher R French
- Neural Dynamics Laboratory, Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Kofman K, Levin M. Bioelectric pharmacology of cancer: A systematic review of ion channel drugs affecting the cancer phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:25-39. [PMID: 38971325 DOI: 10.1016/j.pbiomolbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cancer is a pernicious and pressing medical problem; moreover, it is a failure of multicellular morphogenesis that sheds much light on evolutionary developmental biology. Numerous classes of pharmacological agents have been considered as cancer therapeutics and evaluated as potential carcinogenic agents; however, these are spread throughout the primary literature. Here, we briefly review recent work on ion channel drugs as promising anti-cancer treatments and present a systematic review of the known cancer-relevant effects of 109 drugs targeting ion channels. The roles of ion channels in cancer are consistent with the importance of bioelectrical parameters in cell regulation and with the functions of bioelectric signaling in morphogenetic signals that act as cancer suppressors. We find that compounds that are well-known for having targets in the nervous system, such as voltage-gated ion channels, ligand-gated ion channels, proton pumps, and gap junctions are especially relevant to cancer. Our review suggests further opportunities for the repurposing of numerous promising candidates in the field of cancer electroceuticals.
Collapse
Affiliation(s)
- Karina Kofman
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, USA.
| |
Collapse
|
5
|
Shorthouse D, Zhuang L, Rahrmann EP, Kosmidou C, Wickham Rahrmann K, Hall M, Greenwood BM, Devonshire G, Gilbertson RJ, Fitzgerald RC, Hall BA. KCNQ potassium channels modulate Wnt activity in gastro-oesophageal adenocarcinomas. Life Sci Alliance 2023; 6:e202302124. [PMID: 37748809 PMCID: PMC10520261 DOI: 10.26508/lsa.202302124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Voltage-sensitive potassium channels play an important role in controlling membrane potential and ionic homeostasis in the gut and have been implicated in gastrointestinal (GI) cancers. Through large-scale analysis of 897 patients with gastro-oesophageal adenocarcinomas (GOAs) coupled with in vitro models, we find KCNQ family genes are mutated in ∼30% of patients, and play therapeutically targetable roles in GOA cancer growth. KCNQ1 and KCNQ3 mediate the WNT pathway and MYC to increase proliferation through resultant effects on cadherin junctions. This also highlights novel roles of KCNQ3 in non-excitable tissues. We also discover that activity of KCNQ3 sensitises cancer cells to existing potassium channel inhibitors and that inhibition of KCNQ activity reduces proliferation of GOA cancer cells. These findings reveal a novel and exploitable role of potassium channels in the advancement of human cancer, and highlight that supplemental treatments for GOAs may exist through KCNQ inhibitors.
Collapse
Affiliation(s)
- David Shorthouse
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, London, UK
| | - Lizhe Zhuang
- Institute for Early Detection, CRUK Cambridge Centre, Cambridge, UK
| | - Eric P Rahrmann
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | | | - Michael Hall
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Benedict M Greenwood
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, London, UK
| | - Ginny Devonshire
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Richard J Gilbertson
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | | | - Benjamin A Hall
- Department of Medical Physics and Biomedical Engineering, Malet Place Engineering Building, University College London, London, UK
| |
Collapse
|
6
|
Sesti F, Bortolami A, Kathera-Ibarra EF. Non-conducting functions of potassium channels in cancer and neurological disease. CURRENT TOPICS IN MEMBRANES 2023; 92:199-231. [PMID: 38007268 DOI: 10.1016/bs.ctm.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Cancer and neurodegenerative disease, albeit fundamental differences, share some common pathogenic mechanisms. Accordingly, both conditions are associated with aberrant cell proliferation and migration. Here, we review the causative role played by potassium (K+) channels, a fundamental class of proteins, in cancer and neurodegenerative disease. The concept that emerges from the review of the literature is that K+ channels can promote the development and progression of cancerous and neurodegenerative pathologies by dysregulating cell proliferation and migration. K+ channels appear to control these cellular functions in ways that not necessarily depend on their conducting properties and that involve the ability to directly or indirectly engage growth and survival signaling pathways. As cancer and neurodegenerative disease represent global health concerns, identifying commonalities may help understand the molecular basis for those devastating conditions and may facilitate the design of new drugs or the repurposing of existing drugs.
Collapse
Affiliation(s)
- Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Hoes Ln. West, Piscataway, NJ, United States.
| | - Alessandro Bortolami
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Hoes Ln. West, Piscataway, NJ, United States
| | - Elena Forzisi Kathera-Ibarra
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Hoes Ln. West, Piscataway, NJ, United States
| |
Collapse
|
7
|
Eskandari N, Gentile S. Potassium channels activity unveils cancer vulnerability. CURRENT TOPICS IN MEMBRANES 2023; 92:1-14. [PMID: 38007264 DOI: 10.1016/bs.ctm.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
"No cell could exist without ion channels" (Clay Armstrong; 1999). Since the discovery in the early 1950s, that ions move across biological membranes, the idea that changes of ionic gradients can generate biological signals has fascinated scientists in any fields. Soon later (1960s) it was found that ionic flows were controlled by a class of specific and selective proteins called ion channels. Thus, it became clear that the concerted activities of these proteins can initiate, arrest, and finely tune a variety of biochemical cascades which offered the opportunity to better understand both biology and pathology. Cancer is a disease that is notoriously difficult to treat due its heterogeneous nature which makes it the deadliest disease in the developed world. Recently, emerging evidence has established that potassium channels are critical modulators of several hallmarks of cancer including tumor growth, metastasis, and metabolism. Nevertheless, the role of potassium ion channels in cancer biology and the therapeutic potential offered by targeting these proteins has not been explored thoroughly. This chapter is addressed to both cancer biologists and ion channels scientists and it aims to shine a light on the established and potential roles of potassium ion channels in cancer biology and on the therapeutic benefit of targeting potassium channels with activator molecules.
Collapse
Affiliation(s)
- Najmeh Eskandari
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - Saverio Gentile
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
8
|
Gómez-Herrera MA, Patlán E, Estrada-Garrido A, Hernández-Cruz A, Luis E. Fluorescent membrane potential assay for drug screening on Kv10.1 channel: identification of BL-1249 as a channel activator. Front Pharmacol 2023; 14:1238503. [PMID: 37554982 PMCID: PMC10404814 DOI: 10.3389/fphar.2023.1238503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
Resting membrane potential is a bioelectric property of all cells. Multiple players govern this property, the ion channels being the most important. Ion channel dysfunction can affect cells' resting membrane potential and could be associated with numerous diseases. Therefore, the drug discovery focus on ion channels has increased yearly. In addition to patch-clamp, cell-based fluorescent assays have shown a rapid and reliable method for searching new ion channel modulators. Here, we used a cell-based membrane potential assay to search for new blockers of the Kv10.1, a potassium channel strongly associated with cancer progression and a promising target in anticancer therapy. We found that fluoxetine and miconazole can inhibit the Kv10.1 channel in the micromolar range. In contrast, BL-1249 potentiates Kv10.1 currents in a dose-dependent manner, becoming the first molecule described as an activator of the channel. These results demonstrate that cell-based membrane potential assay can accelerate the discovery of new Kv10.1 modulators.
Collapse
Affiliation(s)
- Mirsha Aseret Gómez-Herrera
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enikar Patlán
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Armando Estrada-Garrido
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Universidad Tecnológica de México (UNITEC)—Campus Ecatepec, Estado de México, Mexico
| | - Arturo Hernández-Cruz
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Enoch Luis
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Cátedras CONAHCYT—Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
9
|
Hack SJ, Beane WS, Tseng KAS. Biophysics at the edge of life and death: radical control of apoptotic mechanisms. FRONTIERS IN CELL DEATH 2023; 2:1147605. [PMID: 39897412 PMCID: PMC11784940 DOI: 10.3389/fceld.2023.1147605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Recent studies have furthered our understanding of how dying and living cells interact in different physiological contexts, however the signaling that initiates and mediates apoptosis and apoptosis-induced proliferation are more complex than previously thought. One increasingly important area of study is the biophysical control of apoptosis. In addition to biochemical regulation, biophysical signals (including redox chemistry, bioelectric gradients, acoustic and magnetic stimuli) are also known yet understudied regulators of both cell death and apoptosis-induced proliferation. Mounting evidence suggests biophysical signals may be key targets for therapeutic interventions. This review highlights what is known about the role of biophysical signals in controlling cell death mechanisms during development, regeneration, and carcinogenesis. Since biophysical signals can be controlled spatiotemporally, bypassing the need for genetic manipulation, further investigation may lead to fine-tuned modulation of apoptotic pathways to direct desired therapeutic outcomes.
Collapse
Affiliation(s)
- Samantha J. Hack
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, USA
| | - Wendy S. Beane
- Western Michigan University, Department of Biological Sciences, Kalamazoo, MI, USA
| | - Kelly Ai-Sun Tseng
- University of Nevada, Las Vegas, School of Life Sciences, Las Vegas, NV, USA
| |
Collapse
|
10
|
Li M, Tian P, Zhao Q, Ma X, Zhang Y. Potassium channels: Novel targets for tumor diagnosis and chemoresistance. Front Oncol 2023; 12:1074469. [PMID: 36703789 PMCID: PMC9872028 DOI: 10.3389/fonc.2022.1074469] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
In recent years, the role of potassium channels in tumors has been intensively studied. Potassium channel proteins are widely involved in various physiological and pathological processes of cells. The expression and dysfunction of potassium channels are closely related to tumor progression. Potassium channel blockers or activators present antitumor effects by directly inhibiting tumor growth or enhancing the potency of classical antitumor agents in combination therapy. This article reviews the mechanisms by which potassium channels contribute to tumor development in various tumors in recent years, introduces the potential of potassium channels as diagnostic targets and therapeutic means for tumors, and provides further ideas for the proper individualized treatment of tumors.
Collapse
Affiliation(s)
- Meizeng Li
- School of Basic Medical Science, Weifang Medical University, Weifang, China
| | - Peijie Tian
- School of Basic Medical Science, Weifang Medical University, Weifang, China
| | - Qing Zhao
- School of Basic Medical Science, Weifang Medical University, Weifang, China
| | - Xialin Ma
- School of Basic Medical Science, Weifang Medical University, Weifang, China
| | - Yunxiang Zhang
- Department of Pathology, Weifang People’ s Hospital, Weifang, China,*Correspondence: Yunxiang Zhang,
| |
Collapse
|
11
|
Bioelectronic medicines: Therapeutic potential and advancements in next-generation cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188808. [DOI: 10.1016/j.bbcan.2022.188808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
12
|
Jiang Y, Senyuk V, Ma K, Chen H, Qin X, Li S, Liu Y, Gentile S, Minshall RD. Pharmacological Activation of Potassium Channel Kv11.1 with NS1643 Attenuates Triple Negative Breast Cancer Cell Migration by Promoting the Dephosphorylation of Caveolin-1. Cells 2022; 11:2461. [PMID: 35954304 PMCID: PMC9368491 DOI: 10.3390/cells11152461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
The prevention of metastasis is a central goal of cancer therapy. Caveolin-1 (Cav-1) is a structural membrane and scaffolding protein shown to be a key regulator of late-stage breast cancer metastasis. However, therapeutic strategies targeting Cav-1 are still lacking. Here, we demonstrate that the pharmacological activation of potassium channel Kv11.1, which is uniquely expressed in MDA-MB-231 triple negative breast cancer cells (TNBCs) but not in normal MCF-10A cells, induces the dephosphorylation of Cav-1 Tyr-14 by promoting the Ca2+-dependent stimulation of protein tyrosine phosphatase 1B (PTP1B). Consequently, the dephosphorylation of Cav-1 resulted in its disassociation from β-catenin, which enabled the accumulation of β-catenin at cell borders, where it facilitated the formation of cell-cell adhesion complexes via interactions with R-cadherin and desmosomal proteins. Kv11.1 activation-dependent Cav-1 dephosphorylation induced with NS1643 also reduced cell migration and invasion, consistent with its ability to regulate focal adhesion dynamics. Thus, this study sheds light on a novel pharmacological mechanism of promoting Cav-1 dephosphorylation, which may prove to be effective at reducing metastasis and promoting contact inhibition.
Collapse
Affiliation(s)
- Ying Jiang
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Vitalyi Senyuk
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ke Ma
- Research Resources Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hui Chen
- Research Resources Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Xiang Qin
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shun Li
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yiyao Liu
- Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Saverio Gentile
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- UI Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
- UI Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
13
|
Ion Channel Drugs Suppress Cancer Phenotype in NG108-15 and U87 Cells: Toward Novel Electroceuticals for Glioblastoma. Cancers (Basel) 2022; 14:cancers14061499. [PMID: 35326650 PMCID: PMC8946312 DOI: 10.3390/cancers14061499] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma is a lethal brain cancer that commonly recurs after tumor resection and chemotherapy treatment. Depolarized resting membrane potentials and an acidic intertumoral extracellular pH have been associated with a proliferative state and drug resistance, suggesting that forced hyperpolarization and disruption of proton pumps in the plasma membrane could be a successful strategy for targeting glioblastoma overgrowth. We screened 47 compounds and compound combinations, most of which were ion-modulating, at different concentrations in the NG108-15 rodent neuroblastoma/glioma cell line. A subset of these were tested in the U87 human glioblastoma cell line. A FUCCI cell cycle reporter was stably integrated into both cell lines to monitor proliferation and cell cycle response. Immunocytochemistry, electrophysiology, and a panel of physiological dyes reporting voltage, calcium, and pH were used to characterize responses. The most effective treatments on proliferation in U87 cells were combinations of NS1643 and pantoprazole; retigabine and pantoprazole; and pantoprazole or NS1643 with temozolomide. Marker analysis and physiological dye signatures suggest that exposure to bioelectric drugs significantly reduces proliferation, makes the cells senescent, and promotes differentiation. These results, along with the observed low toxicity in human neurons, show the high efficacy of electroceuticals utilizing combinations of repurposed FDA approved drugs.
Collapse
|
14
|
Sheth M, Esfandiari L. Bioelectric Dysregulation in Cancer Initiation, Promotion, and Progression. Front Oncol 2022; 12:846917. [PMID: 35359398 PMCID: PMC8964134 DOI: 10.3389/fonc.2022.846917] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is primarily a disease of dysregulation – both at the genetic level and at the tissue organization level. One way that tissue organization is dysregulated is by changes in the bioelectric regulation of cell signaling pathways. At the basis of bioelectricity lies the cellular membrane potential or Vmem, an intrinsic property associated with any cell. The bioelectric state of cancer cells is different from that of healthy cells, causing a disruption in the cellular signaling pathways. This disruption or dysregulation affects all three processes of carcinogenesis – initiation, promotion, and progression. Another mechanism that facilitates the homeostasis of cell signaling pathways is the production of extracellular vesicles (EVs) by cells. EVs also play a role in carcinogenesis by mediating cellular communication within the tumor microenvironment (TME). Furthermore, the production and release of EVs is altered in cancer. To this end, the change in cell electrical state and in EV production are responsible for the bioelectric dysregulation which occurs during cancer. This paper reviews the bioelectric dysregulation associated with carcinogenesis, including the TME and metastasis. We also look at the major ion channels associated with cancer and current technologies and tools used to detect and manipulate bioelectric properties of cells.
Collapse
Affiliation(s)
- Maulee Sheth
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
| | - Leyla Esfandiari
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Leyla Esfandiari,
| |
Collapse
|
15
|
Hao P, Song KY, Wang SQ, Huang XJ, Yao DW, Yang DJ. ABCC9 Is Downregulated and Prone to Microsatellite Instability on ABCC9tetra in Canine Breast Cancer. Front Vet Sci 2022; 8:819293. [PMID: 35071399 PMCID: PMC8777218 DOI: 10.3389/fvets.2021.819293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Tumorigenesis is associated with metabolic abnormalities and genomic instability. Microsatellite mutations, including microsatellite instability (MSI) and loss of heterozygosity (LOH), are associated with the functional impairment of some tumor-related genes. To investigate the role of MSI and LOH in sporadic breast tumors in canines, 22 tumors DNA samples and their adjacent normal tissues were evaluated using polyacrylamide gel electrophoresis and silver staining for 58 microsatellites. Quantitative real-time polymerase chain reaction, promoter methylation analysis and immunohistochemical staining were used to quantify gene expression. The results revealed that a total of 14 tumors (6 benign tumors and 8 breast cancers) exhibited instability as MSI-Low tumors. Most of the microsatellite loci possessed a single occurrence of mutations. The maximum number of MSI mutations on loci was observed in tumors with a lower degree of differentiation. Among the unstable markers, FH2060 (4/22), ABCC9tetra (4/22) and SCN11A (6/22) were high-frequency mutation sites, whereas FH2060 was a high-frequency LOH site (4/22). The ABCC9tetra locus was mutated only in cancerous tissue, although it was excluded by transcription. The corresponding genes and proteins were significantly downregulated in malignant tissues, particularly in tumors with MSI. Furthermore, the promoter methylation results of the adenosine triphosphate binding cassette subfamily C member 9 (ABCC9) showed that there was a high level of methylation in breast tissues, but only one case showed a significant elevation compared with the control. In conclusion, MSI-Low or MSI-Stable is characteristic of most sporadic mammary tumors. Genes associated with tumorigenesis are more likely to develop MSI. ABCC9 protein and transcription abnormalities may be associated with ABCC9tetra instability.
Collapse
Affiliation(s)
- Pan Hao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai-Yue Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Si-Qi Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Jun Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Da-Wei Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - De-Ji Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
16
|
Zhou Z, Zhang C, Ma Z, Wang H, Tuo B, Cheng X, Liu X, Li T. Pathophysiological role of ion channels and transporters in HER2-positive breast cancer. Cancer Gene Ther 2022; 29:1097-1104. [PMID: 34997219 DOI: 10.1038/s41417-021-00407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/21/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022]
Abstract
The incidence of breast cancer (BC) has been increasing each year, and BC is now the most common malignant tumor in women. Among the numerous BC subtypes, HER2-positive BC can be treated with a variety of strategies based on targeting HER2. Although there has been great progress in the treatment of HER2-positive BC, recurrence, metastasis and drug resistance remain considerable challenges. The dysfunction of ion channels and transporters can affect the development and progression of HER2-positive BC, so these entities are expected to be new therapeutic targets. This review summarizes various ion channels and transporters associated with HER2-positive BC and suggests potential targets for the development of new and effective therapies.
Collapse
Affiliation(s)
- Zhengxing Zhou
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Chengmin Zhang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Hu Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
17
|
Molecular Activation of the Kv11.1 Channel Reprograms EMT in Colon Cancer by Inhibiting TGFβ Signaling via Activation of Calcineurin. Cancers (Basel) 2021; 13:cancers13236025. [PMID: 34885136 PMCID: PMC8656647 DOI: 10.3390/cancers13236025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022] Open
Abstract
Control of ionic gradients is critical to maintain cellular homeostasis in both physiological and pathological conditions, but the role of ion channels in cancer cells has not been studied thoroughly. In this work we demonstrated that activity of the Kv11.1 potassium channel plays a vital role in controlling the migration of colon cancer cells by reversing the epithelial-to-mesenchymal transition (EMT) into the mesenchymal-to-epithelial transition (MET). We discovered that pharmacological stimulation of the Kv11.1 channel with the activator molecule NS1643 produces a strong inhibition of colon cancer cell motility. In agreement with the reversal of EMT, NS1643 treatment leads to a depletion of mesenchymal markers such as SNAIL1, SLUG, TWIST, ZEB, N-cadherin, and c-Myc, while the epithelial marker E-cadherin was strongly upregulated. Investigating the mechanism linking Kv11.1 activity to reversal of EMT into MET revealed that stimulation of Kv11.1 produced a strong and fast inhibition of the TGFβ signaling. Application of NS1643 resulted in de-phosphorylation of the TGFβ downstream effectors R-SMADs by activation of the serine/threonine phosphatase PP2B (calcineurin). Consistent with the role of TGFβ in controlling cancer stemness, NS1643 also produced a strong inhibition of NANOG, SOX2, and OCT4 while arresting the cell cycle in G0/G1. Our data demonstrate that activation of the Kv11.1 channel reprograms EMT into MET by inhibiting TGFβ signaling, which results in inhibition of motility in colon cancer cells.
Collapse
|
18
|
Potassium and Chloride Ion Channels in Cancer: A Novel Paradigm for Cancer Therapeutics. Rev Physiol Biochem Pharmacol 2021; 183:135-155. [PMID: 34291318 DOI: 10.1007/112_2021_62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cancer is a collection of diseases caused by specific changes at the genomic level that support cell proliferation indefinitely. Traditionally, ion channels are known to control a variety of cellular processes including electrical signal generation and transmission, secretion, and contraction by controlling ionic gradients. However, recent studies had brought to light important facts on ion channels in cancer biology.In this review we discuss the mechanism linking potassium or chloride ion channel activity to biochemical pathways controlling proliferation in cancer cells and the potential advantages of targeting ion channels as an anticancer therapeutic option.
Collapse
|
19
|
Senyuk V, Eskandari N, Jiang Y, Garcia-Varela R, Sundstrom R, Leanza L, Peruzzo R, Burkard M, Minshall RD, Gentile S. Compensatory expression of NRF2-dependent antioxidant genes is required to overcome the lethal effects of Kv11.1 activation in breast cancer cells and PDOs. Redox Biol 2021; 45:102030. [PMID: 34147842 PMCID: PMC8220394 DOI: 10.1016/j.redox.2021.102030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 01/14/2023] Open
Abstract
Potassium channels are important regulators of cellular homeostasis and targeting these proteins pharmacologically is unveiling important mechanisms in cancer cell biology. Here we demonstrate that pharmacological stimulation of the Kv11.1 potassium channel activity results in mitochondrial reactive oxygen species (ROS) production and fragmentation in breast cancer cell lines and patient-derived organoids independent of breast cancer subtype. mRNA expression profiling revealed that Kv11.1 activity significantly altered expression of genes controlling the production of ROS and endoplasmic-reticulum (ER) stress. Characterization of the transcriptional signature of breast cancer cells treated with Kv11.1 potassium channel activators strikingly revealed an adaptive response to the potentially lethal augmentation of ROS by increasing Nrf2-dependent transcription of antioxidant genes. Nrf2 in this context was shown to promote survival in breast cancer, whereas knockdown of Nrf2 lead to Kv11.1-induced cell death. In conclusion, we found that the Kv11.1 channel activity promotes oxidative stress in breast cancer cells and that suppression of the Nrf2-mediated anti-oxidant survival mechanism strongly sensitized breast cancer cells to a lethal effect of pharmacological activation of Kv11.1.
Collapse
Affiliation(s)
- Vitalyi Senyuk
- Division of Hematology Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Najmeh Eskandari
- Division of Hematology Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Ying Jiang
- Division of Hematology Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA; Departments of Anesthesiology and Pharmacology and Regenerative Medicine, University of Illinois, Chicago, IL, USA
| | - Rebeca Garcia-Varela
- Departments of Oncology and Medicine, Hematology and Oncology, and the UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA; Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Escuela de Ingenieria y Ciencias, Monterrey N.L., Mexico
| | - Rachel Sundstrom
- Departments of Oncology and Medicine, Hematology and Oncology, and the UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| | | | - Mark Burkard
- Departments of Oncology and Medicine, Hematology and Oncology, and the UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard D Minshall
- Departments of Anesthesiology and Pharmacology and Regenerative Medicine, University of Illinois, Chicago, IL, USA
| | - Saverio Gentile
- Division of Hematology Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
20
|
Robinson AJ, Jain A, Sherman HG, Hague RJM, Rahman R, Sanjuan‐Alberte P, Rawson FJ. Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andie J. Robinson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Akhil Jain
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Harry G. Sherman
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Richard J. M. Hague
- Centre for Additive Manufacturing, Faculty of Engineering University of Nottingham Nottingham NG8 1BB UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine University of Nottingham Nottingham NG7 2RD UK
| | - Paola Sanjuan‐Alberte
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences, Instituto Superior Técnico Universidade de Lisboa Lisbon 1049‐001 Portugal
| | - Frankie J. Rawson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
21
|
Zhang Y, Wang K, Yu Z. Drug Development in Channelopathies: Allosteric Modulation of Ligand-Gated and Voltage-Gated Ion Channels. J Med Chem 2020; 63:15258-15278. [PMID: 33253554 DOI: 10.1021/acs.jmedchem.0c01304] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ion channels have been characterized as promising drug targets for treatment of numerous human diseases. Functions of ion channels can be fine-tuned by allosteric modulators, which interact with channels and modulate their activities by binding to sites spatially discrete from those of orthosteric ligands. Positive and negative allosteric modulators have presented a plethora of potential therapeutic advantages over traditionally orthosteric agonists and antagonists in terms of selectivity and safety. This thematic review highlights the discovery of representative allosteric modulators for ligand-gated and voltage-gated ion channels, discussing in particular their identifications, locations, and therapeutic uses in the treatment of a range of channelopathies. Additionally, structures and functions of selected ion channels are briefly described to aid in the rational design of channel modulators. Overall, allosteric modulation represents an innovative targeting approach, and the corresponding modulators provide an abundant but challenging landscape for novel therapeutics targeting ligand-gated and voltage-gated ion channels.
Collapse
Affiliation(s)
- Yanyun Zhang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ke Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhiyi Yu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
22
|
Bachmann M, Li W, Edwards MJ, Ahmad SA, Patel S, Szabo I, Gulbins E. Voltage-Gated Potassium Channels as Regulators of Cell Death. Front Cell Dev Biol 2020; 8:611853. [PMID: 33381507 PMCID: PMC7767978 DOI: 10.3389/fcell.2020.611853] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Ion channels allow the flux of specific ions across biological membranes, thereby determining ion homeostasis within the cells. Voltage-gated potassium-selective ion channels crucially contribute to the setting of the plasma membrane potential, to volume regulation and to the physiologically relevant modulation of intracellular potassium concentration. In turn, these factors affect cell cycle progression, proliferation and apoptosis. The present review summarizes our current knowledge about the involvement of various voltage-gated channels of the Kv family in the above processes and discusses the possibility of their pharmacological targeting in the context of cancer with special emphasis on Kv1.1, Kv1.3, Kv1.5, Kv2.1, Kv10.1, and Kv11.1.
Collapse
Affiliation(s)
- Magdalena Bachmann
- Department of Biology, University of Padova, Padua, Italy.,Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Weiwei Li
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Michael J Edwards
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Syed A Ahmad
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Sameer Patel
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padua, Italy.,Consiglio Nazionale delle Ricerche Institute of Neuroscience, Padua, Italy
| | - Erich Gulbins
- Department of Surgery, Medical School, University of Cincinnati, Cincinnati, OH, United States.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
23
|
Lu C, Ma Z, Cheng X, Wu H, Tuo B, Liu X, Li T. Pathological role of ion channels and transporters in the development and progression of triple-negative breast cancer. Cancer Cell Int 2020; 20:377. [PMID: 32782435 PMCID: PMC7409684 DOI: 10.1186/s12935-020-01464-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is a common malignancy in women. Among breast cancer types, triple-negative breast cancer (TNBC) tends to affect younger women, is prone to axillary lymph node, lung, and bone metastases; and has a high recurrence rate. Due to a lack of classic biomarkers, the currently available treatments are surgery and chemotherapy; no targeted standard treatment options are available. Therefore, it is urgent to find a novel and effective therapeutic target. As alteration of ion channels and transporters in normal mammary cells may affect cell growth, resulting in the development and progression of TNBC, ion channels and transporters may be promising new therapeutic targets for TNBC. This review summarizes ion channels and transporters related to TNBC and may provide new tumor biomarkers and help in the development of novel targeted therapies.
Collapse
Affiliation(s)
- Chengli Lu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou Province China
| | - Zhiyuan Ma
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou Province China
| | - Xiaoming Cheng
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou Province China
| | - Huichao Wu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province China
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, Guizhou Province China
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003 Guizhou Province China
| |
Collapse
|
24
|
Novel Therapeutic Approaches of Ion Channels and Transporters in Cancer. Rev Physiol Biochem Pharmacol 2020; 183:45-101. [PMID: 32715321 DOI: 10.1007/112_2020_28] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expression and function of many ion channels and transporters in cancer cells display major differences in comparison to those from healthy cells. These differences provide the cancer cells with advantages for tumor development. Accordingly, targeting ion channels and transporters have beneficial anticancer effects including inhibition of cancer cell proliferation, migration, invasion, metastasis, tumor vascularization, and chemotherapy resistance, as well as promoting apoptosis. Some of the molecular mechanisms associating ion channels and transporters with cancer include the participation of oxidative stress, immune response, metabolic pathways, drug synergism, as well as noncanonical functions of ion channels. This diversity of mechanisms offers an exciting possibility to suggest novel and more effective therapeutic approaches to fight cancer. Here, we review and discuss most of the current knowledge suggesting novel therapeutic approaches for cancer therapy targeting ion channels and transporters. The role and regulation of ion channels and transporters in cancer provide a plethora of exceptional opportunities in drug design, as well as novel and promising therapeutic approaches that may be used for the benefit of cancer patients.
Collapse
|
25
|
Lastraioli E. Focus on Triple-Negative Breast Cancer: Potassium Channel Expression and Clinical Correlates. Front Pharmacol 2020; 11:725. [PMID: 32508650 PMCID: PMC7251142 DOI: 10.3389/fphar.2020.00725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/01/2020] [Indexed: 12/26/2022] Open
Abstract
Despite improvements in early diagnosis and treatment, breast cancer is still a major health problem worldwide. Among breast cancer subtypes, the most challenging and harder to treat is represented by triple-negative molecular subtype. Due to its intrinsic features this subtype cannot be treated neither with hormonal therapy (since it does not express estrogen or progesterone receptors) nor with epidermal growth factor receptor 2 (HER2) inhibitors (as it does not express high levels of this protein). For these reasons, the standard of care for these patients is represented by a combination of surgery, radiation therapy and chemotherapy. In this scenario, searching for novel biomarkers that might help both in diagnosis and therapy is mandatory. In the last years, it was shown that different families of potassium channels are overexpressed in primary breast cancers. The altered ion channel expression may be useful for diagnostic and therapeutic purposes due to some peculiar characteristics of this class of molecules. Ion channels are defined as pore-forming transmembrane proteins regulating passive ion fluxes in the cells. Ion channels represent good potential markers since, being localized at the plasma membrane level, their detection and block with specific drugs and antibodies might be fast and tunable. This review focuses on triple-negative breast cancers and recapitulates the current knowledge about potassium channels' clinical relevance and their potential use in the clinical setting, for triple-negative breast cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
26
|
Fukushiro-Lopes D, Hegel AD, Russo A, Senyuk V, Liotta M, Beeson GC, Beeson CC, Burdette J, Potkul RK, Gentile S. Repurposing Kir6/SUR2 Channel Activator Minoxidil to Arrests Growth of Gynecologic Cancers. Front Pharmacol 2020; 11:577. [PMID: 32457608 PMCID: PMC7227431 DOI: 10.3389/fphar.2020.00577] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/15/2020] [Indexed: 11/16/2022] Open
Abstract
Gynecologic cancers are among the most lethal cancers found in women, and, advanced stage cancers are still a treatment challenge. Ion channels are known to contribute to cellular homeostasis in all cells and mounting evidence indicates that ion channels could be considered potential therapeutic targets against cancer. Nevertheless, the pharmacologic effect of targeting ion channels in cancer is still understudied. We found that the expression of Kir6.2/SUR2 potassium channel is a potential favorable prognostic factor in gynecologic cancers. Also, pharmacological stimulation of the Kir6.2/SUR2 channel activity with the selective activator molecule minoxidil arrests tumor growth in a xenograft model of ovarian cancer. Investigation on the mechanism linking the Kir6.2/SUR2 to tumor growth revealed that minoxidil alters the metabolic and oxidative state of cancer cells by producing mitochondrial disruption and extensive DNA damage. Consequently, application of minoxidil results in activation of a caspase-3 independent cell death pathway. Our data show that repurposing of FDA approved K+ channel activators may represent a novel, safe adjuvant therapeutic approach to traditional chemotherapy for the treatment of gynecologic cancers.
Collapse
Affiliation(s)
| | - Alexandra D Hegel
- Department of Pharmacology, Loyola University Chicago, Maywood, IL, United States.,Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Angela Russo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, United States
| | - Vitalyi Senyuk
- Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| | - Margaret Liotta
- Department of Gynecologic Oncology, Loyola University Chicago, Maywood, IL, United States
| | - Gyda C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Joanna Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL, United States
| | - Ronald K Potkul
- Department of Gynecologic Oncology, Loyola University Chicago, Maywood, IL, United States
| | - Saverio Gentile
- Department of Pharmacology, Loyola University Chicago, Maywood, IL, United States.,Department of Medicine, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
27
|
Santoni M, Occhipinti G, Romagnoli E, Miccini F, Scoccia L, Giulietti M, Principato G, Saladino T, Piva F, Battelli N. Different Cardiotoxicity of Palbociclib and Ribociclib in Breast Cancer: Gene Expression and Pharmacological Data Analyses, Biological Basis, and Therapeutic Implications. BioDrugs 2020; 33:613-620. [PMID: 31529317 DOI: 10.1007/s40259-019-00382-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most frequent tumor in women. The recent advent of cyclin-dependent kinase (CDK) 4/6 inhibitors palbociclib and ribociclib has represented a major step forward for patients with hormone receptor-positive breast cancer. These two agents have showed similar efficacy in terms of breast cancer outcome but different cardiotoxic effects. In particular, ribociclib, but not palbociclib, has been associated with QT interval prolongation, and the mechanisms underlying this event are still unclear. In order to clarify such difference, we matched the candidate genes associated with QT interval prolongation with genes whose expression is altered following palbociclib or ribociclib treatment. We also investigated whether pharmacokinetic and pharmacodynamic characteristics, such as IC50 (hERG) [concentration of drug producing 50% inhibition (human ether-à-go-go related gene)] and maximum concentration (Cmax), could justify the different effects on QT interval prolongation. Our results show that ribociclib, but not palbociclib, could act by down-regulating the expression of KCNH2 (encoding for potassium channel hERG) and up-regulating SCN5A and SNTA1 (encoding for sodium channels Nav1.5 and syntrophin-α1, respectively), three genes associated with long QT syndrome. Consistent with the cardiotoxicity induced by ribociclib, its IC50 (hERG)/free concentration (Cmax free) ratio is closer to the safety threshold than that of palbociclib. In summary, we hypothesize that the different cardiotoxicity associated with ribociclib and palbociclib could be due to the alteration of potassium and sodium channels induced by ribociclib. A better comprehension of the mechanisms of cardiac channelopathies and drug-induced QT interval prolongation will be fundamental to avoid serious and potentially lethal adverse events and, as a consequence, optimize the management of breast cancer patients.
Collapse
Affiliation(s)
- Matteo Santoni
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, Macerata, Italy
| | - Giulia Occhipinti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Monte d'Ago, 60131, Ancona, Italy
| | | | - Francesca Miccini
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, Macerata, Italy
| | | | - Matteo Giulietti
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Monte d'Ago, 60131, Ancona, Italy
| | - Giovanni Principato
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Monte d'Ago, 60131, Ancona, Italy
| | - Tiziana Saladino
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, Macerata, Italy
| | - Francesco Piva
- Department of Specialistic Clinical and Odontostomatological Sciences, Polytechnic University of Marche, Monte d'Ago, 60131, Ancona, Italy.
| | - Nicola Battelli
- Oncology Unit, Macerata Hospital, via Santa Lucia 2, Macerata, Italy
| |
Collapse
|
28
|
Zangerl-Plessl EM, Berger M, Drescher M, Chen Y, Wu W, Maulide N, Sanguinetti M, Stary-Weinzinger A. Toward a Structural View of hERG Activation by the Small-Molecule Activator ICA-105574. J Chem Inf Model 2020; 60:360-371. [PMID: 31877041 DOI: 10.1021/acs.jcim.9b00737] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Outward current conducted by human ether-à-go-go-related gene type 1 (hERG1) K+ channels is important for action potential repolarization in the human ventricle. Rapid, voltage-dependent inactivation greatly reduces outward currents conducted by hERG1 channels and involves conformational changes in the ion selectivity filter (SF). Recently, compounds have been found that activate hERG1 channel function by modulating gating mechanisms such as reducing inactivation. Such activating compounds could represent a novel approach to prevent arrhythmias associated with prolonged ventricular repolarization associated with inherited or acquired long QT syndrome. ICA-105574 (ICA), a 3-nitro-n-(4-phenoxyphenyl) benzamide derivative activates hERG1 by strongly attenuating pore-type inactivation. We previously mapped the putative binding site for ICA to a hydrophobic pocket located between two adjacent subunits. Here, we used the recently reported cryoelectron microscopy structures of hERG1 to elucidate the structural mechanisms by which ICA influences the stability of the SF. By combining molecular dynamics simulations, voltage-clamp electrophysiology, and the synthesis of novel ICA derivatives, we provide atomistic insights into SF dynamics and propose a structural link between the SF and S6 segments. Further, our study highlights the importance of the nitro moiety, at the meta position of the benzamide ring, for the activity of ICA and reveals that the (bio)isosteric substitution of this side chain can switch the activity to weak inhibitors. Our findings indicate that ICA increases the stability of the SF to attenuate channel inactivation, and this action requires a fine-tuned compound geometry.
Collapse
Affiliation(s)
- Eva-Maria Zangerl-Plessl
- Department of Pharmacology and Toxicology , University of Vienna , Althanstrasse 14 , Wien , Vienna 1090 , Austria
| | - Martin Berger
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , Wien , Vienna 1090 , Austria
| | - Martina Drescher
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , Wien , Vienna 1090 , Austria
| | - Yong Chen
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , Wien , Vienna 1090 , Austria
| | - Wei Wu
- Nora Eccles Harrison Cardiovascular Research and Training Institute and Division of Cardiovascular Medicine, Department of Internal Medicine , University of Utah , Salt Lake City , Utah 84132-340 , United States
| | - Nuno Maulide
- Institute of Organic Chemistry , University of Vienna , Währinger Strasse 38 , Wien , Vienna 1090 , Austria
| | - Michael Sanguinetti
- Nora Eccles Harrison Cardiovascular Research and Training Institute and Division of Cardiovascular Medicine, Department of Internal Medicine , University of Utah , Salt Lake City , Utah 84132-340 , United States
| | - Anna Stary-Weinzinger
- Department of Pharmacology and Toxicology , University of Vienna , Althanstrasse 14 , Wien , Vienna 1090 , Austria
| |
Collapse
|
29
|
Toward Decoding Bioelectric Events in Xenopus Embryogenesis: New Methodology for Tracking Interplay Between Calcium and Resting Potentials In Vivo. J Mol Biol 2019; 432:605-620. [PMID: 31711960 DOI: 10.1016/j.jmb.2019.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 12/16/2022]
Abstract
Although chemical signaling during embryogenesis is readily addressed by a plethora of available techniques, the developmental functions of ionic signaling are still poorly understood. It is increasingly realized that bioelectric events in nonneural cells are critical for pattern regulation, but their study has been hampered by difficulties in monitoring and manipulating them in vivo. Recent developments in visualizing electrical signaling dynamics in the field of neuroscience have facilitated functional experiments that reveal instructive developmental bioelectric signals. However, there is a pressing need for additional tools to explore time-dependent ionic signaling to understand complex endogenous dynamics. Here, we present methodological advances, including 4D imaging and data analysis, for improved tracking of calcium flux in the Xenopus laevis embryo, lowering the barrier for in vivo physiology work in this important model system. Using these techniques, we investigated the relationship between bioelectric ion channel activity and calcium, finding that cell hyperpolarization and depolarization both induce persistent static elevation of cytoplasmic calcium levels that fade over developmental time. These calcium changes correlate with increased cell mobility in early embryos and abnormal craniofacial morphology in later embryos. We thus highlight membrane potential modulation as a tractable tool for modulation of signaling cascades that rely on calcium as a transduction mechanism. The methods we describe facilitate the study of important novel aspects of developmental physiology, are extendable to numerous classes of existing and forthcoming fluorescent physiological reporters, and establish highly accessible, inexpensive protocols for their investigation.
Collapse
|
30
|
Abstract
As the leading cause of death in cancer, there is an urgent need to develop treatments to target the dissemination of primary tumor cells to secondary organs, known as metastasis. Bioelectric signaling has emerged in the last century as an important controller of cell growth, and with the development of current molecular tools we are now beginning to identify its role in driving cell migration and metastasis in a variety of cancer types. This review summarizes the currently available research for bioelectric signaling in solid tumor metastasis. We review the steps of metastasis and discuss how these can be controlled by bioelectric cues at the level of a cell, a population of cells, and the tissue. The role of ion channel, pump, and exchanger activity and ion flux is discussed, along with the importance of the membrane potential and the relationship between ion flux and membrane potential. We also provide an overview of the evidence for control of metastasis by external electric fields (EFs) and draw from examples in embryogenesis and regeneration to discuss the implications for endogenous EFs. By increasing our understanding of the dynamic properties of bioelectric signaling, we can develop new strategies that target metastasis to be translated into the clinic.
Collapse
Affiliation(s)
- Samantha L. Payne
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, Massachusetts
| | - Madeleine J. Oudin
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
| |
Collapse
|
31
|
Prosdocimi E, Checchetto V, Leanza L. Targeting the Mitochondrial Potassium Channel Kv1.3 to Kill Cancer Cells: Drugs, Strategies, and New Perspectives. SLAS DISCOVERY 2019; 24:882-892. [PMID: 31373829 DOI: 10.1177/2472555219864894] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer is the consequence of aberrations in cell growth or cell death. In this scenario, mitochondria and ion channels play a critical role in regard to cell proliferation, malignant angiogenesis, migration, and metastasis. In this review, we focus on Kv1.3 and specifically on mitoKv1.3, which showed an aberrant expression in cancer cells compared with healthy tissues and which is involved in the apoptotic pathway. In recent years, mitoKv1.3 has become an oncological target since its pharmacological modulation has been demonstrated to reduce tumor growth and progression both in vitro and in vivo using preclinical mouse models of different types of tumors.
Collapse
Affiliation(s)
| | | | - Luigi Leanza
- Department of Biology, University of Padova, Padova, Italy
| |
Collapse
|
32
|
Kotoda M, Ino H, Kumakura Y, Iijima T, Ishiyama T, Matsukawa T. Analgesic effects of amiodarone in mouse models of pain. J Pain Res 2019; 12:1825-1832. [PMID: 31239760 PMCID: PMC6559139 DOI: 10.2147/jpr.s196480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/06/2019] [Indexed: 12/29/2022] Open
Abstract
Purpose: Although amiodarone is classified as a Vaughan-Williams class Ⅲ antiarrhythmic drug, it has inhibitory effects on voltage-gated sodium and calcium channels and on β-adrenergic receptors. Given these pharmacological profiles, amiodarone may have analgesic properties. Most patients who are prescribed amiodarone possess multiple cardiovascular risk factors. Despite the fact that pain plays a crucial role as a clinical indicator of cardiovascular events, the effects of amiodarone on pain have not been investigated. The aim of the current study was to investigate the analgesic effects of amiodarone by using mouse models of pain in an effort to elucidate underlying mechanisms. Methods: Adult male C57B6 mice received single bolus intraperitoneal injections of amiodarone at doses of 25, 50, 100, and 200 mg/kg, while the mice in the control group received only normal saline. The analgesic effects of amiodarone were evaluated using the acetic acid-induced writhing test, formalin test, and tail withdrawal test. In addition, the potassium channel opener NS1643, voltage-gated sodium channel opener veratrine, calcium channel opener BAYK8644, and selective β-adrenergic agonist isoproterenol were used to uncover the underlying mechanism. Results: During the acetic acid-induced writhing test, formalin test, and tail withdrawal test, amiodarone induced analgesic responses in a dose-dependent manner. The analgesic effects of amiodarone were abolished by veratrine but not by NS1643, BAYK8644, or isoproterenol. Conclusion: Amiodarone induced analgesic responses in a dose-dependent manner, likely by blocking voltage-gated sodium channels. These results indicate that clinical doses of amiodarone can affect nociception and may mask or attenuate pain induced by acute cardiovascular events.
Collapse
Affiliation(s)
- Masakazu Kotoda
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hirofumi Ino
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Yasutomo Kumakura
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Tetsuya Iijima
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Tadahiko Ishiyama
- Surgical Center, University of Yamanashi Hospital, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Takashi Matsukawa
- Department of Anesthesiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
33
|
Wu Q, Kumar N, Velagala V, Zartman JJ. Tools to reverse-engineer multicellular systems: case studies using the fruit fly. J Biol Eng 2019; 13:33. [PMID: 31049075 PMCID: PMC6480878 DOI: 10.1186/s13036-019-0161-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/07/2019] [Indexed: 01/08/2023] Open
Abstract
Reverse-engineering how complex multicellular systems develop and function is a grand challenge for systems bioengineers. This challenge has motivated the creation of a suite of bioengineering tools to develop increasingly quantitative descriptions of multicellular systems. Here, we survey a selection of these tools including microfluidic devices, imaging and computer vision techniques. We provide a selected overview of the emerging cross-talk between engineering methods and quantitative investigations within developmental biology. In particular, the review highlights selected recent examples from the Drosophila system, an excellent platform for understanding the interplay between genetics and biophysics. In sum, the integrative approaches that combine multiple advances in these fields are increasingly necessary to enable a deeper understanding of how to analyze both natural and synthetic multicellular systems.
Collapse
Affiliation(s)
- Qinfeng Wu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Vijay Velagala
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| | - Jeremiah J. Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556 USA
| |
Collapse
|
34
|
Breuer EK, Fukushiro-Lopes D, Dalheim A, Burnette M, Zartman J, Kaja S, Wells C, Campo L, Curtis KJ, Romero-Moreno R, Littlepage LE, Niebur GL, Hoskins K, Nishimura MI, Gentile S. Potassium channel activity controls breast cancer metastasis by affecting β-catenin signaling. Cell Death Dis 2019; 10:180. [PMID: 30792401 PMCID: PMC6385342 DOI: 10.1038/s41419-019-1429-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Potassium ion channels are critical in the regulation of cell motility. The acquisition of cell motility is an essential parameter of cancer metastasis. However, the role of K+ channels in cancer metastasis has been poorly studied. High expression of the hG1 gene, which encodes for Kv11.1 channel associates with good prognosis in estrogen receptor-negative breast cancer (BC). We evaluated the efficacy of the Kv11.1 activator NS1643 in arresting metastasis in a triple negative breast cancer (TNBC) mouse model. NS1643 significantly reduces the metastatic spread of breast tumors in vivo by inhibiting cell motility, reprogramming epithelial–mesenchymal transition via attenuation of Wnt/β-catenin signaling and suppressing cancer cell stemness. Our findings provide important information regarding the clinical relevance of potassium ion channel expression in breast tumors and the mechanisms by which potassium channel activity can modulate tumor biology. Findings suggest that Kv11.1 activators may represent a novel therapeutic approach for the treatment of metastatic estrogen receptor-negative BC. Ion channels are critical factor for cell motility but little is known about their role in metastasis. Stimulation of the Kv11.1 channel suppress the metastatic phenotype in TNBC. This work could represent a paradigm-shifting approach to reducing mortality by targeting a pathway that is central to the development of metastases.
Collapse
Affiliation(s)
- Eun-Kyoung Breuer
- Department of Radiation Oncology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Daniela Fukushiro-Lopes
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Annika Dalheim
- Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Miranda Burnette
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jeremiah Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Simon Kaja
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA.,Department of Ophthalmology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, USA.,Research Service, Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Claire Wells
- Division of Cancer Studies, King's College London, Rm. 2.34 A New Hunts House, Guy's Campus, London, SE1 1 UL, UK
| | - Loredana Campo
- Department of Radiation Oncology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Kimberly J Curtis
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Ricardo Romero-Moreno
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Laurie E Littlepage
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Glen L Niebur
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA.,Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Kent Hoskins
- Division of Hematology Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Michael I Nishimura
- Department of Surgery, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA
| | - Saverio Gentile
- Department of Molecular Pharmacology & Therapeutics, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA. .,Division of Hematology Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
35
|
Romero AH, López SE, Arvelo F, Sojo F, Calderon C, Morales A. Identification of dehydroxy isoquine and isotebuquine as promising anticancer agents targeting K+ channel. Chem Biol Drug Des 2019; 93:638-646. [PMID: 30570823 DOI: 10.1111/cbdd.13461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/07/2018] [Accepted: 12/07/2018] [Indexed: 01/12/2023]
Abstract
Traditional antimalarial drugs based on 4-aminoquinolines have exhibited good antiproliferative activities against human tumor cells; however, their low relative efficacy has limited their corresponding clinical uses. In order to identify new potent anticancer agents based on 4-aminoquinoline, we evaluated the antiproliferative activity of a series of dehydroxy isoquines and isotebuquines against five human cancer lines. HeLa and SKBr3 were significantly more sensitive to the action of tested quinolines than the A549, MCF-7, and PC-3 cancer lines. Compound 2h was by far the most potent derivative against four of the tested lines (except to PC3 line), exhibiting low micromolar or nanomolar IC50 values superior to adriamycin reference, low toxicities on dermis human fibroblasts (LD50 > 250 μM), and excellent selectivity indexes against the mentioned cancer cells. A structure-activity relationship analysis put in evidence that a pyrrolidine or morpholine moiety as N-alkyl terminal substitution and the incorporation of the extra phenyl attached to aniline ring are pharmacophore essentials for improvement the anticancer activity of the studied dehydroxy isoquines and isotebuquines. From the results, compound 2h emerged as a promising anticancer candidate for further in vitro assays against resistant-strain and in vivo studies as well as pharmacokinetic and genotoxicity studies. Mechanistic assays suggested that the most active quinoline 2h act as calcium-activated potassium channel activator.
Collapse
Affiliation(s)
- Angel H Romero
- Cátedra de Química, Facultad de Farmacia, Universidad Central de Venezuela, Caracas, Venezuela
| | - Simón E López
- Department of Chemistry, University of Florida, Gainesville, Florida
| | - Francisco Arvelo
- Fundación Institutos de Estudios Avanzados -IDEA, Área Salud, Caracas, Venezuela.,Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental-IBE, Facultad de Ciencias-UCV, Caracas, Venezuela
| | - Felipe Sojo
- Fundación Institutos de Estudios Avanzados -IDEA, Área Salud, Caracas, Venezuela.,Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental-IBE, Facultad de Ciencias-UCV, Caracas, Venezuela
| | - Christian Calderon
- Laboratorio de Fisiología y Biofísica, Centro de Biología Celular, Instituto de Biología Experimental-IBE, Facultad de Ciencias, UCV, Caracas, Venezuela
| | - Alvaro Morales
- Laboratorio de Biotecnología Clínica Santa María, Cevalfes, Caracas, Venezuela
| |
Collapse
|
36
|
Churchill CDM, Winter P, Tuszynski JA, Levin M. EDEn-Electroceutical Design Environment: Ion Channel Tissue Expression Database with Small Molecule Modulators. iScience 2019; 11:42-56. [PMID: 30590250 PMCID: PMC6308252 DOI: 10.1016/j.isci.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
The emerging field of bioelectricity has revealed numerous new roles for ion channels beyond the nervous system, which can be exploited for applications in regenerative medicine. Developing such biomedical interventions for birth defects, cancer, traumatic injury, and bioengineering first requires knowledge of ion channel targets expressed in tissues of interest. This information can then be used to select combinations of small molecule inhibitors and/or activators that manipulate the bioelectric state. Here, we provide an overview of electroceutical design environment (EDEn), the first bioinformatic platform that facilitates the design of such therapeutic strategies. This database includes information on ion channels and ion pumps, linked to known chemical modulators and their properties. The database also provides information about the expression levels of the ion channels in over 100 tissue types. The graphical interface allows the user to readily identify chemical entities that can alter the electrical properties of target cells and tissues.
Collapse
Affiliation(s)
| | - Philip Winter
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Michael Levin
- Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA.
| |
Collapse
|
37
|
Iorio J, Meattini I, Bianchi S, Bernini M, Maragna V, Dominici L, Casella D, Vezzosi V, Orzalesi L, Nori J, Livi L, Arcangeli A, Lastraioli E. hERG1 channel expression associates with molecular subtypes and prognosis in breast cancer. Cancer Cell Int 2018; 18:93. [PMID: 30002601 PMCID: PMC6034270 DOI: 10.1186/s12935-018-0592-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/26/2018] [Indexed: 12/30/2022] Open
Abstract
Background Breast cancer (BC) is the most frequent malignancy among females worldwide. Despite several efforts and improvements in early diagnosis and treatment, there are still tumors characterized by an aggressive behavior due to unfavorable biology, thus quite difficult to treat. In this view, searching for novel potential biomarkers is mandatory. Among them, in the recent years data have been gathered addressing ion channel as important players in oncology. Methods A retrospective pilot study was performed on 40 BC samples by means of immunohistochemistry in order to evaluate hERG1 potassium channels expression in BC. Results We provide evidence that hERG1 is expressed in all the BC samples analyzed. hERG1 expression was significantly associated with molecular subtype with the highest expression in Luminal A and the lowest in basal-like tumors (p = 0.001), tumor grading (the highest hERG1 expression in well-moderate differentiated tumors, p = 0.020), estrogen receptors (high hERG1 expression in ER-positive samples, p = 0.008) and Ki67 proliferative index (high hERG1 scoring in samples with low proliferative index, p = 0.038). Also, a p value close to significance was noticed for the association between hERG1 and HER2 expression (p = 0.079). At the survival analysis, patients with high hERG1 expression turned out to have a longer progression-free survival, although statistical significance was not reached (p = 0.195). The same trend was observed analyzing local relapse free-survival (LRFS) and metastases-free survival (MFS): patients with higher hERG1 scoring had longer LRFS and MFS (p = 0.124 and p = 0.071, respectively). Conclusions The results of this pilot study provide the first evidence that the hERG1 protein is expressed in primary BC, and its expression associates with molecular subtype. hERG1 apparently behaves as a protective factor, since it contributes to identify a subset of patients with better outcome. Overall, these data suggest that hERG1 might be an additional tool for the management of BC, nevertheless further investigations are warranted to better clarify hERG1 role and clinical usefulness in BC.
Collapse
Affiliation(s)
- Jessica Iorio
- 1Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale GB Morgagni, 50, 50134 Florence, Italy.,2Doctorate Course in Genetics, Oncology and Clinical Medicine, University of Siena, Siena, Italy
| | - Icro Meattini
- Radiation Oncology Unit, Department of Oncology, University of Florence, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Simonetta Bianchi
- 4Section of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence-Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Marco Bernini
- 5Breast Unit Surgery, Department of Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Virginia Maragna
- Radiation Oncology Unit, Department of Oncology, University of Florence, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Luca Dominici
- Radiation Oncology Unit, Department of Oncology, University of Florence, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Donato Casella
- 5Breast Unit Surgery, Department of Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Vania Vezzosi
- 4Section of Pathological Anatomy, Department of Surgery and Translational Medicine, University of Florence-Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Lorenzo Orzalesi
- 5Breast Unit Surgery, Department of Oncology, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Jacopo Nori
- Diagnostic Senology Unit, University of Florence, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Lorenzo Livi
- Radiation Oncology Unit, Department of Oncology, University of Florence, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Annarosa Arcangeli
- 1Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale GB Morgagni, 50, 50134 Florence, Italy
| | - Elena Lastraioli
- 1Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale GB Morgagni, 50, 50134 Florence, Italy
| |
Collapse
|
38
|
Khatun A, Shimozawa M, Kito H, Kawaguchi M, Fujimoto M, Ri M, Kajikuri J, Niwa S, Fujii M, Ohya S. Transcriptional Repression and Protein Degradation of the Ca 2+-Activated K + Channel K Ca1.1 by Androgen Receptor Inhibition in Human Breast Cancer Cells. Front Physiol 2018; 9:312. [PMID: 29713287 PMCID: PMC5911984 DOI: 10.3389/fphys.2018.00312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/14/2018] [Indexed: 01/14/2023] Open
Abstract
The large-conductance Ca2+-activated K+ channel KCa1.1 plays an important role in the promotion of breast cancer cell proliferation and metastasis. The androgen receptor (AR) is proposed as a therapeutic target for AR-positive advanced triple-negative breast cancer. We herein investigated the effects of a treatment with antiandrogens on the functional activity, activation kinetics, transcriptional expression, and protein degradation of KCa1.1 in human breast cancer MDA-MB-453 cells using real-time PCR, Western blotting, voltage-sensitive dye imaging, and whole-cell patch clamp recording. A treatment with the antiandrogen bicalutamide or enzalutamide for 48 h significantly suppressed (1) depolarization responses induced by paxilline (PAX), a specific KCa1.1 blocker and (2) PAX-sensitive outward currents induced by the depolarizing voltage step. The expression levels of KCa1.1 transcripts and proteins were significantly decreased in MDA-MB-453 cells, and the protein degradation of KCa1.1 mainly contributed to reductions in KCa1.1 activity. Among the eight regulatory β and γ subunits, LRRC26 alone was expressed at high levels in MDA-MB-453 cells and primary and metastatic breast cancer tissues, whereas no significant changes were observed in the expression levels of LRRC26 and activation kinetics of PAX-sensitive outward currents in MDA-MB-453 cells by the treatment with antiandrogens. The treatment with antiandrogens up-regulated the expression of the ubiquitin E3 ligases, FBW7, MDM2, and MDM4 in MDA-MB-453 cells, and the protein degradation of KCa1.1 was significantly inhibited by the respective siRNA-mediated blockade of FBW7 and MDM2. Based on these results, we concluded that KCa1.1 is an androgen-responsive gene in AR-positive breast cancer cells, and its down-regulation through enhancements in its protein degradation by FBW7 and/or MDM2 may contribute, at least in part, to the antiproliferative and antimetastatic effects of antiandrogens in breast cancer cells.
Collapse
Affiliation(s)
- Anowara Khatun
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Motoki Shimozawa
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Hiroaki Kito
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Mayu Kawaguchi
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Mayu Fujimoto
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Moe Ri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Junko Kajikuri
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Satomi Niwa
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Masanori Fujii
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Susumu Ohya
- Division of Pathological Sciences, Department of Pharmacology, Kyoto Pharmaceutical University, Kyoto, Japan.,Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|