1
|
Sak K. The path of GPR87: from a P2Y-like receptor to its role in cancer progression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03684-6. [PMID: 39641798 DOI: 10.1007/s00210-024-03684-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
GPR87 is a G protein-coupled seven-transmembrane receptor first described as an orphan receptor in 2001. Despite its high structural homology to several extracellular nucleotide-activated P2Y receptors and sharing conserved sequence motifs in transmembrane regions, identification of endogenous ligands from the class of nucleotides and their analogues has failed for GPR87. Although lysophosphatidic acid was proposed to be a natural ligand for this cell surface receptor, these data are preliminary and inconsistent, and IUPHAR is currently considering GPR87 as an orphan receptor. Thus, the endogenous ligands and physiological functions of GPR87 are still required to be determined and/or confirmed. The remarkably higher expression of GPR87 in human malignant tissues compared to the normal healthy ones clearly suggests that this receptor may be involved in the development and progression of cancerous neoplasms. Therefore, in this review article, the main focus is placed on the oncogenic role of GPR87 in various human malignancies, presenting it as a potential novel target site for therapeutic interventions using both humanized monoclonal antibodies and gene therapy but also selective antagonists which are still waiting for their identification. Furthermore, the importance of the expression of GPR87 as a predictive biomarker for evaluating the prognosis and overall survival of cancer patients is also highlighted.
Collapse
|
2
|
Xu H, Du W, Jing X, Xie J, Li P. Development of a prognostic model for lung adenocarcinoma polarity-related genes and analysis of immune landscape. Biotechnol Appl Biochem 2024; 71:817-834. [PMID: 38475658 DOI: 10.1002/bab.2579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Despite the progress made in the management of lung adenocarcinoma (LUAD), the overall prognosis for LUAD individuals remains suboptimal. While the role of cell polarity in tumor invasion and metastasis is well established, its prognostic significance in LUAD is still unknown. Differential analysis was performed on the Cancer Genome Atlas (TCGA)-LUAD and normal lung tissue, and candidate genes were identified by intersecting differentially expressed genes with polarity-related genes (PRGs). A prognostic model was constructed using univariate and multivariate Cox regression and LASSO regression. To enhance the robustness of the analysis, an independent prognostic analysis was conducted by incorporating relevant clinical information. The accuracy and sensitivity of the model were validated using survival analysis and ROC curves. Finally, immune landscape, immune therapy, tumor mutation burden, and drug sensitivity analysis were carried out on high- and low-risk patients. Ten prognostic genes were screened to divide LUAD patients into different risk groups. Survival analysis, ROC curves, and univariate/multivariate Cox regression analyses collectively demonstrated the favorable predictive performance of the model, which could be an independent prognostic factor. The nomogram, in conjunction with the calibration curve, demonstrated the model's compelling predictive capacity in prognosticating the overall survival of LUAD individuals. Low-risk LUAD patients exhibited heightened levels of immune cell infiltration, immune scores, and immune checkpoint expression compared to high-risk individuals. So, they may have a greater likelihood of benefiting from immune therapy. The high-risk group demonstrated a remarkably higher tumor mutation burden (TMB) in contrast with the low-risk group. XAV-939, Fulvestrant, and SR16157 may have potential value in the clinical use of LUAD. We revealed the potential linkage between PRGs and LUAD prognosis, and the application of these prognostic factors in risk stratification and prognosis prediction of LUAD patients may be of great significance.
Collapse
Affiliation(s)
- Hongqiu Xu
- Department of General Medicine, Huai'an Hospital of Huai'an City, Huai'an City, Jiangsu Province, China
| | - Wenqiang Du
- Department of General Medicine, Huai'an Hospital of Huai'an City, Huai'an City, Jiangsu Province, China
| | - Xuelong Jing
- Department of General Medicine, Huai'an Hospital of Huai'an City, Huai'an City, Jiangsu Province, China
| | - Jingen Xie
- Department of General Medicine, Huai'an Hospital of Huai'an City, Huai'an City, Jiangsu Province, China
| | - Pengfei Li
- Department of General Medicine, Huai'an Hospital of Huai'an City, Huai'an City, Jiangsu Province, China
| |
Collapse
|
3
|
Moriya Y, Kubota S, Iijima Y, Takasugi N, Uehara T. Epigenetic Regulation of Carbonic Anhydrase 9 Expression by Nitric Oxide in Human Small Airway Epithelial Cells. Biol Pharm Bull 2024; 47:1119-1122. [PMID: 38839363 DOI: 10.1248/bpb.b24-00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
DNA methylation is a crucial epigenetic modification that regulates gene expression and determines cell fate; however, the triggers that alter DNA methylation levels remain unclear. Recently, we showed that S-nitrosylation of DNA methyltransferase (DNMT) induces DNA hypomethylation and alters gene expression. Furthermore, we identified DBIC, a specific inhibitor of S-nitrosylation of DNMT3B, to suppress nitric oxide (NO)-induced gene alterations. However, it remains unclear how NO-induced DNA hypomethylation regulates gene expression and whether this mechanism is maintained in normal cells and triggers disease-related changes. To address these issues, we focused on carbonic anhydrase 9 (CA9), which is upregulated under nitrosative stress in cancer cells. We pharmacologically evaluated its regulatory mechanisms using human small airway epithelial cells (SAECs) and DBIC. We demonstrated that nitrosative stress promotes the recruitment of hypoxia-inducible factor 1 alpha to the CA9 promoter region and epigenetically induces CA9 expression in SAECs. Our results suggest that nitrosative stress is a key epigenetic regulator that may cause diseases by altering normal cell function.
Collapse
Affiliation(s)
- Yuto Moriya
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Sho Kubota
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yuta Iijima
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Nobumasa Takasugi
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Takashi Uehara
- Department of Medicinal Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| |
Collapse
|
4
|
Saputra HA, Jannath KA, Kim KB, Park DS, Shim YB. Conducting polymer composite-based biosensing materials for the diagnosis of lung cancer: A review. Int J Biol Macromol 2023; 252:126149. [PMID: 37582435 DOI: 10.1016/j.ijbiomac.2023.126149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/17/2023]
Abstract
The development of a simple and fast cancer detection method is crucial since early diagnosis is a key factor in increasing survival rates for lung cancer patients. Among several diagnosis methods, the electrochemical sensor is the most promising one due to its outstanding performance, portability, real-time analysis, robustness, amenability, and cost-effectiveness. Conducting polymer (CP) composites have been frequently used to fabricate a robust sensor device, owing to their excellent physical and electrochemical properties as well as biocompatibility with nontoxic effects on the biological system. This review brings up a brief overview of the importance of electrochemical biosensors for the early detection of lung cancer, with a detailed discussion on the design and development of CP composite materials for biosensor applications. The review covers the electrochemical sensing of numerous lung cancer markers employing composite electrodes based on the conducting polyterthiophene, poly(3,4-ethylenedioxythiophene), polyaniline, polypyrrole, molecularly imprinted polymers, and others. In addition, a hybrid of the electrochemical biosensors and other techniques was highlighted. The outlook was also briefly discussed for the development of CP composite-based electrochemical biosensors for POC diagnostic devices.
Collapse
Affiliation(s)
- Heru Agung Saputra
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Khatun A Jannath
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Kwang Bok Kim
- Digital Health Care R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Republic of Korea
| | - Deog-Su Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Yoon-Bo Shim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
5
|
Andus I, Prall F, Linnebacher M, Linnebacher CS. Establishment, characterization, and drug screening of low-passage patient individual non-small cell lung cancer in vitro models including the rare pleomorphic subentity. Front Oncol 2023; 13:1089681. [PMID: 37228492 PMCID: PMC10203569 DOI: 10.3389/fonc.2023.1089681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction For pre-clinical drug development and precision oncology research, robust cancer cell models are essential. Patient-derived models in low passages retain more genetic and phenotypic characteristics of their original tumors than conventional cancer cell lines. Subentity, individual genetics, and heterogeneity greatly influence drug sensitivity and clinical outcome. Materials and methods Here, we report on the establishment and characterization of three patient-derived cell lines (PDCs) of different subentities of non-small cell lung cancer (NSCLC): adeno-, squamous cell, and pleomorphic carcinoma. The in-depth characterization of our PDCs included phenotype, proliferation, surface protein expression, invasion, and migration behavior as well as whole-exome and RNA sequencing. Additionally, in vitro drug sensitivity towards standard-of-care chemotherapeutic regimens was evaluated. Results The pathological and molecular properties of the patients' tumors were preserved in the PDC models HROLu22, HROLu55, and HROBML01. All cell lines expressed HLA I, while none were positive for HLA II. The epithelial cell marker CD326 and the lung tumor markers CCDC59, LYPD3, and DSG3 were also detected. The most frequently mutated genes included TP53, MXRA5, MUC16, and MUC19. Among the most overexpressed genes in tumor cells compared to normal tissue were the transcription factors HOXB9, SIM2, ZIC5, SP8, TFAP2A, FOXE1, HOXB13, and SALL4; the cancer testis antigen CT83; and the cytokine IL23A. The most downregulated genes on the RNA level encode the long non-coding RNA LANCL1-AS1, LINC00670, BANCR, and LOC100652999; the regulator of angiogenesis ANGPT4; the signaling molecules PLA2G1B and RS1; and the immune modulator SFTPD. Furthermore, neither pre-existing therapy resistances nor drug antagonistic effects could be observed. Conclusion In summary, we successfully established three novel NSCLC PDC models from an adeno-, a squamous cell, and a pleomorphic carcinoma. Of note, NSCLC cell models of the pleomorphic subentity are very rare. The detailed characterization including molecular, morphological, and drug-sensitivity profiling makes these models valuable pre-clinical tools for drug development applications and research on precision cancer therapy. The pleomorphic model additionally enables research on a functional and cell-based level of this rare NCSLC subentity.
Collapse
Affiliation(s)
- Ingo Andus
- Patient Models for Precision Medicine, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Friedrich Prall
- Institute of Pathology, University Medical Center Rostock, Rostock, Germany
| | - Michael Linnebacher
- Molecular Oncology and Immunotherapy, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| | - Christina S. Linnebacher
- Patient Models for Precision Medicine, Department of General Surgery, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
6
|
Targeting KK-LC-1 inhibits malignant biological behaviors of triple-negative breast cancer. J Transl Med 2023; 21:184. [PMID: 36895039 PMCID: PMC9996895 DOI: 10.1186/s12967-023-04030-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Cancer/testis antigens (CTAs) participate in the regulation of malignant biological behaviors in breast cancer. However, the function and mechanism of KK-LC-1, a member of the CTA family, in breast cancer are still unclear. METHODS Bioinformatic tools, immunohistochemistry, and western blotting were utilized to detect the expression of KK-LC-1 in breast cancer and to explore the prognostic effect of KK-LC-1 expression in breast cancer patients. Cell function assays, animal assays, and next-generation sequencing were utilized to explore the function and mechanism of KK-LC-1 in the malignant biological behaviors of triple-negative breast cancer. Small molecular compounds targeting KK-LC-1 were also screened and drug susceptibility testing was performed. RESULTS KK-LC-1 was significantly highly expressed in triple-negative breast cancer tissues than in normal breast tissues. KK-LC-1 high expression was related to poor survival outcomes in patients with breast cancer. In vitro studies suggested that KK-LC-1 silencing can inhibit triple-negative breast cancer cell proliferation, invasion, migration, and scratch healing ability, increase cell apoptosis ratio, and arrest the cell cycle in the G0-G1 phase. In vivo studies have suggested that KK-LC-1 silencing decreases tumor weight and volume in nude mice. Results showed that KK-CL-1 can regulate the malignant biological behaviors of triple-negative breast cancer via the MAL2/MUC1-C/PI3K/AKT/mTOR pathway. The small-molecule compound Z839878730 had excellent KK-LC-1 targeting ability and cancer cell killing ability. The EC50 value was 9.7 μM for MDA-MB-231 cells and 13.67 µM for MDA-MB-468 cells. Besides, Z839878730 has little tumor-killing effect on human normal mammary epithelial cells MCF10A and can inhibit the malignant biological behaviors of triple-negative breast cancer cells by MAL2/MUC1-C/PI3K/AKT/mTOR pathway. CONCLUSIONS Our findings suggest that KK-LC-1 may serve as a novel therapeutic target for triple-negative breast cancer. Z839878730, which targets KK-LC-1, presents a new path for breast cancer clinical treatment.
Collapse
|
7
|
Viehweger F, Azem A, Gorbokon N, Uhlig R, Lennartz M, Rico SD, Kind S, Reiswich V, Kluth M, Hube-Magg C, Bernreuther C, Büscheck F, Clauditz TS, Fraune C, Jacobsen F, Krech T, Lebok P, Steurer S, Burandt E, Minner S, Marx AH, Simon R, Sauter G, Menz A, Hinsch A. Desmoglein 3 (Dsg3) Expression in Cancer: A Tissue Microarray Study on 15,869 Tumors. Pathol Res Pract 2022; 240:154200. [DOI: 10.1016/j.prp.2022.154200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
|
8
|
Near-Infrared Photoimmunotherapy for Thoracic Cancers: A Translational Perspective. Biomedicines 2022; 10:biomedicines10071662. [PMID: 35884975 PMCID: PMC9312913 DOI: 10.3390/biomedicines10071662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/23/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022] Open
Abstract
The conventional treatment of thoracic tumors includes surgery, anticancer drugs, radiation, and cancer immunotherapy. Light therapy for thoracic tumors has long been used as an alternative; conventional light therapy also called photodynamic therapy (PDT) has been used mainly for early-stage lung cancer. Recently, near-infrared photoimmunotherapy (NIR-PIT), which is a completely different concept from conventional PDT, has been developed and approved in Japan for the treatment of recurrent and previously treated head and neck cancer because of its specificity and effectiveness. NIR-PIT can apply to any target by changing to different antigens. In recent years, it has become clear that various specific and promising targets are highly expressed in thoracic tumors. In combination with these various specific targets, NIR-PIT is expected to be an ideal therapeutic approach for thoracic tumors. Additionally, techniques are being developed to further develop NIR-PIT for clinical practice. In this review, NIR-PIT is introduced, and its potential therapeutic applications for thoracic cancers are described.
Collapse
|
9
|
Zhao X, Gabriëls RY, Hooghiemstra WTR, Koller M, Meersma GJ, Buist-Homan M, Visser L, Robinson DJ, Tenditnaya A, Gorpas D, Ntziachristos V, Karrenbeld A, Kats-Ugurlu G, Fehrmann RSN, Nagengast WB. Validation of Novel Molecular Imaging Targets Identified by Functional Genomic mRNA Profiling to Detect Dysplasia in Barrett's Esophagus. Cancers (Basel) 2022; 14:cancers14102462. [PMID: 35626066 PMCID: PMC9139936 DOI: 10.3390/cancers14102462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Barrett’s esophagus (BE) is the precursor of esophageal adenocarcinoma (EAC). Dysplastic BE (DBE) has a higher progression risk to EAC compared to non-dysplastic BE (NDBE). However, the miss rates for the endoscopic detection of DBE remain high. Fluorescence molecular endoscopy (FME) can detect DBE and mucosal EAC by highlighting the tumor-specific expression of proteins. This study aimed to identify target proteins suitable for FME. Publicly available RNA expression profiles of EAC and NDBE were corrected by functional genomic mRNA (FGmRNA) profiling. Following a class comparison between FGmRNA profiles of EAC and NDBE, predicted, significantly upregulated genes in EAC were prioritized by a literature search. Protein expression of prioritized genes was validated by immunohistochemistry (IHC) on DBE and NDBE tissues. Near-infrared fluorescent tracers targeting the proteins were developed and evaluated ex vivo on fresh human specimens. In total, 1976 overexpressed genes were identified in EAC (n = 64) compared to NDBE (n = 66) at RNA level. Prioritization and IHC validation revealed SPARC, SULF1, PKCι, and DDR1 (all p < 0.0001) as the most attractive imaging protein targets for DBE detection. Newly developed tracers SULF1-800CW and SPARC-800CW both showed higher fluorescence intensity in DBE tissue compared to paired non-dysplastic tissue. This study identified SPARC, SULF1, PKCι, and DDR1 as promising targets for FME to differentiate DBE from NDBE tissue, for which SULF1-800CW and SPARC-800CW were successfully ex vivo evaluated. Clinical studies should further validate these findings.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
- Cancer Research Center Groningen, Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Ruben Y. Gabriëls
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
| | - Wouter T. R. Hooghiemstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Marjory Koller
- Department of Surgery, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Gert Jan Meersma
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
- Cancer Research Center Groningen, Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Manon Buist-Homan
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Lydia Visser
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (L.V.); (A.K.); (G.K.-U.)
| | - Dominic J. Robinson
- Center for Optic Diagnostics and Therapy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Anna Tenditnaya
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 80333 Munich, Germany; (A.T.); (D.G.); (V.N.)
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), 85764 Neuherberg, Germany
| | - Dimitris Gorpas
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 80333 Munich, Germany; (A.T.); (D.G.); (V.N.)
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), 85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 80333 Munich, Germany; (A.T.); (D.G.); (V.N.)
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), 85764 Neuherberg, Germany
| | - Arend Karrenbeld
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (L.V.); (A.K.); (G.K.-U.)
| | - Gursah Kats-Ugurlu
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (L.V.); (A.K.); (G.K.-U.)
| | - Rudolf S. N. Fehrmann
- Cancer Research Center Groningen, Department of Medical Oncology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| | - Wouter B. Nagengast
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands; (X.Z.); (R.Y.G.); (W.T.R.H.); (G.J.M.); (M.B.-H.)
- Correspondence: ; Tel.: +31-(50)-361-6161
| |
Collapse
|
10
|
Hu T, Zhang Y, Yang T, He Q, Zhao M. LYPD3, a New Biomarker and Therapeutic Target for Acute Myelogenous Leukemia. Front Genet 2022; 13:795820. [PMID: 35360840 PMCID: PMC8963240 DOI: 10.3389/fgene.2022.795820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Acute myelogenous leukemia (AML) is nosocomial with the highest pediatric mortality rates and a relatively poor prognosis. C4.4A(LYPD3) is a tumorigenic and high-glycosylated cell surface protein that has been proven to be linked with the carcinogenic effects in solid tumors, but no hematologic tumors have been reported. We focus on exploring the molecular mechanism of LYPD3 in the regulation of the occurrence and development of AML to provide a research basis for the screening of markers related to the treatment and prognosis. Methods: Datasets on RNA Sequencing (RNA-seq) and mRNA expression profiles of 510 samples were obtained from The Cancer Genome Atlas Program/The Genotype-Tissue Expression (Tcga-gtex) on 10 March 2021, which included the information on 173 AML tumorous tissue samples and 337 normal blood samples. The differential expression, identification of prognostic genes based on the COX regression model, and LASSO regression were analyzed. In order to better verify, experiments including gene knockdown mediated by small interfering RNA (siRNA), cell proliferation assays, and Western blot were prefomed. We studied the possible associated pathways through which LYPD3 may have an impact on the pathogenesis and prognosis of AML by gene set enrichment analysis (GSEA). Results: A total of 11,490 differential expression genes (DEGs) were identified. Among them, 4,164 genes were upregulated, and 7,756 genes were downregulated. The univariate Cox regression analysis and LASSO regression analysis found that 28 genes including LYPD3, DNAJC8, and other genes were associated with overall survival (OS). After multivariate Cox analysis, a total of 10 genes were considered significantly correlated with OS in AML including LYPD3, which had a poor impact on AML (p <0.05). The experiment results also supported the above conclusion. We identified 25 pathways, including the E2F signaling pathway, p53 signaling pathway, and PI3K_AKT signaling pathway, that were significantly upregulated in AML samples with high LYPD3 expression (p < 0.05) by GSEA. Further, the results of the experiment suggested that LYPD3 participates in the development of AML through the p53 signaling pathway or/and PI3K/AKT signaling pathway. Conclusion: This study first proved that the expression of LYPD3 was elevated in AML, which was correlated with poor clinical characteristics and prognosis. In addition, LYPD3 participates in the development of AML through p53 or/and the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yingjie Zhang
- College of Biology, Hunan University, Changsha, China
| | - Tianqing Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Qingnan He, ; Mingyi Zhao,
| | - Mingyi Zhao
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Qingnan He, ; Mingyi Zhao,
| |
Collapse
|
11
|
Wang Y, Pan Y, Wu J, Luo Y, Fang Z, Xu R, Teng W, Chen M, Li Y. A Novel Predictive Model Incorporating Ferroptosis-Related Gene Signatures for Overall Survival in Patients with Lung Adenocarcinoma. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e934050. [PMID: 35102130 PMCID: PMC8817619 DOI: 10.12659/msm.934050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the predominant histological type of lung cancer with high morbidity and mortality. Ferroptosis is regarded as a new pattern of programmed cell death concerned with the progression of lung cancer characterized by lipid peroxidation. Nevertheless, the prognostic role of ferroptosis-related genes for LUAD warrant to be explored. MATERIAL AND METHODS RNA sequencing and relevant clinical patient data were obtained from public-access databanks. A prognostic model was constructed through the LASSO Cox regression in the cancer genome atlas cohort. The diagnostic value of the prognostic model was further evaluated in the gene expression omnibus cohort. RESULTS Most of the ferroptosis-related genes (69.9%) were differentially expressed between tumor and adjacent non-cancerous tissues. 43 differentially expressed genes showed a close association with the prognosis of LUAD patients (adjusted p-value <0.05). An 18-gene signature was built and applied to assign patients into high vs low-risk groups. Compared with the high-risk group, patients defined as the low-risk group suffered significantly prolonged OS. Both uni- and multivariate analyses demonstrated that the signature-based score served as a crucial role in influencing the OS of LUAD patients (hazard ratio >1, p<0.001). The immunity-related signaling pathway was enriched in the functional analysis and the infiltration of the immune cells showed a great difference between groups. CONCLUSIONS The predictive model could be applied for prognostic prediction for LUAD. Targeting ferroptosis could be a possible curative strategy against LUAD, and immunomodulation may be one of the potential mechanisms.
Collapse
Affiliation(s)
- Yuli Wang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Yanbin Pan
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Jianchun Wu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Yingbin Luo
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Zhihong Fang
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Rongzhong Xu
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Wenjing Teng
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Min Chen
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China (mainland)
| |
Collapse
|
12
|
Cai W, Bao W, Chen S, Yang Y, Li Y. Metabolic syndrome related gene signature predicts the prognosis of patients with pancreatic ductal carcinoma. A novel link between metabolic dysregulation and pancreatic ductal carcinoma. Cancer Cell Int 2021; 21:698. [PMID: 34930261 PMCID: PMC8690436 DOI: 10.1186/s12935-021-02378-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Background Pancreatic cancer is one of the most common malignancies worldwide. In recent years, specific metabolic activities, which involves the development of tumor, caused wide public concern. In this study, we wish to explore the correlation between metabolism and progression of tumor. Methods A retrospective analysis including 95 patients with pancreatic ductal adenocarcinoma (PDAC) and PDAC patients from The Cancer Genome Atlas (TCGA), the International Cancer Genome Consortium (ICGC), and The Gene Expression Omnibus (GEO) database were involved in our study. Multivariate Cox regression analysis was used to construct the prognosis model. The potential connection between metabolism and immunity of PDAC was investigated through a weighted gene co-expression network analysis (WGCNA). 22 types of Tumor-infiltrating immune cells (TIICs) between high-risk and low-risk groups were estimated through CIBERSORT. Moreover, the potential immune-related signaling pathways between high-risk and low-risk groups were explored through the gene set enrichment analysis (GSEA). The role of key gene GMPS in developing pancreatic tumor was further investigated through CCK-8, colony-information, and Transwell. Results The prognostic value of the MetS factors was analyzed using the Cox regression model, and a clinical MetS-based nomogram was established. Then, we established a metabolism-related signature to predict the prognosis of PDAC patients based on the TCGA databases and was validated in the ICGC database and the GEO database to find the distinct molecular mechanism of MetS genes in PDAC. The result of WGCNA showed that the blue module was associated with risk score, and genes in the blue module were found to be enriched in the immune-related signaling pathway. Furthermore, the result of CIBERSORT demonstrated that proportions of T cells CD8, T cells Regulatory, Tregs NK cells Activated, Dendritic cells Activated, and Mast cells Resting were different between high-risk and low-risk groups. These differences are potential causes of different prognoses of PDAC patients. GSEA and the protein–protein interaction network (PPI) further revealed that our metabolism-related signature was significantly enriched in immune‐related biological processes. Moreover, knockdown of GMPS in PDAC cells suppressed proliferation, migration, and invasion of tumor cells, whereas overexpression of GMPS performed oppositely. Conclusion The results shine light on fundamental mechanisms of metabolic genes on PDAC and establish a reliable and referable signature to evaluate the prognosis of PDAC. GMPS was identified as a potential candidate oncogene with in PDAC, which can be a novel biomarker and therapeutic target for PDAC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02378-w.
Collapse
Affiliation(s)
- Weiyang Cai
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenming Bao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengwei Chen
- Department of Nephrology, The People's Hospital of Yuhuan, The Yuhuan Branch of The First Affiliated Hospital of Wenzhou Medical University, Yuhuan, China
| | - Yan Yang
- Department of Ultrasound, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325000, Zhejiang, People's Republic of China.
| | - Yanyan Li
- Department of Ultrasound, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuanxi Road, Wenzhou, 325000, Zhejiang, People's Republic of China.
| |
Collapse
|
13
|
Yu X, Yan J, Chen X, Wei J, Yu L, Liu F, Li L, Liu B. Identification of a peptide binding to cancer antigen Kita-kyushu lung cancer antigen 1 from a phage-display library. Cancer Sci 2021; 112:4335-4345. [PMID: 34387029 PMCID: PMC8486176 DOI: 10.1111/cas.15109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Kita‐kyushu lung cancer antigen 1 (KK‐LC‐1) is a kind of cancer‐testis antigen with anti‐tumor potential for clinical application. As a class of small‐molecule antigen conjugate, tumor‐targeting peptides have broad application prospects in gastric cancer diagnosis, imaging, and biological treatment. Here, we screened specific cyclic nonapeptides from a phage‐display library. The targeting peptide with the best affinity was selected and further verified in ex vivo tissue sections. Finally, enrichment of targeting peptides in tumor tissues was observed in vivo, and the dynamic biodistribution process was also observed with micro‐positron emission tomography (micro‐PET)/computed tomography (CT) imaging. Studies showed that the specific cyclic nonapeptide had a high binding capacity for KK‐LC‐1 protein. It has a strong affinity and specificity for KK‐LC‐1‐expressing positive tumor cells. Targeting peptides were significantly enriched at tumor sites in vivo, with very low normal tissue background. These findings demonstrated that the KK‐LC‐1 targeting peptide has high clinical potential.
Collapse
Affiliation(s)
- Xiaoxiao Yu
- The Comprehensive Cancer Center, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, China
| | - Jiayao Yan
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaotong Chen
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jia Wei
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lixia Yu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fangcen Liu
- Department of Pathology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lin Li
- Department of Pathology of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
14
|
Chen C, Gao D, Huo J, Qu R, Guo Y, Hu X, Luo L. Multiomics analysis reveals CT83 is the most specific gene for triple negative breast cancer and its hypomethylation is oncogenic in breast cancer. Sci Rep 2021; 11:12172. [PMID: 34108519 PMCID: PMC8190062 DOI: 10.1038/s41598-021-91290-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer (BrC) subtype lacking effective therapeutic targets currently. The development of multi-omics databases facilities the identification of core genes for TNBC. Using TCGA-BRCA and METABRIC datasets, we identified CT83 as the most TNBC-specific gene. By further integrating FUSCC-TNBC, CCLE, TCGA pan-cancer, Expression Atlas, and Human Protein Atlas datasets, we found CT83 is frequently activated in TNBC and many other cancers, while it is always silenced in non-TNBC, 120 types of normal non-testis tissues, and 18 types of blood cells. Notably, according to the TCGA-BRCA methylation data, hypomethylation on chromosome X 116,463,019 to 116,463,039 is significantly correlated with the abnormal activation of CT83 in BrC. Using Kaplan-Meier Plotter, we demonstrated that activated CT83 is significantly associated with unfavorably overall survival in BrC and worse outcomes in some other cancers. Furthermore, GSEA suggested that the abnormal activation of CT83 in BrC is probably oncogenic by triggering the activation of cell cycle signaling. Meanwhile, we also noticed copy number variations and mutations of CT83 are quite rare in any cancer type, and its role in immune infiltration is not significant. In summary, we highlighted the significance of CT83 for TNBC and presented a comprehensive bioinformatics strategy for single-gene analysis in cancer.
Collapse
Affiliation(s)
- Chen Chen
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Dan Gao
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Jinlong Huo
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Rui Qu
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Youming Guo
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Xiaochi Hu
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| | - Libo Luo
- grid.452884.7Breast and Thyroid Center, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Fenghuang N Rd, Zunyi, 563000 Guizhou China
| |
Collapse
|
15
|
De Loma J, Gliga AR, Levi M, Ascui F, Gardon J, Tirado N, Broberg K. Arsenic Exposure and Cancer-Related Proteins in Urine of Indigenous Bolivian Women. Front Public Health 2020; 8:605123. [PMID: 33381488 PMCID: PMC7767847 DOI: 10.3389/fpubh.2020.605123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Indigenous people living in the Bolivian Andes are exposed through their drinking water to inorganic arsenic, a potent carcinogen. However, the health consequences of arsenic exposure in this region are unknown. The aim of this study was to evaluate associations between arsenic exposure and changes in cancer-related proteins in indigenous women (n = 176) from communities around the Andean Lake Poopó, Bolivia. Arsenic exposure was assessed in whole blood (B-As) and urine (as the sum of arsenic metabolites, U-As) by inductively coupled plasma-mass spectrometry (ICP-MS). Cancer-related proteins (N = 92) were measured in urine using the proximity extension assay. The median B-As concentration was 2.1 (range 0.60-9.1) ng/g, and U-As concentration was 67 (12-399) μg/L. Using linear regression models adjusted for age, urinary osmolality, and urinary leukocytes, we identified associations between B-As and four putative cancer-related proteins: FASLG, SEZ6L, LYPD3, and TFPI2. Increasing B-As concentrations were associated with lower protein expression of SEZ6L, LYPD3, and TFPI2, and with higher expression of FASLG in urine (no association was statistically significant after correcting for multiple comparisons). The associations were similar across groups with different arsenic metabolism efficiency, a susceptibility factor for arsenic toxicity. In conclusion, arsenic exposure in this region was associated with changes in the expression of some cancer-related proteins in urine. Future research is warranted to understand if these proteins could serve as valid biomarkers for arsenic-related toxicity.
Collapse
Affiliation(s)
- Jessica De Loma
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anda R Gliga
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Michael Levi
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Franz Ascui
- Programa de Salud Familiar Comunitaria e Intercultural, Ministerio de Salud Bolivia, La Paz, Bolivia
| | - Jacques Gardon
- Hydrosciences Montpellier, Université de Montpellier, Institut de Recherche pour le Développement, Centre National de la Recherche Scientifique, Montpellier, France
| | - Noemi Tirado
- Genetics Institute, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Karin Broberg
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Liu Y, Liu F, Hu X, He J, Jiang Y. Combining Genetic Mutation and Expression Profiles Identifies Novel Prognostic Biomarkers of Lung Adenocarcinoma. Clin Med Insights Oncol 2020; 14:1179554920966260. [PMID: 35153523 PMCID: PMC8826273 DOI: 10.1177/1179554920966260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 09/17/2020] [Indexed: 11/17/2022] Open
Abstract
Motivation: Although several prognostic signatures for lung adenocarcinoma (LUAD) have
been developed, they are mainly based on a single-omics data set. This
article aims to develop a novel set of prognostic signatures by combining
genetic mutation and expression profiles of LUAD patients. Methods: The genetic mutation and expression profiles, together with the clinical
profiles of a cohort of LUAD patients from The Cancer Genome Atlas (TCGA),
were downloaded. Patients were separated into 2 groups, namely, the
high-risk and low-risk groups, according to their overall survivals. Then,
differential analysis was performed to determine differentially expressed
genes (DEGs) and mutated genes (DMGs) in the expression and mutation
profiles, respectively, between the 2 groups. Finally, a prognostic model
based on the support vector machine (SVM) algorithm was developed by
combining the expression values of the DEGs and the mutation times of the
DMGs. Results: A total of 13 DEGs and 7 DMGs were recognized between the 2 groups. Their
prognostic values were validated using independent cohorts. Compared with
several existing signatures, the proposed prognostic signatures exhibited
better prediction performance in the testing set. In addition, it is found
that 1 of the 7 DMGs, GRIN2B, is mutated much more
frequently in the high-risk group, showing a potential value as a therapy
target. Conclusions: Combining multi-omics data sets is an applicable manner to identify novel
prognostic signatures and to improve the prognostic prediction for LUAD,
which will be heuristic to other types of cancers.
Collapse
Affiliation(s)
- Yun Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China.,College of Communication Engineering, Jilin University, Changchun, China
| | - Fu Liu
- College of Communication Engineering, Jilin University, Changchun, China
| | - Xintong Hu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Jiaxue He
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| | - Yanfang Jiang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, Genetic Diagnosis Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Jakobsen MK, Gjerstorff MF. CAR T-Cell Cancer Therapy Targeting Surface Cancer/Testis Antigens. Front Immunol 2020; 11:1568. [PMID: 32983080 PMCID: PMC7492268 DOI: 10.3389/fimmu.2020.01568] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Mie K Jakobsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| |
Collapse
|
18
|
Chang C, Kong W, Mou X, Wang S. Investigating the correlation between DNA methylation and immune‑associated genes of lung adenocarcinoma based on a competing endogenous RNA network. Mol Med Rep 2020; 22:3173-3182. [PMID: 32945447 PMCID: PMC7453503 DOI: 10.3892/mmr.2020.11445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/18/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, there have been major breakthroughs in immunotherapies for the treatment of cancer. However, different patients have different responses to immunotherapy. Numerous studies have shown that the accumulation of epigenetic abnormalities, such as DNA methylation, serve an important role in the immune response of lung adenocarcinoma (LUAD). To investigate the effects of DNA methylation on tumor immunity with survival and prognosis, relevant studies can be performed based on the regulatory mechanisms of RNA molecules. For example, long non-coding RNAs (lncRNAs), which regulate gene expression through epigenetic levels. By constructing an immune-associated competitive endogenous RNA (ceRNA) network, the present study identified the regulatory associations among 3 key immune-associations mRNAs, 2 microRNAs (miRs) and 29 lncRNAs that were closely associated with the prognosis of patients with LUAD. The molecular biology analysis indicated that hypomethylation of the 1101320–1104290 regions of chromosome 1 resulted in the low expression levels of LINC00337 and that LINC00337 may affect the expression levels of CHEK1 by competitively binding with human (has)-miR-373 and hsa-miR-195. Therefore, abnormal DNA methylation in lncRNA-associated regions caused their abnormal expression levels, which further affected the interactions between RNA molecules. The interactions between these RNA molecules may have regulatory effects on tumor immunity and the prognosis of patients with LUAD.
Collapse
Affiliation(s)
- Chun Chang
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, P.R. China
| | - Wei Kong
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, P.R. China
| | - Xiaoyang Mou
- Department of Biochemistry, Rowan University and Guava Medicine, Glassboro, NJ 08028, USA
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, P.R. China
| |
Collapse
|
19
|
Azizi M, Dianat-Moghadam H, Salehi R, Farshbaf M, Iyengar D, Sau S, Iyer AK, Valizadeh H, Mehrmohammadi M, Hamblin MR. Interactions Between Tumor Biology and Targeted Nanoplatforms for Imaging Applications. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910402. [PMID: 34093104 PMCID: PMC8174103 DOI: 10.1002/adfm.201910402] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Indexed: 05/04/2023]
Abstract
Although considerable efforts have been conducted to diagnose, improve, and treat cancer in the past few decades, existing therapeutic options are insufficient, as mortality and morbidity rates remain high. Perhaps the best hope for substantial improvement lies in early detection. Recent advances in nanotechnology are expected to increase the current understanding of tumor biology, and will allow nanomaterials to be used for targeting and imaging both in vitro and in vivo experimental models. Owing to their intrinsic physicochemical characteristics, nanostructures (NSs) are valuable tools that have received much attention in nanoimaging. Consequently, rationally designed NSs have been successfully employed in cancer imaging for targeting cancer-specific or cancer-associated molecules and pathways. This review categorizes imaging and targeting approaches according to cancer type, and also highlights some new safe approaches involving membrane-coated nanoparticles, tumor cell-derived extracellular vesicles, circulating tumor cells, cell-free DNAs, and cancer stem cells in the hope of developing more precise targeting and multifunctional nanotechnology-based imaging probes in the future.
Collapse
Affiliation(s)
- Mehdi Azizi
- Proteomics Research Centre, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran
| | - Hassan Dianat-Moghadam
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz 5165665621, Iran
| | - Roya Salehi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | - Masoud Farshbaf
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 6581151656, Iran
| | - Disha Iyengar
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Samaresh Sau
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Arun K Iyer
- U-BiND Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Hadi Valizadeh
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, Tabriz 516615731, Iran
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
20
|
Zhang Z, Li Q, Du X, Liu M. Application of electrochemical biosensors in tumor cell detection. Thorac Cancer 2020; 11:840-850. [PMID: 32101379 PMCID: PMC7113062 DOI: 10.1111/1759-7714.13353] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/19/2020] [Accepted: 01/21/2020] [Indexed: 01/05/2023] Open
Abstract
Conventional methods for detecting tumors, such as immunological methods and histopathological diagnostic techniques, often request high analytical costs, complex operation, long turnaround time, experienced personnel and high false-positive rates. In addition, these assays are difficult to obtain an early diagnosis and prognosis quickly for malignant tumors. Compared with traditional technology, electrochemical technology has realized the study of interface charge transfer behavior at the atomic and molecular levels, which has become an important analytical and detection tool in contemporary analytical science. Electrochemical technique has the advantages of rapid detection, high sensitivity (single cell) and specificity in the detection of tumor cells, which has not only been successful in differentiating tumor cells from normal cells, but has also achieved targeted detection of localized tumor cells and circulating tumor cells. Electrochemical biosensors provide powerful tools for early diagnosis, staging and prognosis of tumors in clinical medicine. Therefore, this review mainly discusses the development and application of electrochemical biosensors in tumor cell detection in recent years.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Qingchao Li
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Xin Du
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| | - Min Liu
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life SciencesShandong Normal UniversityJinanChina
| |
Collapse
|
21
|
Drug Repurposing as an Antitumor Agent: Disulfiram-Mediated Carbonic Anhydrase 12 and Anion Exchanger 2 Modulation to Inhibit Cancer Cell Migration. Molecules 2019; 24:molecules24183409. [PMID: 31546841 PMCID: PMC6767608 DOI: 10.3390/molecules24183409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 12/18/2022] Open
Abstract
Disulfiram has been used in the treatment of alcoholism and exhibits an anti-tumor effect. However, the intracellular mechanism of anti-tumor activity of Disulfiram remains unclear. In this study, we focused on the modulatory role of Disulfiram via oncogenic factor carbonic anhydrase CA12 and its associated transporter anion exchanger AE2 in lung cancer cell line A549. The surface expression of CA12 and AE2 were decreased by Disulfiram treatment with a time-dependent manner. Disulfiram treatment did not alter the expression of Na+-bicarbonate cotransporters, nor did it affect autophagy regulation. The chloride bicarbonate exchanger activity of A549 cells was reduced by Disulfiram treatment in a time-dependent manner without change in the resting pH level. The expression and activity of AE2 and the expression of CA12 were also reduced by Disulfiram treatment in the breast cancer cell line. An invasion assay and cell migration assay revealed that Disulfiram attenuated the invasion and migration of A549 cells. In conclusion, the attenuation of AE2 and its supportive enzyme CA12, and the inhibitory effect on cell migration by Disulfiram treatment in cancer cells provided the molecular evidence supporting the potential of Disulfiram as an anticancer agent.
Collapse
|
22
|
Neagu M, Bostan M, Constantin C. Protein microarray technology: Assisting personalized medicine in oncology (Review). WORLD ACADEMY OF SCIENCES JOURNAL 2019. [DOI: 10.3892/wasj.2019.15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Monica Neagu
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Marinela Bostan
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| | - Carolina Constantin
- Department of Immunology, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
23
|
Chen P, Gu YY, Ma FC, He RQ, Li ZY, Zhai GQ, Lin X, Hu XH, Pan LJ, Chen G. Expression levels and co‑targets of miRNA‑126‑3p and miRNA‑126‑5p in lung adenocarcinoma tissues: Αn exploration with RT‑qPCR, microarray and bioinformatic analyses. Oncol Rep 2018; 41:939-953. [PMID: 30535503 PMCID: PMC6313014 DOI: 10.3892/or.2018.6901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer. Previous studies have found that many microRNAs (miRNAs), including miRNA-126-3p, may play a critical role in the development of LUAD. However, no study of LUAD has researched the synergistic effects and co-targets of both miRNA-126-3p and miRNA-126-5p. The present study used real-time quantitative polymerase chain reaction (RT-qPCR) to explore the expression values of miRNA-126-3p and miRNA-126-5p in 101 LUAD and 101 normal lung tissues. Ten relevant microarray datasets were screened to further validate the expression levels of miRNA-126-3p and −5p in LUAD. Twelve prediction tools were employed to obtain potential targets of miRNA-126-3p and miRNA-126-5p. The results showed that both miRNA-126-3p and −5p were expressed significantly lower in LUAD. A significant positive correlation was also present between miRNA-126-3p and −5p expression in LUAD. In addition, lower expression of miRNA-126-3p and −5p was indicative of vascular invasion, lymph node metastasis (LNM), and a later tumor/node/metastasis (TNM) stage of LUAD. The authors obtained 167 targets of miRNA-126-3p and 212 targets of miRNA-126-5p; 44 targets were co-targets of both. Eight co-target genes (IGF2BP1, TRPM8, DUSP4, SOX11, PLOD2, LIN28A, LIN28B and SLC7A11) were initially identified as key genes in LUAD. The results of the present study indicated that the co-regulation of miRNA-126-3p and miRNA-126-5p plays a key role in the development of LUAD, which also suggests a fail-proof mode between miRNA-3p and miRNA-126-5p.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yong-Yao Gu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Fu-Chao Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zu-Yun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gao-Qiang Zhai
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xia Lin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lin-Jiang Pan
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
24
|
Identifying the Best Marker Combination in CEA, CA125, CY211, NSE, and SCC for Lung Cancer Screening by Combining ROC Curve and Logistic Regression Analyses: Is It Feasible? DISEASE MARKERS 2018; 2018:2082840. [PMID: 30364165 PMCID: PMC6188592 DOI: 10.1155/2018/2082840] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022]
Abstract
The detection of serum biomarkers can aid in the diagnosis of lung cancer. In recent years, an increasing number of lung cancer markers have been identified, and these markers have been reported to have varying diagnostic values. A method to compare the diagnostic value of different combinations of biomarkers needs to be established to identify the best combination. In this study, automatic chemiluminescence analyzers were employed to detect the serum concentrations of carcinoembryonic antigen (CEA), carbohydrate antigen 125 (CA125), cytokeratin 19 fragment (CY211), neuron-specific enolase (NSE), and squamous cell carcinoma antigen (SCC) in 780 healthy subjects, 650 patients with pneumonia, and 633 patients with lung cancer. Receiver operating characteristic (ROC) curve and logistic regression analyses were also used to evaluate the diagnostic value of single and multiple markers of lung cancer. The sensitivities of the five markers alone were lower than 65% for lung cancer screening in healthy subjects and pneumonia patients. SCC was of little value in screening lung cancer. After combining two or more markers, the areas under the curves (AUCs) did not increase with the increase in the number of markers. For healthy subjects, the best marker for lung cancer screening was the combination CEA + CA125, and the positive cutoff range was 0.577 CEA + 0.035 CA125 > 2.084. Additionally, for patients with pneumonia, the best screening markers displayed differences in terms of sex but not age. The best screening marker for male patients with pneumonia was the combination CEA + CY211 with a positive cutoff range of 0.008 CEA + 0.068 CY211 > 0.237, while that for female patients with pneumonia was CEA > 2.73 ng/mL, which could be regarded as positive. These results showed that a two-marker combination is more suitable than a multimarker combination for the serological screening of tumors. Combined ROC curve and logistic regression analyses are effective for identifying the best markers for lung cancer screening.
Collapse
|
25
|
Li C, Torres VC, Tichauer KM. Noninvasive detection of cancer spread to lymph nodes: A review of molecular imaging principles and protocols. J Surg Oncol 2018; 118:301-314. [PMID: 30196532 DOI: 10.1002/jso.25124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
Abstract
Identification of cancer spread to tumor-draining lymph nodes offers critical information for guiding treatment in many cancer types. Current clinical methods of nodal staging are invasive and can have substantial negative side effects. Molecular imaging protocols have long been proposed as a less invasive means of nodal staging, having the potential to enable highly sensitive and specific evaluations. This review article summarizes the current status and future perspectives for molecular targeted nodal staging.
Collapse
Affiliation(s)
- Chengyue Li
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Veronica C Torres
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Kenneth M Tichauer
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| |
Collapse
|
26
|
Donofrio G, Tebaldi G, Lanzardo S, Ruiu R, Bolli E, Ballatore A, Rolih V, Macchi F, Conti L, Cavallo F. Bovine herpesvirus 4-based vector delivering the full length xCT DNA efficiently protects mice from mammary cancer metastases by targeting cancer stem cells. Oncoimmunology 2018; 7:e1494108. [PMID: 30524888 DOI: 10.1080/2162402x.2018.1494108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 01/17/2023] Open
Abstract
Despite marked advancements in its treatment, breast cancer is still the second leading cause of cancer death in women, due to relapses and distal metastases. Breast cancer stem cells (CSCs), are a cellular reservoir for recurrence, metastatic evolution and disease progression, making the development of novel therapeutics that target CSCs, and thereby inhibit metastases, an urgent need. We have previously demonstrated that the cystine-glutamate antiporter xCT (SLC7A11), a protein that was shown to be overexpressed in mammary CSCs and that plays a key role in the maintenance of their redox balance, self-renewal and resistance to chemotherapy, is a potential target for mammary cancer immunotherapy. This paper reports on the development of an anti-xCT viral vaccine that is based on the bovine herpesvirus 4 (BoHV-4) vector, which we have previously showed to be a safe vaccine that can transduce cells in vivo and confer immunogenicity to tumor antigens. We show that the vaccination of BALB/c mice with BoHV-4 expressing xCT (BoHV-4-mxCT), impaired lung metastases induced by syngeneic mammary CSCs both in preventive and therapeutic settings. Vaccination induced T lymphocyte activation and the production of anti-xCT antibodies that can mediate antibody-dependent cell cytotoxicity (ADCC), and directly impair CSC phenotype, self-renewal and redox balance. Our findings pave the way for the potential future use of BoHV-4-based vector targeting xCT in metastatic breast cancer treatment.
Collapse
Affiliation(s)
- Gaetano Donofrio
- Department of Medical Veterinary Science, Università degli Studi di Parma, Parma, Italy
| | - Giulia Tebaldi
- Department of Medical Veterinary Science, Università degli Studi di Parma, Parma, Italy
| | - Stefania Lanzardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università degli Studi di Torino, Torino, Italy
| | - Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università degli Studi di Torino, Torino, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università degli Studi di Torino, Torino, Italy
| | - Andrea Ballatore
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università degli Studi di Torino, Torino, Italy
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università degli Studi di Torino, Torino, Italy
| | - Francesca Macchi
- Department of Medical Veterinary Science, Università degli Studi di Parma, Parma, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università degli Studi di Torino, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
27
|
Activatable fluorescence detection of epidermal growth factor receptor positive mediastinal lymph nodes in murine lung cancer model. PLoS One 2018; 13:e0198224. [PMID: 29856819 PMCID: PMC5983456 DOI: 10.1371/journal.pone.0198224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/15/2018] [Indexed: 11/18/2022] Open
Abstract
It is important to detect mediastinal lymph node metastases in patients with lung cancer to improve outcomes, and it is possible that activatable fluorescence imaging with indocyanine green (ICG) can help visualize metastatic lymph nodes. Therefore, we investigated the feasibility of applying this method to mediastinal lymph node metastases in an epidermal growth factor receptor (EGFR)-positive squamous cell carcinoma of the lung. Tumors were formed by injecting H226 (EGFR-positive) and H520 (EGFR-negative) cell lines directly in the lung parenchyma of five mice each. When computed tomography revealed tumors exceeding 8 mm at their longest or atelectasis that occupied more than half of lateral lung fields, a panitumumab (Pan)-ICG conjugate was injected in the tail vein (50 μg/100 μL). The mice were then sacrificed 48 hours after injection and their chests were opened for fluorescent imaging acquisition. Lymph node metastases with the five highest fluorescent signal intensities per mouse were chosen for statistical analysis of the average signal ratios against the liver. Regarding the quenching capacity, the Pan-ICG conjugate had almost no fluorescence in phosphate-buffered saline, but there was an approximate 61.8-fold increase in vitro after treatment with 1% sodium dodecyl sulfate. Both the fluorescent microscopy and the flow cytometry showed specific binding between the conjugate and H226, but almost no specific binding with H520. The EGFR-positive mediastinal lymph node metastases showed significantly higher average fluorescence signal ratios than the EGFR-negative ones (n = 25 per group) 48 hours after conjugate administration (70.1% ± 4.5% vs. 13.3% ± 1.8%; p < 0.05). Thus, activatable fluorescence imaging using the Pan-ICG conjugate detected EGFR-positive mediastinal lymph node metastases with high specificity.
Collapse
|