1
|
Qiao XR, Zheng T, Xie Y, Yao X, Yuan Z, Wu Y, Zhou D, Chen T. MiR-146a rs2910164 (G/C) polymorphism is associated with the development and prognosis of acute coronary syndromes: an observational study including case control and validation cohort. J Transl Med 2023; 21:325. [PMID: 37189131 DOI: 10.1186/s12967-023-04140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Polymorphisms in microRNAs (miRNAs) play an important role in acute coronary syndromes (ACS). The purpose of this study was to assess the association of miR-146a rs2910164 and miR-34b rs4938723 polymorphisms with the development and prognosis of ACS and to explore the underlying mechanisms. METHODS A case-control study of 1171 subjects was included to determine the association of miR-146a rs2910164 and miR-34b rs4938723 polymorphisms with ACS risk. An additional 612 patients with different miR-146a rs2910164 genotypes, who underwent percutaneous coronary intervention (PCI) were included in the validation cohort and followed for 14 to 60 months. The endpoint was major adverse cardiovascular events (MACE). A luciferase reporter gene assay was used to validate the interaction of oxi-miR-146a(G) with the IKBA 3'UTR. Potential mechanisms were validated using immunoblotting and immunostaining. RESULTS The miR-146a rs2910164 polymorphism was significantly associated with the risk of ACS (Dominant model: CG + GG vs. CC, OR = 1.270, 95% CI (1.000-1.613), P = 0.049; Recessive model: GG vs. CC + CG, OR = 1.402, 95% CI (1.017-1.934), P = 0.039). Serum inflammatory factor levels were higher in patients with the miR-146a rs2910164 G allele than in those with the C allele. MiR-146a rs2910164 polymorphism in dominant model was associated with the incidence of MACE in post-PCI patients (CG + GG vs. CC, HR = 1.405, 95% CI (1.018-1.939), P = 0.038). However, the miR-34b rs4938723 polymorphism was not associated with the prevalence and prognosis of ACS. The G allele of miR-146a rs2910164 tends to be oxidized in ACS patients. The miRNA fractions purified from monocytes isolated from ACS patients were recognized by the 8OHG antibody. Mispairing of Oxi-miR-146a(G) with the 3'UTR of IKBA results in decreased IκBα protein expression and activation of the NF-κB inflammatory pathway. P65 expression was higher in atherosclerotic plaques from patients carrying the miR-146a rs2910164 G allele. CONCLUSION The variant of miR-146a rs2910164 is closely associated with the risk of ACS in Chinese Han population. Patients carrying miR-146a rs2910164 G allele may have worse pathological change and poorer post-PCI prognosis, partly due to the oxidatively modified miR-146a mispairing with 3'UTR of IKBA and activating NF-κB inflammatory pathways.
Collapse
Affiliation(s)
- Xiang-Rui Qiao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Molecular Cardiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Tao Zheng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Molecular Cardiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yifei Xie
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Molecular Cardiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Xinyi Yao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Molecular Cardiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Zuyi Yuan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Molecular Cardiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Yue Wu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
- Key Laboratory of Molecular Cardiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China
| | - Dong Zhou
- Department of Cardiovascular Medicine, Yongchuan Hospital of Chongqing Medical University, 439 XuanHua Road, Chongqing, 402160, China.
| | - Tao Chen
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.
- Key Laboratory of Molecular Cardiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
2
|
Bellotti C, Stäuble A, Steinfeld R. CD9 and folate receptor overexpression are not sufficient for VSV-G-independent lentiviral transduction. PLoS One 2022; 17:e0264642. [PMID: 35271606 PMCID: PMC8912258 DOI: 10.1371/journal.pone.0264642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/14/2022] [Indexed: 12/02/2022] Open
Abstract
Extracellular vesicles have become a research focus for their potential as therapeutic vehicles that carry cargo substances. Extracellular vesicles may origin from the endosomal compartment and share several characteristics with the envelope of lentiviruses. A previous study reported that constitutive expression of the tetraspanin CD9, an extracellular vesicle marker, not only increases vesicle secretion from cells, but has also a positive effect on lentiviral transduction efficiency. Moreover, it was shown that expression of CD9 on the viral envelope in absence of viral glycoproteins was sufficient for the transduction of mammalian cells. In this study, we investigate the effect of CD9 and folate receptor alpha, a GPI-anchored protein, on biosynthesis and transduction efficiency of vesicles carrying lentiviral vectors. We demonstrate that neither CD9 nor FRα nor the combination of both were able to mediate a significant transduction of therapeutic vesicles carrying lentiviral RNA. Further studies are required to identify endogenous mammalian proteins that can be used for pseudotyping of viral envelopes to improve viral targeting without inducing immune responses.
Collapse
Affiliation(s)
- Cristina Bellotti
- Department of Paediatric Neurology, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andreas Stäuble
- Department of Paediatric Neurology, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Robert Steinfeld
- Department of Paediatric Neurology, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
3
|
Tetraspanin CD9 is Regulated by miR-518f-5p and Functions in Breast Cell Migration and In Vivo Tumor Growth. Cancers (Basel) 2020; 12:cancers12040795. [PMID: 32224917 PMCID: PMC7226392 DOI: 10.3390/cancers12040795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 01/05/2023] Open
Abstract
Breast cancer is the most commonly diagnosed and the second leading cause of cancer-related mortality among women worldwide. miR-518f-5p has been shown to modulate the expression of the metastasis suppressor CD9 in prostate cancer. However, the role of miR-518f-5p and CD9 in breast cancer is unknown. Therefore, this study aimed to elucidate the role of miR-518f-5p and the mechanisms responsible for decreased CD9 expression in breast cancer, as well as the role of CD9 in de novo tumor formation and metastasis. miR-518f-5p function was assessed using migration, adhesion, and proliferation assays. miR-518f-5p was overexpressed in breast cancer cell lines that displayed significantly lower CD9 expression as well as less endogenous CD9 3'UTR activity, as assessed using qPCR and dual luciferase assays. Transfection of miR-518f-5p significantly decreased CD9 protein expression and increased breast cell migration in vitro. Cd9 deletion in the MMTV/PyMT mouse model impaired tumor growth, but had no effect on tumor initiation or metastasis. Therefore, inhibition of miR-518f-5p may restore CD9 expression and aid in the treatment of breast cancer metastasis.
Collapse
|
4
|
Huang E, Chen X, Yuan Y. Downregulated circular RNA itchy E3 ubiquitin protein ligase correlates with advanced pathologic T stage, high lymph node metastasis risk and poor survivals in prostate cancer patients. Cancer Biomark 2020; 26:41-50. [PMID: 31306101 DOI: 10.3233/cbm-182111] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE This study aimed to explore the correlation of circular RNA itchy E3 ubiquitin protein ligase (circ-ITCH) with pathological features as well as its predictive value on prognosis in prostate cancer patients. METHODS Three hundred and twenty-four patients with prostate cancer underwent radical prostatectomy were consecutively included in this retrospective study, and patients' specimens of tumor as well as paired adjacent tissues were collected for detection of circ-ITCH expression. Patients' baseline characteristics and survival data were obtained from follow-up records, and correlation of circ-ITCH with patients' pathological features and survival was determined. RESULTS Circ-ITCH expression was decreased in tumor tissue compared with paired adjacent tissues (P< 0.001), and it presented with good value in distinguishing tumor tissues from paired adjacent tissues with area under curve (AUC) of 0.812 (95%CI: 0.780-0.845). Circ-ITCH low expression was associated with advanced pathologic T stage (P= 0.002) and high risk of lymph node metastasis (P= 0.047) in prostate cancer patients. As for prognosis, patients with circ-ITCH high expression had longer disease-free survival (DFS) (P< 0.001) and overall survival (OS) (P< 0.001). Additionally, circ-ITCH (high vs. low) independently predicted better survival, while Gleason score (> 7 vs. ⩽ 7) and surgical margin status (positive vs. negative) independently predicted worse survival in prostate patients underwent radical prostatectomy. CONCLUSIONS Circ-ITCH is downregulated in prostate cancer tissues, and its low expression correlates with advanced pathologic T stage, high lymph mode metastasis risk and poor survival in prostate cancer patients underwent radical prostatectomy.
Collapse
Affiliation(s)
- Enying Huang
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, Hubei, China.,Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China
| | - Xiaogang Chen
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, Hubei, China.,Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China
| | - Yuan Yuan
- Department of Urology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, Hubei, China.,Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention, Huangshi, Hubei, China
| |
Collapse
|
5
|
Chen X, Zhang S, Sun J. MiR-9 inhibits childhood leukemia cell apoptosis via regulating notch signaling pathway. Minerva Pediatr (Torino) 2020; 73:287-288. [PMID: 32108454 DOI: 10.23736/s2724-5276.19.05705-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiyan Chen
- Third District of Pediatrics, Maternal and Child Health Care Hospital, Liaocheng, China
| | - Shuli Zhang
- Third District of Pediatrics, Maternal and Child Health Care Hospital, Liaocheng, China
| | - Jinkai Sun
- Third District of Pediatrics, Maternal and Child Health Care Hospital, Liaocheng, China -
| |
Collapse
|
6
|
Brzozowski JS, Bond DR, Jankowski H, Goldie BJ, Burchell R, Naudin C, Smith ND, Scarlett CJ, Larsen MR, Dun MD, Skelding KA, Weidenhofer J. Extracellular vesicles with altered tetraspanin CD9 and CD151 levels confer increased prostate cell motility and invasion. Sci Rep 2018; 8:8822. [PMID: 29891991 PMCID: PMC5995928 DOI: 10.1038/s41598-018-27180-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/25/2018] [Indexed: 02/06/2023] Open
Abstract
To facilitate intercellular communication, cells release nano-sized, extracellular vesicles (EVs) to transfer biological cargo to both local and distant sites. EVs are enriched in tetraspanins, two of which (CD9 and CD151) have altered expression patterns in many solid tumours, including prostate cancer, as they advance toward metastasis. We aimed to determine whether EVs from prostate cells with altered CD9 and CD151 expression could influence cellular behaviour and increase the metastatic capabilities of non-tumourigenic prostate cells. EVs were isolated by ultrafiltration and characterised for their tetraspanin expression and size distribution. iTRAQ was used to identify differences between RWPE1 and tetraspanin-modified RWPE1 EV proteomes, showing an enrichment in protein degradation pathways. Addition of EVs from RWPE1 cells with reduced CD9 or increased CD151 abundance resulted in increased invasion of RWPE1 cells, and increased migration in the case of high CD151 abundance. We have been able to show that alteration of CD9 and CD151 on prostate cells alters the proteome of their resultant EVs, and that these EVs can enhance the migratory and invasive capabilities of a non-tumourigenic prostate cellular population. This work suggests that cellular tetraspanin levels can alter EVs, potentially acting as a driver of metastasis in prostate cancer.
Collapse
Affiliation(s)
- Joshua S Brzozowski
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Danielle R Bond
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
| | - Helen Jankowski
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Belinda J Goldie
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Rachel Burchell
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Crystal Naudin
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.,Emory University, Atlanta, Georgia, USA
| | - Nathan D Smith
- ABRF, Research Services, University of Newcastle, Callaghan, NSW, Australia
| | - Christopher J Scarlett
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Matthew D Dun
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Kathryn A Skelding
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Judith Weidenhofer
- Cancer Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia. .,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|