1
|
Htike K, Yoshida K, Eguchi T, Takebe K, Li X, Qu Y, Sakai E, Tsukuba T, Okamoto K. Herbal medicine Ninjinyoeito inhibits RANKL-induced osteoclast differentiation and bone resorption activity by regulating NF-κB and MAPK pathway. J Oral Biosci 2024; 66:49-57. [PMID: 39366652 DOI: 10.1016/j.job.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVES Osteoporosis is a systemic bone metabolism disorder characterized by decreased bone mass and strength. Osteoclasts (OCs) are giant multinucleated cells that regulate bone homeostasis by degrading bone matrix. Excessive OC differentiation and activity can lead to serious bone metabolic disorders including osteoporosis. Current treatments, including antiresorptive drugs, exert considerable adverse effects, including jaw osteonecrosis. Herbal medicines, such as Ninjinyoeito (NYT), may also offer efficacy, but with fewer adverse effects. In this study, we investigated NYT's effects on osteoclastogenesis. METHODS Tartrate-resistant acid phosphatase (TRAP) staining and bone resorption assays were performed to examine NYT's effects on OC differentiation and function. OC-related gene expression at mRNA and protein levels was investigated to confirm NYT's inhibitory action against osteoclastogenesis. We also demonstrated involvement of signaling pathways mediated by IκBα and mitogen-activated protein kinases (MAPK) [extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38] and showed nuclear translocation of nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) and nuclear factor kappa B (NF-κB) p65 during osteoclastogenesis. RESULTS TRAP staining and bone resorption assays confirmed that NYT significantly inhibited OC differentiation and function. Western blot and RT-PCR results showed that NYT ameliorated osteoclastogenesis by suppressing mRNA and protein level expression of OC-related genes. Moreover, blots and immunocytochemistry (ICC) data clarified that NYT abrogates signaling pathways mediated by IκBα and MAPK (ERK, JNK, p38), and demonstrated nuclear translocation of NFATc1 and NF-κB p65 during OC differentiation. CONCLUSIONS These findings suggest NYT is an alternative therapeutic candidate for treating osteoporosis.
Collapse
Affiliation(s)
- Kaung Htike
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Kunihiro Yoshida
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan; Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8525, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan; Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Katsuki Takebe
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Xueming Li
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Yaxin Qu
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki, 852-8588, Japan
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
2
|
Fan Z, Liu J, Wang X, Yang S, Wang Q, Yan L, Zhang Y, Wu X. Paeoniae Radix Rubra: A Review of Ethnopharmacology, Phytochemistry, Pharmacological Activities, Therapeutic Mechanism for Blood Stasis Syndrome, and Quality Control. Chem Biodivers 2024; 21:e202401119. [PMID: 38850115 DOI: 10.1002/cbdv.202401119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Paeoniae Radix Rubra (PRR) known as Chishao, in China, is the dried root of Paeonia lactiflora Pall. or Paeonia veitchii Lynch, with a history of over 2000 years in traditional Chinese medicine, is employed to clear heat, cool the blood, dispel blood stasis, and alleviate pain. Phytochemical investigations identified 264 compounds that contained monoterpenes and their glycosides, sesquiterpenes, triterpenes, steroids, flavonoids, lignans, tannins, volatile oils, and other compounds. It has been reported to have different pharmacological activities, including cardiovascular-protective, antidepressive, neuroprotective, antitumor, hepatoprotective, and anti-inflammatory effects. This study offers a comprehensive review covering ethnopharmacology, phytochemistry, pharmacological activities, therapeutic mechanism for blood stasis syndrome, and quality control of PRR. The comprehensive analysis aims to achieve a thorough understanding of its effects and serves as a foundation for future research and development.
Collapse
Affiliation(s)
- Zuowang Fan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
- Sanming Medical and Polytechnic Vocational College, Sanming, 365000, China
| | - Jing Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xu Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Saisai Yang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Qi Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Li Yan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Yao Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xiuhong Wu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| |
Collapse
|
3
|
Liu H, Chang Z, Liu S, Zhu R, Ma J, Lu X, Li L, Zhang Z. MEDAG expression in vitro and paeoniflorin alleviates bone loss by regulating the MEDAG/AMPK/PPARγ signaling pathway in vivo. Heliyon 2024; 10:e24241. [PMID: 38226230 PMCID: PMC10788805 DOI: 10.1016/j.heliyon.2024.e24241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/17/2024] Open
Abstract
Objectives Osteoporosis (OP) is characterized by reduced bone mass and impaired bone microstructure. Paeoniflorin (PF) is isolated from peony root with anti-inflammatory, immunomodulatory, and bone-protective effects. Up to now, the mechanism of anti-OP in PF has not been completely clarified. Methods The expression of MEDAG in osteoclasts, osteoblasts and adipocytes was detected by RT-qPCR. The OVX mouse model was constructed, and oral administration of PF was performed for 15 weeks. Bone microstructure was detected by H&E staining and a micro-CT system, and expression of signaling proteins examined by Western blot and immunohistochemical staining. ELISA and biochemical kits were used to quantify serum metabolite levels. Key findings MEDAG were upregulated in osteoclasts and adipocytes, and downregulated in osteoblasts. PF administration effectively alleviated OVX-induced bone loss, and histological changes in femur tissues. Moreover, PF significantly reduced serum TRAP, CTX-1, P1NP, BALP, and LDL-C levels and increased HDL-C. In addition, PF inhibited the expression of MEDAG, cathepsin K, NFATc1, PPARγ, and C/EBPα and increased p-AMPKα, OPG and Runx2. Conclusions MEDAG is a potential target for bone diseases, and PF might attenuate OVX-induced osteoporosis via MEDAG/AMPK/PPARγ signaling pathway.
Collapse
Affiliation(s)
- Haixia Liu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyue Chang
- The 8th Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Shuling Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruyuan Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayi Ma
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyue Lu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lei Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiguo Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Wang K, Hu S. The synergistic effects of polyphenols and intestinal microbiota on osteoporosis. Front Immunol 2023; 14:1285621. [PMID: 37936705 PMCID: PMC10626506 DOI: 10.3389/fimmu.2023.1285621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Osteoporosis is a common metabolic disease in middle-aged and elderly people. It is characterized by a reduction in bone mass, compromised bone microstructure, heightened bone fragility, and an increased susceptibility to fractures. The dynamic imbalance between osteoblast and osteoclast populations is a decisive factor in the occurrence of osteoporosis. With the increase in the elderly population in society, the incidence of osteoporosis, disability, and mortality have gradually increased. Polyphenols are a fascinating class of compounds that are found in both food and medicine and exhibit a variety of biological activities with significant health benefits. As a component of food, polyphenols not only provide color, flavor, and aroma but also act as potent antioxidants, protecting our cells from oxidative stress and reducing the risk of chronic disease. Moreover, these natural compounds exhibit anti-inflammatory properties, which aid in immune response regulation and potentially alleviate symptoms of diverse ailments. The gut microbiota can degrade polyphenols into more absorbable metabolites, thereby increasing their bioavailability. Polyphenols can also shape the gut microbiota and increase its abundance. Therefore, studying the synergistic effect between gut microbiota and polyphenols may help in the treatment and prevention of osteoporosis. By delving into how gut microbiota can enhance the bioavailability of polyphenols and how polyphenols can shape the gut microbiota and increase its abundance, this review offers valuable information and references for the treatment and prevention of osteoporosis.
Collapse
Affiliation(s)
- Keyu Wang
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Siwang Hu
- The Orthopaedic Center, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Wenling, Zhejiang, China
| |
Collapse
|
5
|
Kuzu TE, Öztürk K, Gürgan CA, Yay A, Göktepe Ö, Kantarcı A. Anti-inflammatory and pro-regenerative effects of a monoterpene glycoside on experimental periodontitis in a rat model of diabetes. J Periodontal Res 2023; 58:932-938. [PMID: 37340760 DOI: 10.1111/jre.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/22/2023]
Abstract
OBJECTIVE Paeoniflorin (Pae) is a monoterpene glycoside with immune-regulatory effects. Several studies have already demonstrated the impact of Pae on periodontitis, but its effect on diabetic periodontitis is unclear. In this study, our aim was to test the hypothesis that Pae had a strong anti-inflammatory effect that prevented bone loss in diabetic periodontitis. METHODS Thirty male Wistar albino rats were randomly divided into control (healthy, n = 10), periodontitis (PD) + diabetes (DM; n = 10), and PD + DM + Pae (n = 10) groups. Ligature-induced periodontitis was created by placing 4-0 silk ligatures around the lower first molars on both sides of the mandibulae. Experimental DM was created via an injection of 50 mg/kg and streptozotocin (STZ). Hyperglycemia was confirmed by the blood glucose levels of rats (>300 mg/dL). The bone mineral density (BMD), trabecular number, trabecular thickness, and bone loss were measured by micro-CT. The expression levels of IL-1β, IL-6, and TNF-α were measured in tissue homogenates by ELISA. RESULTS The PD + DM + Pae group had significantly less alveolar crest resorption when compared to the PD + DM group. There was also a significant difference between the PD + DM + Pae group compared to PD + DM group in trabecular thickness, BMD, and the number of trabeculae. Pae application led to a statistically significant decrease in IL-1β, IL-6, and TNF-α levels in diabetic periodontitis. CONCLUSION Systemic application of Pae suppressed inflammation caused by PD and DM, leading to reduced bone loss and enhanced bone quality.
Collapse
Affiliation(s)
- Turan Emre Kuzu
- Department of Periodontology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Kübra Öztürk
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Cem A Gürgan
- Department of Periodontology, Faculty of Dentistry, Nuh Naci Yazgan University, Kayseri, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Özge Göktepe
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | | |
Collapse
|
6
|
Shen J, Yang F, Wang G, Mou X, Li J, Ding X, Wang X, Li H. Paeoniflorin alleviates inflammation in bovine mammary epithelial cells induced by Staphylococcus haemolyticus through TLR2/NF-κB signaling pathways. Res Vet Sci 2023; 156:95-103. [PMID: 36796241 DOI: 10.1016/j.rvsc.2023.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/04/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023]
Abstract
Staphylococcus haemolyticus (S. haemolyticus) is one of the most common coagulase-negative staphylococci (CoNS) isolates from bovine mastitis. Paeoniflorin (PF) shows anti-inflammatory effects on different inflammatory diseases in vitro studies and in vivo animal experiments. In this study, the viability of bovine mammary epithelial cells (bMECs) was detected by the cell counting kit-8 experiment. Subsequently, bMECs were induced with S. haemolyticus, and the induction dosage was determined. The expression of pro-inflammatory cytokines and toll-like receptor (TLR2) and nuclear factor kappa-B (NF-κB) signaling pathway-related genes were investigated by quantitative real-time PCR. The critical pathway proteins were detected by western blot. The results showed that the multiplicity of infection (MOI; the ratio of bacteria to bMECs) 5:1 of S. haemolyticus for 12 h could cause cellular inflammation, which was selected to establish the inflammatory model. Incubation with 50 μg/ml PF for 12 h was the best intervention condition for cells stimulated by S. hemolyticus. Quantitative real-time PCR and western blot analysis showed that PF inhibited the activation of TLR2 and NF-κB pathway-related genes and the expression of related proteins. Western blot results showed that PF suppressed the expression of NF-κB unit p65, NF-κB unit p50, and MyD88 in bMECs stimulated by S. haemolyticus. The inflammatory response pathway and molecular mechanism caused by S. haemolyticus on bMECs are related to TLR2-mediated NF-κB signaling pathways. The anti-inflammatory mechanism of PF may also be through this pathway. Therefore, PF is expected to develop potential drugs against CoNS-induced bovine mastitis.
Collapse
Affiliation(s)
- Jirao Shen
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Feng Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Guibo Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xiaoqing Mou
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Jinyu Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xuezhi Ding
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China
| | - Xurong Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.
| | - Hongsheng Li
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, People's Republic of China.
| |
Collapse
|
7
|
Research on the Mechanism of Liuwei Dihuang Decoction for Osteoporosis Based on Systematic Biological Strategies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7017610. [PMID: 36185080 PMCID: PMC9522519 DOI: 10.1155/2022/7017610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 02/21/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
Abstract
Background Osteoporosis is an important health problem worldwide. Liuwei Dihuang Decoction (LDD) and its main ingredients may have a good clinical effect on osteoporosis. Meanwhile, its mechanism for treating osteoporosis needs to be further revealed in order to provide a basis for future drug development. Methods A systematic biological methodology was utilized to construct and analyze the LDD-osteoporosis network. After that, the human transcription data of LDD intervention in patients with osteoporosis and protein arrays data of LDD intervention in osteoporosis rats were collected. The human transcription data analysis, protein arrays data analysis, and molecular docking were performed to validate the findings of the prediction network (LDD-osteoporosis PPI network). Finally, animal experiments were conducted to verify the prediction results of systematic pharmacology. Results (1) LDD-osteoporosis PPI network shows the potential compounds, potential targets (such as ALB, IGF1, SRC, and ESR1), clusters, biological processes (such as positive regulation of calmodulin 1-monooxygenase activity, estrogen metabolism, and endothelial cell proliferation), and signaling and Reactome pathways (such as JAK-STAT signaling pathway, osteoclast differentiation, and degradation of the extracellular matrix) of LDD intervention in osteoporosis. (2) Human transcriptomics data and protein arrays data validated the findings of the LDD-osteoporosis PPI network. (3) The animal experiments showed that LDD can improve bone mineral density (BMD), increase serum estradiol (E2) and alkaline phosphatase (ALP) levels, and upregulate Wnt3a and β-catenin mRNA expression (P < 0.05). (4) Molecular docking results showed that alisol A, dioscin, loganin, oleanolic acid, pachymic acid, and ursolic acid may stably bind to JAK2, ESR1, and CTNNB1. Conclusion LDD may have a therapeutic effect on osteoporosis through regulating the targets (such as ALB, IGF1, SRC, and ESR1), biological processes (such as positive regulation of calmodulin 1-monooxygenase activity, estrogen metabolism, and endothelial cell proliferation), and pathways (such as JAK-STAT signaling pathway, osteoclast differentiation, and degradation of the extracellular matrix) found in this research.
Collapse
|
8
|
Fang K, Murakami Y, Kanda S, Shimono T, Dang AT, Ono M, Nishiyama T. Unkeito Suppresses RANKL-Mediated Osteoclastogenesis via the Blimp1-Bcl6 and NF-κB Signaling Pathways and Enhancing Osteoclast Apoptosis. Int J Mol Sci 2022; 23:ijms23147814. [PMID: 35887169 PMCID: PMC9323376 DOI: 10.3390/ijms23147814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is a common bone disease, particularly in menopausal women. Herein, we screened four Kampo medicines (Unkeito (UKT), Kamishoyosan (KSS), Kamikihito (KKT), and Ninjinyoeito (NYT)), frequently used to treat menopausal syndromes, for their effects on receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation in RAW 264 cells. Considering that UKT exhibited the most potent effect, we examined its effect on RANKL-induced osteoclastogenesis, the induction of osteoclast apoptosis, and the mechanisms underlying its effects. UKT inhibits RANKL-induced osteoclast differentiation in the early stage and decreases osteoclast-related genes, including tartrate-resistant acid phosphatase (Trap), dendritic cell-specific transmembrane protein (Dcstamp), matrix metalloproteinase-9 (Mmp9), and cathepsin K (Ctsk). Specifically, UKT inhibits the nuclear factor of activated T cells 1 (NFATc1), which is essential for osteoclastogenesis. UKT increases Bcl6, which antagonizes NFATc1 and Dc-stamp, thereby blocking the progression of osteoclasts to maturation. UKT also decreased nuclear translocation by downregulating the activity of p65/NF-κB. In addition, UKT enhances mononuclear osteoclast apoptosis via activation of caspase-3. Herein, we demonstrate that UKT suppresses RANKL-mediated osteoclastogenesis via the Blimp1–Bcl6 and NF-κB signaling pathways and enhances mononuclear osteoclast apoptosis. Furthermore, UKT prevents bone loss in OVX mice. Thus, UKT might be a potential therapeutic agent for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Ke Fang
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (K.F.); (Y.M.); (T.S.); (T.N.)
| | - Yuki Murakami
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (K.F.); (Y.M.); (T.S.); (T.N.)
- Regenerative Research Center for Intractable Diseases, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan
| | - Seiji Kanda
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (K.F.); (Y.M.); (T.S.); (T.N.)
- Regenerative Research Center for Intractable Diseases, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan
- Correspondence: ; Tel.: +81-72-804-2403
| | - Takaki Shimono
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (K.F.); (Y.M.); (T.S.); (T.N.)
- Regenerative Research Center for Intractable Diseases, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan
| | - Anh Tuan Dang
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (M.O.)
- Department of Oral Rehabilitation and Regenerative Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Mitsuaki Ono
- Department of Molecular Biology and Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan; (A.T.D.); (M.O.)
- Department of Oral Rehabilitation and Implantology, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshimasa Nishiyama
- Department of Hygiene and Public Health, Kansai Medical University, 2-5-1 Shin-machi, Hirakata 573-1010, Japan; (K.F.); (Y.M.); (T.S.); (T.N.)
| |
Collapse
|
9
|
Su R, Jin X, Zhao W, Wu X, Zhai F, Li Z. Rutin ameliorates the promotion effect of fine particulate matter on vascular calcification in calcifying vascular cells and ApoE -/- mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113410. [PMID: 35279519 DOI: 10.1016/j.ecoenv.2022.113410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Atmospheric PM2.5 exposure greatly contributes to the incidence of and mortality from cardiovascular disease (CVD). Owing to the crucial role of vascular calcification in the progression of CVD, it is imperative to elucidate the effects of PM2.5 on vascular calcification to understand the toxic mechanisms of haze-induced CVD. However, the effects of PM2.5 exposure on vascular calcification and the underlying molecular mechanisms are still unclear. In this work, the in vitro and in vivo models were used to illuminate the effects of PM2.5 on vascular calcification. We found that PM2.5 promoted the deposition of hydroxyapatite in calcifying vascular cells. Moreover, hydroxyapatite deposition was significantly enhanced by 3.5 times compared with those in the control group in aortas of ApoE-/- mice after exposure winter PM2.5 (1.5 mg/kg b.w.), accompanied by activation of the OPG/RANKL pathway and inflammatory cytokines' expressions. Moreover, PM2.5-induced reactive oxygen species (ROS) generation was observed. NAC, an ROS inhibitor, observably alleviated the promotion effects of PM2.5 on vascular calcification. Furthermore, rutin effectively prevented vascular calcification by regulating the OPG/RANKL pathway. Our results suggest that PM2.5 play an important role in the occurrence and development of vascular calcification, and that rutin has an antagonistic effect on it.
Collapse
Affiliation(s)
- Ruijun Su
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Wenjing Zhao
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Xiaoying Wu
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Feihong Zhai
- Department of Biology, Taiyuan Normal University, Taiyuan 030619, China
| | - Zhuoyu Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan 030006, China; Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
10
|
Sun X, Zhu K, Feng C, Zhu J, Chen S, Tang W, Wang Z, Xiao L, Li H, Geng D, Wang Z. Paeoniflorin Ameliorates Hyperprolactinemia-Induced Inhibition of Osteoblastogenesis by Suppressing the NF- κB Signaling Pathway. Int J Endocrinol 2022; 2022:4572033. [PMID: 35465073 PMCID: PMC9033376 DOI: 10.1155/2022/4572033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/16/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperprolactinemia is a common endocrine disease in women of reproductive age. Research has shown that patients with hyperprolactinemia often have decreased bone mineral density and an increased risk of fractures. However, there is still a lack of effective treatments. Paeoniflorin, one of the primary bioactive components in peony, is widely used in traditional Chinese medicine. Research has shown that paeoniflorin promotes osteoblast differentiation. However, whether paeoniflorin plays a role in hyperprolactinemia-induced osteoblastogenesis inhibition is not yet clear. In this study, we investigated the effect of paeoniflorin on prolactin (PRL)-mediated inhibition of osteoblast function. Our results showed that prolactin significantly reduced the expression of alkaline phosphatase (ALP), Osterix, and runt-related transcription factor 2 (RUNX2) in MC3T3-E1 cells cultured in an osteoblast differentiation medium, suggesting that prolactin inhibited osteoblast function. After treatment with paeoniflorin (PF), the expression of these osteoblast markers was upregulated. In addition, our findings proved that paeoniflorin increased the absorbance values of ALP-positive cells and the areas of alizarin red S (ARS) deposition compared to those in the prolactin group, suggesting that paeoniflorin reversed the PRL-induced reduction in osteoblast differentiation. The PRL-induced activation of nuclear factor kappa B (NF-κB) was significantly reversed by paeoniflorin, indicating that paeoniflorin promoted osteoblast function by inhibiting the NF-κB signaling pathway. In summary, these results showed that paeoniflorin alleviated the inhibitory effect of prolactin on osteoblastogenesis by suppressing the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaohong Sun
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Keda Zhu
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Chengcheng Feng
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Jie Zhu
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Shuangshuang Chen
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Wenkai Tang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Zhifang Wang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Long Xiao
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hong Li
- Department of Endocrinology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zhirong Wang
- Center Laboratory, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, China
| |
Collapse
|
11
|
Zhuo Y, Li M, Jiang Q, Ke H, Liang Q, Zeng LF, Fang J. Evolving Roles of Natural Terpenoids From Traditional Chinese Medicine in the Treatment of Osteoporosis. Front Endocrinol (Lausanne) 2022; 13:901545. [PMID: 35651977 PMCID: PMC9150774 DOI: 10.3389/fendo.2022.901545] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a systemic metabolic skeletal disease which can lead to reduction in bone mass and increased risk of bone fracture due to the microstructural degradation. Traditional Chinese medicine (TCM) has been applied in the prevention and treatment of osteoporosis for a long time. Terpenoids, a class of natural products that are rich in TCM, have been widely studied for their therapeutic efficacy on bone resorption, osteogenesis, and concomitant inflammation. Terpenoids can be classified in four categories by structures, monoterpenoids, sesquiterpenoids, diterpenoids, and triterpenoids. In this review, we comprehensively summarize all the currently known TCM-derived terpenoids in the treatment of OP. In addition, we discuss the possible mechanistic-of-actions of all four category terpenoids in anti-OP and assess their therapeutic potential for OP treatment.
Collapse
Affiliation(s)
- Yue Zhuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yue Zhuo, ; Ling-Feng Zeng, ; Jiansong Fang,
| | - Meng Li
- Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Women and Children’s Medical Center, Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Guangzhou Medical University, Guangzhou, China
| | - Qiyao Jiang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| | - Qingchun Liang
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Ling-Feng Zeng
- The 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yue Zhuo, ; Ling-Feng Zeng, ; Jiansong Fang,
| | - Jiansong Fang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yue Zhuo, ; Ling-Feng Zeng, ; Jiansong Fang,
| |
Collapse
|
12
|
Ye Q, Xi X, Fan D, Cao X, Wang Q, Wang X, Zhang M, Wang B, Tao Q, Xiao C. Polycyclic aromatic hydrocarbons in bone homeostasis. Biomed Pharmacother 2021; 146:112547. [PMID: 34929579 DOI: 10.1016/j.biopha.2021.112547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/03/2021] [Accepted: 12/13/2021] [Indexed: 01/16/2023] Open
Abstract
Prolonged exposure to polycyclic aromatic hydrocarbons (PAHs) may result in autoimmune diseases, such as rheumatoid arthritis (RA) and osteoporosis (OP), which are based on an imbalance in bone homeostasis. These diseases are characterized by bone erosion and even a disruption in homeostasis, including in osteoblasts and osteoclasts. Current evidence indicates that multiple factors affect the progression of bone homeostasis, such as genetic susceptibility and epigenetic modifications. However, environmental factors, especially PAHs from various sources, have been shown to play an increasingly prominent role in the progression of bone homeostasis. Hence, it is essential to investigate the effects and pathogenesis of PAHs in bone homeostasis. In this review, recent progress is summarized concerning the effects and mechanisms of PAHs and their ligands and receptors in bone homeostasis. Moreover, strategies based on the effects and mechanisms of PAHs in the regulation of the bone balance and alleviation of bone destruction are also reviewed. We further discuss the future challenges and perspectives regarding the roles of PAHs in autoimmune diseases based on bone homeostasis.
Collapse
Affiliation(s)
- Qinbin Ye
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xiaoyu Xi
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Danping Fan
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100193, China
| | - Xiaoxue Cao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100193, China
| | - Qiong Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xing Wang
- Beijing University of Chinese Medicine, Beijing 100029, China; Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Mengxiao Zhang
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Bailiang Wang
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qingwen Tao
- Department of TCM Rheumatology, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Department of Emergency, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
13
|
Han SY, Kim YK. Yukmijihwang-Tang Suppresses Receptor Activator of Nuclear Factor Kappa-B Ligand (RANKL)-Induced Osteoclast Differentiation and Prevents Ovariectomy (OVX)-Mediated Bone Loss. Molecules 2021; 26:molecules26247579. [PMID: 34946658 PMCID: PMC8706552 DOI: 10.3390/molecules26247579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Yukmijihwang-tang (YJ) has been used to treat diabetes mellitus, renal disorders, and cognitive impairment in traditional medicine. This study aimed to evaluate the anti-osteoporotic effect of YJ on ovariectomy (OVX)-induced bone loss in a rat and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated osteoclast differentiation in bone marrow macrophages (BMMs). YJ reduced the formation of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells (MNCs) in an osteoclast/osteoblast co-culture system by regulating the ratio of RANKL/osteoprotegerin (OPG) by osteoblasts. Overall, YJ reduced TRAP-positive cell formation and TRAP activity and F-actin ring formation. Analysis of the underlying mechanisms indicated that YJ inhibited the activation of the nuclear factor of activated T cell cytoplasmic 1 (NFATc1) and c-Fos, resulting in the suppression of osteoclast differentiation-related genes such as TRAP, ATPase, H+ transporting, lysosomal 38 kDa, V0 subunit d2, osteoclast-associated receptor, osteoclast-stimulatory transmembrane protein, dendritic cell-specific transmembrane protein, matrix metalloproteinase-9, cathepsin K, and calcitonin receptor. YJ also inhibited the nuclear translocation of NFATc1. Additionally, YJ markedly inhibited RANKL-induced phosphorylation of signaling pathways activated in the early stages of osteoclast differentiation including the p38, JNK, ERK, and NF-κB. Consistent with these in vitro results, the YJ-administered group showed considerably attenuated bone loss in the OVX-mediated rat model. These results provide promising evidence for the potential novel therapeutic application of YJ for bone diseases such as osteoporosis.
Collapse
Affiliation(s)
- Sang-Yong Han
- Department of Herbal Medicine, College of Pharmacy, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Korea;
- Wonkwang Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Korea
| | - Yun-Kyung Kim
- Department of Herbal Medicine, College of Pharmacy, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Korea;
- Wonkwang Oriental Medicines Research Institute, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Korea
- Correspondence: ; Tel.: +82-63-850-6803
| |
Collapse
|
14
|
Zhou Y, Xue X, Guo Y, Liu H, Hou Z, Chen Z, Wang N, Li F, Wang Y. A quinoxaline-based compound ameliorates bone loss in ovariectomized mice. Exp Biol Med (Maywood) 2021; 246:2502-2510. [PMID: 34308655 DOI: 10.1177/15353702211032133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
DMB (6,7-dichloro-2-methylsulfonyl-3-Ntert-butylaminoquinoxaline) is a quinoxaline-based compound that has been investigated as a glucagon-like peptide-1 receptor (GLP-1R) agonist. To clarify anti-osteoporosis effect of DMB, an osteoporotic mice model was established by ovariectomy (OVX) operation. The OVX mice were given intraperitoneally DMB, exendin-4 (EX-4), or 17β-estradiol (E2) for two months. Then bone mass and structure, and bone morphometric parameters were examined by micro-CT. Weight gain and food consumption, bone turnover markers, and biomechanical strength of the femur were tested, and bone histomorphometry was analyzed. The food intake and weight gain was obviously reduced by E2 or EX-4, but not DMB. However, DMB or EX-4 treatment obviously inhibited skeletal deterioration and enhanced bone strength. The improvement involved in the increased osteoblast number and level of bone formation markers, and reduced osteoclasts number and level of bone resorption markers. In addition, DMB was found to stimulate osteoblastogenesis-related marker gene expression. These results demonstrated that DMB ameliorated bone loss mainly via induction of bone formation, which suggests that the small molecule compound might be applied to the management of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Basic Medicine, Xi'an Medical University, Xi'an 710021, PR China.,Science and Technology Innovation Platform of Shaanxi Provincial Research Center for Project of Prevention and Treatment of Respiratory Diseases, Xi'an Medical University, Xi'an 710021, PR China
| | - Xiaoyan Xue
- Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an 710032, PR China
| | - Yanyan Guo
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, the Fourth Military Medical University, Xi'an 710038, PR China
| | - Huan Liu
- Department of Basic Medicine, Xi'an Medical University, Xi'an 710021, PR China
| | - Zheng Hou
- Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an 710032, PR China
| | - Zhou Chen
- Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an 710032, PR China
| | - Ning Wang
- Department of Pharmacology, School of Pharmacy, the Fourth Military Medical University, Xi'an 710032, PR China
| | - Fen Li
- Department of Basic Medicine, Xi'an Medical University, Xi'an 710021, PR China
| | - Yang Wang
- Department of Basic Medicine, Xi'an Medical University, Xi'an 710021, PR China
| |
Collapse
|
15
|
Jiao F, Varghese K, Wang S, Liu Y, Yu H, Booz GW, Roman RJ, Liu R, Fan F. Recent Insights Into the Protective Mechanisms of Paeoniflorin in Neurological, Cardiovascular, and Renal Diseases. J Cardiovasc Pharmacol 2021; 77:728-734. [PMID: 34001724 PMCID: PMC8169546 DOI: 10.1097/fjc.0000000000001021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
ABSTRACT The monoterpene glycoside paeoniflorin (PF) is the principal active constituent of the traditional Chinese herbal medicines, Radix Paeoniae Alba and Radix Paeoniae Rubra, which have been used for millennia to treat cardiovascular diseases (eg, hypertension, bleeding, and atherosclerosis) and neurological ailments (eg, headaches, vertigo, dementia, and pain). Recent evidence has revealed that PF exerts inhibitory effects on inflammation, fibrosis, and apoptosis by targeting several intracellular signaling cascades. In this review, we address the current knowledge about the pharmacokinetic properties of PF and its molecular mechanisms of action. We also present results from recent preclinical studies supporting the utility of PF for the treatment of pain, cerebral ischemic injury, and neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Moreover, new evidence suggests a general protective role of PF in heart attack, diabetic kidney, and atherosclerosis. Mechanistically, PF exerts multiple anti-inflammatory actions by targeting toll-like receptor-mediated signaling in both parenchymal and immune cells (in particular, macrophages and dendritic cells). A better understanding of the molecular actions of PF may lead to the expansion of its therapeutic uses.
Collapse
Affiliation(s)
- Feng Jiao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Kevin Varghese
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - George W. Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ruen Liu
- Department of Neurosurgery, Peking University People’s Hospital, Beijing, 100044, China
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
16
|
Paeoniflorin Attenuates Dexamethasone-Induced Apoptosis of Osteoblast Cells and Promotes Bone Formation via Regulating AKT/mTOR/Autophagy Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6623464. [PMID: 33880124 PMCID: PMC8046541 DOI: 10.1155/2021/6623464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/21/2021] [Accepted: 03/26/2021] [Indexed: 01/04/2023]
Abstract
Paeoniflorin, a natural product derived from Paeonia lactiflora, possesses diverse pharmacological activities such as anti-inflammatory, antitumor, and antidiabetic effects. It has been reported for promoting osteoblastogenesis and inhibiting osteoclastogenesis. This study investigates the therapeutic effects of paeoniflorin in glucocorticoid-induced osteoporosis (GIOP) in vitro and in vivo. MC3T3-E1 cells were incubated with dexamethasone (DEX; 200 μM) and/or paeoniflorin (10 μM), followed by the investigation of cell proliferation, differentiation, mineralization, apoptosis, and autophagy. The AKT activator SC79 was used for evaluating the involvement of the AKT/mTOR signaling pathway. After DEX pretreatments, paeoniflorin promoted osteoblast differentiation and mineralization characterized by increase in Runx2, ALP, beclin-1, and LC3-II/LC3-I ratio levels and a decrease in apoptosis. The autophagy-promoting effects of paeoniflorin were reversed by SC79. C57BL/6 mice were given DEX (1 mg/kg) once daily and paeoniflorin (15 mg/kg) 48 hours for a total of 8 weeks followed by the investigation of histological changes, the trabecular bone microarchitecture, and the levels of bone turnover markers. The results showed that paeoniflorin increased alkaline phosphatase (ALP) activity and upregulated the expression of osteocalcin and beclin-1 but reduced the levels of Bax and C-terminal telopeptide of type I collagen (CTX-1). Thus, paeoniflorin may alleviate DEX-induced osteoporosis by promoting osteogenic differentiation and autophagy via inhibition of the AKT/mTOR signaling pathway.
Collapse
|
17
|
Cao J, Wang S, Wei C, Lin H, Zhang C, Gao Y, Xu Z, Cheng Z, Sun WC, Wang HB. Agrimophol suppresses RANKL-mediated osteoclastogenesis through Blimp1-Bcl6 axis and prevents inflammatory bone loss in mice. Int Immunopharmacol 2021; 90:107137. [PMID: 33199235 DOI: 10.1016/j.intimp.2020.107137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 10/17/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Excessive activity of osteoclasts causes many bone-related diseases, such as rheumatoid arthritis and osteoporosis. Agrimophol (AGR), a phenolic compound, originated from Agrimonia pilosa Ledeb. In prior studies, AGR is reported to possess schistosomicidal and mycobactericidal activities. However, no reports covered its anti-osteoclastogenesis characteristic. In this study, we found that AGR inhibited RANKL-induced osteoclastogenesis, bone-resorption, F-actin ring formation, and the mRNA expression of osteoclast-associated genes such as CTSK, TRAP, MMP-9, and ATP6v0d2 in vitro. In addition, AGR suppressed RANKL-induced expression of c-Fos and NFATc1. However, AGR treatment did not affect NF-κB activation and MAPKs phosphorylation in RANKL-stimulated BMMs, which implicated that AGR might not influence the initial expression of NFATc1 mediated by NF-κB and MAPKs signaling. Our results further indicated that AGR did not alter phosphorylation levels of GSK3β and the expression of calcineurin, which implicated that AGR treatment might not interfere with phosphorylation and de-phosphorylation of NFATc1 mediated by GSK3β and calcineurin, respectively. B-lymphocyte-induced maturation protein-1 (Blimp1), which was regarded as a transcriptional repressor of negative regulators of osteoclastogenesis, was markedly attenuated in the presence of AGR, leading to the enhanced expression of B-cell lymphoma 6 (Bcl-6). Meanwhile, Blimp1 knockdown in BMMs by siRNA strongly enhanced the expression of Bcl6 and reduced NFATc1 induction by RANKL. These findings suggested that AGR inhibited RANKL-induced osteoclast differentiation through Blimp1-Bcl-6 signaling mediated modulation of NFATc1 and its target genes. Consistent with these in vitro results, AGR exhibited a protective influence in an in vivo mouse model of LPS-induced bone loss by suppressing excessive osteoclast activity and attenuating LPS-induced bone destruction. Hence, these results identified that AGR could be considered as a potential therapeutic agent against bone lysis disease.
Collapse
Affiliation(s)
- Jinjin Cao
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoming Wang
- Department of Endocrinology, Changchun People's Hospital, Changchun, China
| | - Congmin Wei
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hongru Lin
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chen Zhang
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yehui Gao
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zixian Xu
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhou Cheng
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Wan-Chun Sun
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun 130062, China.
| | - Hong-Bing Wang
- Putuo District People's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
18
|
Gürkan ÇG, Keleș GÇ, Kurt S, Çiftçi A, Ayas B, Güler Ş, Çetinkaya BÖ. Histopathological and biochemical evaluation of paeoniflorin administration in an experimental periodontitis model. J Oral Sci 2019; 61:554-557. [PMID: 31588098 DOI: 10.2334/josnusd.18-0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The purpose of this study was to evaluate the effects of administered Paeoniflorin (Pae) on periodontal tissues within an experimental periodontitis model. Forty male Wistar rats were used in this study and experimental periodontitis was created in all rats except in the control group (n = 10, first group). In the periodontitis group, experimental periodontitis was created but no other application was performed (n = 10, second group). In the other groups created experimental periodontitis, systemic Pae (n = 10, third group) or saline (n = 10, fourth group) was applied. A biochemical analysis of the gingival vascular endothelial growth factor (VEGF) levels and a histomorphometric analysis (measurements of the area of alveolar bone, alveolar bone resorption, and attachment loss) were performed. In the Pae group, the area of the alveolar bone was increased, while alveolar bone resorption and attachment loss decreased. Gingival VEGF levels increased in all groups that created experimental periodontitis and the greatest increase seen in the Pae group. Histomorphometric and biochemical analyses in this study suggest that Pae has a curative effect on periodontal tissues. However, additional studies are needed to confirm these results.
Collapse
Affiliation(s)
| | - Gonca Çayır Keleș
- Department of Periodontology, Faculty of Dentistry, İstanbul Okan University
| | - Sevda Kurt
- Department of Periodontology, Faculty of Dentistry, Recep Tayyip Erdoğan University
| | - Alper Çiftçi
- Department of Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayıs University
| | - Bülent Ayas
- Department of Histology and Embriology, Faculty of Medicine, Ondokuz Mayıs University
| | - Şevki Güler
- Department of Periodontology, Faculty of Dentistry, Abant İzzet Baysal University
| | | |
Collapse
|
19
|
Cheng CF, Lin YJ, Tsai FJ, Li TM, Lin TH, Liao CC, Huang SM, Liu X, Li MJ, Ban B, Liang WM, Lin JCF. Effects of Chinese Herbal Medicines on the Risk of Overall Mortality, Readmission, and Reoperation in Hip Fracture Patients. Front Pharmacol 2019; 10:629. [PMID: 31244656 PMCID: PMC6581068 DOI: 10.3389/fphar.2019.00629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Hip fracture is a major public health concern, with high incidence rates in the elderly worldwide. Hip fractures are associated with increased medical costs, patient dependency on families, and higher rates of morbidity and mortality. Chinese herbal medicine (CHM) is typically characterized as cost-effective and suitable for long-term use with few side effects. To better understand the effects of CHM on hip fracture patients, we utilized a population-based database to investigate the demographic characteristics, cumulative incidence of overall mortality, readmission, reoperation, and patterns of CHM prescription. We found that CHM usage was associated with a lower risk of overall mortality [P = 0.0009; adjusted hazard ratio (HR): 0.47, 95% confidence interval (CI): 0.30-0.73], readmission (P = 0.0345; adjusted HR: 0.67, 95% CI: 0.46-0.97), and reoperation (P = 0.0009; adjusted HR: 0.57, 95% CI: 0.40-0.79) after adjustment for age, type of hip fracture, surgical treatment type, and comorbidities. We also identified the herbal formulas, single herbs, and prescription patterns for the treatment of hip fracture by using association rule mining and network analysis. For hip fracture patients, the most common CHM coprescription pattern was Du-Zhong (DZ) → Xu-Duan (XD), followed by Du-Huo-Ji-Sheng-Tang (DHJST) → Shu-Jing-Huo-Xue-Tang (SJHXT), and Gu-Sui-Bu (GSB) → Xu-Duan (XD). Furthermore, XD was the core prescription, and DZ, GSB, SJHXT, and DHJST were important prescriptions located in cluster 1 of the prescription patterns. This study provides evidence for clinical CHM use as an adjunctive therapy that offers benefits to hip fracture patients.
Collapse
Affiliation(s)
- Chi-Fung Cheng
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Ying-Ju Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Fuu-Jen Tsai
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology and Bioinformatics, Asia University, Taichung, Taiwan
| | - Te-Mao Li
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ting-Hsu Lin
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Chiu-Chu Liao
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Shao-Mei Huang
- Genetic Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Xiang Liu
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ming-Ju Li
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
| | - Bo Ban
- Chinese Research Center for Behavior Medicine in Growth and Development, Jining, China
| | - Wen-Miin Liang
- Graduate Institute of Biostatistics, School of Public Health, China Medical University, Taichung, Taiwan
- *Correspondence: Wen-Miin Liang, ; Jeff Chien-Fu Lin,
| | - Jeff Chien-Fu Lin
- Department of Statistics, National Taipei University, Taipei, Taiwan
- Department of Orthopedic Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Wen-Miin Liang, ; Jeff Chien-Fu Lin,
| |
Collapse
|
20
|
Wang Y, Zhu Y, Lu S, Hu C, Zhong W, Chai Y. Beneficial effects of paeoniflorin on osteoporosis induced by high-carbohydrate, high-fat diet-associated hyperlipidemia in vivo. Biochem Biophys Res Commun 2018; 498:981-987. [PMID: 29550473 DOI: 10.1016/j.bbrc.2018.03.093] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/13/2018] [Indexed: 11/26/2022]
Abstract
Osteoporosis is linked to reduced bone mineral density (BMD) as a major risk factor for fragility fractures. Recent studies indicated an association between BMD and abnormally elevated lipid levels in blood as common indicators for hyperlipidemia. In this study, we assessed the protective effect of paeoniflorin, a phytochemical compound with multiple pharmacological activities, against hyperlipidemia-induced osteoporosis in rats fed a high-carbohydrate, high-fat diet (HCHF). The special diet-fed rats were subjected to an 8-week treatment with either paeoniflorin (20 mg/kg, daily) or vehicle. The control group received a normal diet during the entire study. At study conclusion, serum markers of lipid metabolism and bone turnover were measured. Bone strength was assessed by biomechanical testing, and femurs were scanned using micro-computed tomography to analyze trabecular and cortical bone structure. Interestingly, paeoniflorin controlled the serum lipid profile by significantly decreasing HCHF-induced high levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol. Paeoniflorin significantly improved trabecular and cortical parameters as well as femur length and width that were negatively affected by HCHF diet. Biomechanical strength testing showed that femurs of HCHF diet-fed rats endured significantly lower force but higher displacement and strain than those of control rats, whereas paeoniflorin reversed the negative effects. Moreover, paeoniflorin rescued osteoblast differentiation and cell spreading activities along with bone turnover markers. In conclusion, HCHF-induced hyperlipidemia caused adverse effects on the bone that were rescued by paeoniflorin treatment.
Collapse
Affiliation(s)
- Yanmao Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai 200233, PR China
| | - Yu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai 200233, PR China
| | - Shengdi Lu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai 200233, PR China
| | - Chengfang Hu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai 200233, PR China
| | - Wanrun Zhong
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai 200233, PR China.
| | - Yimin Chai
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Yishan Rd 600, Shanghai 200233, PR China.
| |
Collapse
|