1
|
Pavelescu LA, Enache RM, Roşu OA, Profir M, Creţoiu SM, Gaspar BS. Predictive Biomarkers and Resistance Mechanisms of Checkpoint Inhibitors in Malignant Solid Tumors. Int J Mol Sci 2024; 25:9659. [PMID: 39273605 PMCID: PMC11395316 DOI: 10.3390/ijms25179659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
Predictive biomarkers for immune checkpoint inhibitors (ICIs) in solid tumors such as melanoma, hepatocellular carcinoma (HCC), colorectal cancer (CRC), non-small cell lung cancer (NSCLC), endometrial carcinoma, renal cell carcinoma (RCC), or urothelial carcinoma (UC) include programmed cell death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), defective deoxyribonucleic acid (DNA) mismatch repair (dMMR), microsatellite instability (MSI), and the tumor microenvironment (TME). Over the past decade, several types of ICIs, including cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) inhibitors, anti-programmed cell death 1 (PD-1) antibodies, anti-programmed cell death ligand 1 (PD-L1) antibodies, and anti-lymphocyte activation gene-3 (LAG-3) antibodies have been studied and approved by the Food and Drug Administration (FDA), with ongoing research on others. Recent studies highlight the critical role of the gut microbiome in influencing a positive therapeutic response to ICIs, emphasizing the importance of modeling factors that can maintain a healthy microbiome. However, resistance mechanisms can emerge, such as increased expression of alternative immune checkpoints, T-cell immunoglobulin (Ig), mucin domain-containing protein 3 (TIM-3), LAG-3, impaired antigen presentation, and alterations in the TME. This review aims to synthesize the data regarding the interactions between microbiota and immunotherapy (IT). Understanding these mechanisms is essential for optimizing ICI therapy and developing effective combination strategies.
Collapse
Affiliation(s)
- Luciana Alexandra Pavelescu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Robert Mihai Enache
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Oana Alexandra Roşu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Monica Profir
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Oncology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Sanda Maria Creţoiu
- Department of Morphological Sciences, Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Surgery Clinic, Bucharest Emergency Clinical Hospital, 014461 Bucharest, Romania
| |
Collapse
|
2
|
Yamaguchi H, Hsu JM, Sun L, Wang SC, Hung MC. Advances and prospects of biomarkers for immune checkpoint inhibitors. Cell Rep Med 2024; 5:101621. [PMID: 38906149 PMCID: PMC11293349 DOI: 10.1016/j.xcrm.2024.101621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Immune checkpoint inhibitors (ICIs) activate anti-cancer immunity by blocking T cell checkpoint molecules such as programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Although ICIs induce some durable responses in various cancer patients, they also have disadvantages, including low response rates, the potential for severe side effects, and high treatment costs. Therefore, selection of patients who can benefit from ICI treatment is critical, and identification of biomarkers is essential to improve the efficiency of ICIs. In this review, we provide updated information on established predictive biomarkers (tumor programmed death-ligand 1 [PD-L1] expression, DNA mismatch repair deficiency, microsatellite instability high, and tumor mutational burden) and potential biomarkers currently under investigation such as tumor-infiltrated and peripheral lymphocytes, gut microbiome, and signaling pathways related to DNA damage and antigen presentation. In particular, this review aims to summarize the current knowledge of biomarkers, discuss issues, and further explore future biomarkers.
Collapse
Affiliation(s)
- Hirohito Yamaguchi
- Graduate Institute of Cell Biology, China Medical University, Taichung City 406040, Taiwan; Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan
| | - Jung-Mao Hsu
- Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan
| | - Linlin Sun
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shao-Chun Wang
- Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung City 40402, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences and Institute of Biochemistry and Molecular Biology, China Medical University, Taichung City 406040, Taiwan; Cancer Biology and Precision Therapeutics Center and Research Center for Cancer Biology, China Medical University, Taichung City 40402, Taiwan; Center for Molecular Medicine, China Medical University Hospital, Taichung City 40402, Taiwan.
| |
Collapse
|
3
|
Roshan-Zamir M, Khademolhosseini A, Rajalingam K, Ghaderi A, Rajalingam R. The genomic landscape of the immune system in lung cancer: present insights and continuing investigations. Front Genet 2024; 15:1414487. [PMID: 38983267 PMCID: PMC11231382 DOI: 10.3389/fgene.2024.1414487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Lung cancer is one of the most prevalent malignancies worldwide, contributing to over a million cancer-related deaths annually. Despite extensive research investigating the genetic factors associated with lung cancer susceptibility and prognosis, few studies have explored genetic predispositions regarding the immune system. This review discusses the most recent genomic findings related to the susceptibility to or protection against lung cancer, patient survival, and therapeutic responses. The results demonstrated the effect of immunogenetic variations in immune system-related genes associated with innate and adaptive immune responses, cytokine, and chemokine secretions, and signaling pathways. These genetic diversities may affect the crosstalk between tumor and immune cells within the tumor microenvironment, influencing cancer progression, invasion, and prognosis. Given the considerable variability in the individual immunegenomics profiles, future studies should prioritize large-scale analyses to identify potential genetic variations associated with lung cancer using highthroughput technologies across different populations. This approach will provide further information for predicting response to targeted therapy and promotes the development of new measures for individualized cancer treatment.
Collapse
Affiliation(s)
- Mina Roshan-Zamir
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aida Khademolhosseini
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kavi Rajalingam
- Cowell College, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Abbas Ghaderi
- School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raja Rajalingam
- Immunogenetics and Transplantation Laboratory, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
4
|
Zhang Q, Feng X, Hu W, Li C, Sun D, Peng Z, Wang S, Li H, Zhou M. Chronic obstructive pulmonary disease alters the genetic landscape and tumor immune microenvironment in lung cancer patients. Front Oncol 2023; 13:1169874. [PMID: 37388220 PMCID: PMC10301745 DOI: 10.3389/fonc.2023.1169874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) and lung cancer are leading causes of morbidity and mortality worldwide. Studies have reported molecular alterations in patients with lung cancer and in patients with COPD. However, few investigation has been conducted on the molecular characteristics of lung cancer patients with COPD. Materials and methods We performed a retrospective cohort study that included 435 patients with pathologically confirmed lung cancer at the Ruijin Hospital. For patients with documented spirometry, Global Initiative for Chronic Obstructive Lung Disease criteria were used to define COPD. For patients without documented spirometry, chest computed tomography and other clinical information were used to define COPD. Tumor tissue DNA was extracted from formalin-fixed paraffin-embedded samples. DNA mutation analysis, multiplex immunohistochemistry (mIHC), calculation of tumor mutational burden (TMB), mutant-allele tumor heterogeneity (MATH), and predication of neoantigens were performed. Results Although SNV mutations in lung cancer patients with COPD (G1 group) were generally higher than those in lung cancer patients without COPD (G2 group), the difference in the number of mutations was insignificant between the two groups. Of the 35 mutated genes, the number of them was higher in G1 than in G2, except that of EGFR. PI3K-Akt signaling pathway was enriched from significantly different genes. While TMB and MATH levels were not significantly different, the tumor neoantigen burdenwas markedly higher in G1 than that in G2. The level of CD68+ macrophages was significant higher in the stroma and total areas in the G1 group than in G2 group. The level of CD8+ lymphocytes was markedly higher in the stroma and showed a clear tendency forhigher expression in the G1 group than inthe G2 group. No significant differences were observed for the level of programmed death-ligand 1+ (PD-L1+), programmed death 1+ (PD-1+), and CD68PD-L1 in the stroma, tumor and total areas. Conclusion Our study revealed different genetic aberrations and pathways, higher neoantigen burden, and higher level of CD68+ macrophages and CD8+ T lymphocytes in lung cancer patients with COPD. Our investigation implies that the existence of COPD should be considered and immunotherapy is a potential choice when treating lung cancer patients with COPD.
Collapse
Affiliation(s)
- Qiurui Zhang
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Xijia Feng
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiting Hu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Chengqiang Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Debin Sun
- Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, China
| | - Zhao Peng
- Genecast Biotechnology Co., Ltd., Wuxi, Jiangsu, China
| | | | - Hecheng Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| |
Collapse
|
5
|
Nassar A, Zekri ARN, Kamel MM, Elberry MH, Lotfy MM, Seadawy MG, Hassan ZK, Soliman HK, Lymona AM, Youssef ASED. Frequency of Pathogenic Germline Mutations in Early and Late Onset Familial Breast Cancer Patients Using Multi-Gene Panel Sequencing: An Egyptian Study. Genes (Basel) 2022; 14:106. [PMID: 36672847 PMCID: PMC9858960 DOI: 10.3390/genes14010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Precision oncology has been increasingly used in clinical practice and rapidly evolving in the oncology field. Thus, this study was performed to assess the frequency of germline mutations in early and late onset familial breast cancer (BC) Egyptian patients using multi-gene panel sequencing to better understand the contribution of the inherited germline mutations in BC predisposition. Moreover, to determine the actionable deleterious mutations associated with familial BC that might be used as biomarker for early cancer detection. METHODS Whole blood samples were collected from 101 Egyptian patients selected for BC family history, in addition to 50 age-matched healthy controls. A QIAseq targeted DNA panel (human BC panel) was used to assess the frequency of germline mutations. RESULTS A total of 58 patients (57.4%) out of 101 were found to have 27 deleterious germline mutations in 11 cancer susceptibility genes. Of them, 32 (31.6%) patients carried more than one pathogenic mutation and each one carried at least one pathogenic mutation. The major genes harboring the pathogenic mutations were: ATM, BRCA2, BRCA1, VHL, MSH6, APC, CHEK2, MSH2, MEN1, PALB2, and MUTYH. Thirty-one patients (30.6%) had BRCA2 mutations and twenty (19.8%) had BRCA1 mutations. Our results showed that exon 10 and exon 11 harbored 3 and 5 mutations, respectively, in BRCA1 and BRCA2 genes. Our analysis also revealed that the VHL gene significantly co-occurred with each of the BRCA2 gene (p = 0.003, event ratio 11/21), the MSH2 gene (p = 0.01, 4/10), the CHEK2 gene (p = 0.02, 4/11), and the MSH6 gene (p = 0.04, 4/12). In addition, the APC gene significantly co-occurred with the MSH2 gene (p = 0.01, 3/7). Furthermore, there was a significant mutually exclusive event between the APC gene and the ATM gene (p = 0.04, 1/36). Interestingly, we identified population specific germline mutations in genes showing potentials for targeted therapy to meet the need for incorporating precision oncology into clinical practice. For example, the mutations identified in the ATM, APC, and MSH2 genes. CONCLUSIONS Multi-gene panel sequencing was used to detect the deleterious mutations associated with familial BC, which in turns mitigate the essential need for implementing next generation sequencing technologies in precision oncology to identify cancer predisposing genes. Moreover, identifying DNA repair gene mutations, with focus on non-BRCA genes, might serve as candidates for targeted therapy and will be increasingly used in precision oncology.
Collapse
Affiliation(s)
- Auhood Nassar
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Abdel-Rahman N. Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Mahmoud M. Kamel
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
- Baheya Centre for Early Detection and Treatment of Breast Cancer, Giza 3546211, Egypt
| | - Mostafa H. Elberry
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Mai M. Lotfy
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Mohamed G. Seadawy
- Biological Prevention Department, Chemical Warfare, 4.5 km Suez-Cairo Rd, Almaza, Cairo 11351, Egypt
| | - Zeinab K. Hassan
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Hany K. Soliman
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Ahmed M. Lymona
- Surgical Oncology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| | - Amira Salah El-Din Youssef
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11976, Egypt
| |
Collapse
|
6
|
Weir WH, Mucha PJ, Kim WY. A bipartite graph-based expected networks approach identifies DDR genes not associated with TMB yet predictive of immune checkpoint blockade response. Cell Rep Med 2022; 3:100602. [PMID: 35584624 PMCID: PMC9133403 DOI: 10.1016/j.xcrm.2022.100602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/07/2022] [Accepted: 03/20/2022] [Indexed: 11/26/2022]
Abstract
Immune checkpoint blockade (ICB) has had remarkable success for treatment of solid tumors. However, as only a subset of patients exhibit responses, there is a continued need for biomarker development. Numerous reports have shown a link between tumor mutational burden (TMB) and ICB response, while others have identified a link between ICB response and mutation in DNA damage repair (DDR) genes. However, it remains unclear to what extent mutations in DDR genes hold predictive value above and beyond their association with TMB. Herein, we present a networks-based test and bipartite graph-based expected TMB score (BiG-BETS) with higher specificity for discriminating DDR genes and pathways that are associated with elevated TMB. Moreover, we find that mutations in certain DDR genes that are not associated with elevated TMB (low BiG-BETS) are nevertheless predictive of ICB benefit in high TMB patients, demonstrating that their inactivation contributes to ICB response in a TMB-independent manner.
Collapse
Affiliation(s)
- William H Weir
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peter J Mucha
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Center for Interdisciplinary Applied Mathematics, Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Mathematics, Dartmouth College, Hanover, NH, USA.
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Williams G, Llewelyn A, Thatcher R, Hardisty KM, Loddo M. Utilisation of semiconductor sequencing for the detection of predictive biomarkers in glioblastoma. PLoS One 2022; 17:e0245817. [PMID: 35324914 PMCID: PMC8947072 DOI: 10.1371/journal.pone.0245817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 11/03/2021] [Indexed: 11/19/2022] Open
Abstract
The standard treatment for glioblastoma involves a combination of surgery, radiation and chemotherapy but have limited impact on survival. The exponential increase in targeted agents directed at pivotal oncogenic pathways now provide new therapeutic opportunities for this tumour type. However, lack of comprehensive precision oncology testing at diagnosis means such therapeutic opportunities are potentially overlooked. To investigate the role of semiconductor sequencing for detection of predictive biomarkers in routine glioblastoma samples we have undertaken analysis of test trending data generated by a clinically validated next generation sequencing platform designed to capture actionable genomic variants distributed across 505 genes. Analysis was performed across a cohort of 55 glioblastoma patients. Analysis of trending data has revealed a complex and rich actionable mutational landscape in which 166 actionable mutations were detected across 36 genes linked to 17 off label targeted therapy protocols and 111 clinical trials. The majority of patients harboured three or more actionable mutations affecting key cancer related regulatory networks including the PI3K/AKT/MTOR and RAS/RAF/MEK/MAPK signalling pathways, DNA-damage repair pathways and cell cycle checkpoints. Linkage with immunotherapy and PARP inhibitors was identified in 44% of glioblastoma patients as a consequence of alterations in DNA-damage repair genes. Taken together our data indicates that precision oncology testing utilising semiconductor sequencing can be used to identify a broad therapeutic armamentarium of targeted therapies and immunotherapies that can be potentially employed for the improved clinical management of glioblastoma patients.
Collapse
Affiliation(s)
- Gareth Williams
- Oncologica UK Ltd, Cambridge, United Kingdom
- * E-mail: (GW); (ML)
| | | | | | | | - Marco Loddo
- Oncologica UK Ltd, Cambridge, United Kingdom
- * E-mail: (GW); (ML)
| |
Collapse
|
8
|
Pan Y, Fu Y, Zeng Y, Liu X, Peng Y, Hu C, Deng C, Qiu Z, Zou J, Liu Y, Wu F. The key to immunotherapy: how to choose better therapeutic biomarkers for patients with non-small cell lung cancer. Biomark Res 2022; 10:9. [PMID: 35255999 PMCID: PMC8900392 DOI: 10.1186/s40364-022-00355-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has become the standard of care for non-small cell lung cancer (NSCLC), either in combination or monotherapy. However, there are still some patients who cannot benefit from it. Immunization strategies for NSCLC are based on the expression of PD-L1 on tumor cells and TMB, and although these indicators have a certain predictive effect, their predictive performance is not good. Therefore, clinicians must make adjustments to recognize markers. This is a review article that summarized immunotherapeutic biomarkers according to the "seed-soil-environment", generalizes primary resistance to immunotherapy, and summarizes the integration of markers.
Collapse
Affiliation(s)
- Yue Pan
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yucheng Fu
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, People's Republic of China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiaohan Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yurong Peng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Chao Deng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhenhua Qiu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jian Zou
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Yuxuan Liu
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
9
|
Zou XL, Li XB, Ke H, Zhang GY, Tang Q, Yuan J, Zhou CJ, Zhang JL, Zhang R, Chen WY. Prognostic Value of Neoantigen Load in Immune Checkpoint Inhibitor Therapy for Cancer. Front Immunol 2022; 12:689076. [PMID: 34992591 PMCID: PMC8724026 DOI: 10.3389/fimmu.2021.689076] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have made great progress in the field of tumors and have become a promising direction of tumor treatment. With advancements in genomics and bioinformatics technology, it is possible to individually analyze the neoantigens produced by somatic mutations of each patient. Neoantigen load (NAL), a promising biomarker for predicting the efficacy of ICIs, has been extensively studied. This article reviews the research progress on NAL as a biomarker for predicting the anti-tumor effects of ICI. First, we provide a definition of NAL, and summarize the detection methods, and their relationship with tumor mutation burden. In addition, we describe the common genomic sources of NAL. Finally, we review the predictive value of NAL as a tumor prediction marker based on various clinical studies. This review focuses on the predictive ability of NAL’s ICI efficacy against tumors. In melanoma, lung cancer, and gynecological tumors, NAL can be considered a predictor of treatment efficacy. In contrast, the use of NAL for urinary system and liver tumors requires further research. When NAL alone is insufficient to predict efficacy, its combination with other indicators can improve prediction efficiency. Evaluating the response of predictive biomarkers before the treatment initiation is essential for guiding the clinical treatment of cancer. The predictive power of NAL has great potential; however, it needs to be based on more accurate sequencing platforms and technologies.
Collapse
Affiliation(s)
- Xue-Lin Zou
- Department of Respiratory Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| | - Xiao-Bo Li
- Department of Respiratory Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| | - Hua Ke
- Department of Respiratory Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| | - Guang-Yan Zhang
- Department of Respiratory Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| | - Qing Tang
- Department of Respiratory Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| | - Jiao Yuan
- Department of Respiratory Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| | - Chen-Jiao Zhou
- Department of Respiratory Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| | - Ji-Liang Zhang
- Department of Oncology, Chengdu Seventh People's Hospital, Chengdu, China
| | - Rui Zhang
- Department of Thoracic Surgery, Chengdu Seventh People's Hospital, Chengdu, China
| | - Wei-Yong Chen
- Department of Respiratory Medicine, Chengdu Seventh People's Hospital, Chengdu, China
| |
Collapse
|
10
|
Ottini A, Sepe P, Beninato T, Claps M, Guadalupi V, Verzoni E, Giannatempo P, Baciarello G, de Braud F, Procopio G. Biomarker-driven immunotherapy for precision medicine in prostate cancer. Per Med 2021; 19:51-66. [PMID: 34873959 DOI: 10.2217/pme-2021-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although immunotherapy has recently revolutionized standard of care in different cancer types, prostate cancer has generally failed to show dramatic responses to immune checkpoint inhibitors. As in other tumors, the goal in prostate cancer is now to target treatments more precisely on patient's individual characteristics through precision medicine. Defects in mismatch repair, mutations in the exonuclease domain of the DNA polymerase epsilon (POLE), high tumor mutational burden and the presence of biallelic loss of CDK12 among others, are predictive biomarkers of response to immunotherapy. In the present review, we summarize the evolving landscape of immunotherapy in prostate cancer, including precision approaches and strategies to define classes of responsive patients and scale up resistance to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Arianna Ottini
- Department of Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Pierangela Sepe
- Department of Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Teresa Beninato
- Department of Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mélanie Claps
- Department of Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valentina Guadalupi
- Department of Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Verzoni
- Department of Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Giannatempo
- Department of Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giulia Baciarello
- Department of Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giuseppe Procopio
- Department of Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
11
|
Wong M, Kim JT, Cox B, Larson BK, Kim S, Waters KM, Vail E, Guindi M. Evaluation of tumor mutational burden in small early hepatocellular carcinoma and progressed hepatocellular carcinoma. Hepat Oncol 2021; 8:HEP39. [PMID: 34765106 PMCID: PMC8577511 DOI: 10.2217/hep-2020-0034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
While researchers know that tumor mutational burden (TMB) is low in hepatocellular carcinoma (HCC), prior studies have not investigated TMB in cirrhosis, small early HCC and progressed HCC. HCC (n = 18) and cirrhosis (n = 6) cases were identified. TMB was determined by a 1.7 megabase, 409-gene next-generation sequencing panel. TMB values were defined as the number of nonsynonymous variants per megabase of sequence. There was no significant difference between cirrhosis versus small early HCC or between cohorts when stratified by size, early versus progressed, differentiation or morphology. There was a significant difference between cirrhosis and small early HCC versus progressed HCC (p = 0.045), suggesting TMB may be related to HCC progression. TMB similarities in small early HCC and background cirrhosis suggest TMB is not a useful tool for diagnosing small early HCC. Additional study is needed to address TMB in histological and molecular subsets of HCC.
Collapse
Affiliation(s)
- Mary Wong
- Oregon Health & Science University, Portland, OR 97239, USA
| | - Jong T Kim
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Brian Cox
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Stacey Kim
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Eric Vail
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Maha Guindi
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
12
|
Lee SW, Choi HY, Lee GW, Kim T, Cho HJ, Oh IJ, Song SY, Yang DH, Cho JH. CD8 + TILs in NSCLC differentiate into TEMRA via a bifurcated trajectory: deciphering immunogenicity of tumor antigens. J Immunother Cancer 2021; 9:jitc-2021-002709. [PMID: 34593620 PMCID: PMC8487216 DOI: 10.1136/jitc-2021-002709] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2021] [Indexed: 01/21/2023] Open
Abstract
Background CD8+ tumor-infiltrating lymphocytes (TILs) comprise phenotypically and functionally heterogeneous subpopulations. Of these, effector memory CD45RA re-expressing CD8+ T cells (Temra) have been discovered and characterized as the most terminally differentiated subset. However, their exact ontogeny and physiological importance in association with tumor progression remain poorly understood. Methods We analyzed primary tumors and peripheral blood samples from 26 patients with non-small cell lung cancer and analyzed their phenotypes and functional characteristics using flow cytometry, RNA-sequencing, and bioinformatics. Results We found that tumor-infiltrating Temra (tilTemra) cells largely differ from peripheral blood Temra (pTemra), with distinct transcriptomes and functional properties. Notably, although majority of the pTemra was CD27−CD28− double-negative (DN), a large fraction of tilTemra population was CD27+CD28+ double-positive (DP), a characteristic of early-stage, less differentiated effector cells. Trajectory analysis revealed that CD8+ TILs undergo a divergent sequence of events for differentiation into either DP or DN tilTemra. Such a differentiation toward DP tilTemra relied on persistent expression of CD27 and CD28 and was associated with weak T cell receptor engagement. Thus, a higher proportion of DP Temra was correlated with lower immunogenicity of tumor antigens and consequently lower accumulation of CD8+ TILs. Conclusions These data suggest a complex interplay between CD8+ T cells and tumors and define DP Temra as a unique subset of tumor-specific CD8+ TILs that are produced in patients with relatively low immunogenic cancer types, predicting immunogenicity of tumor antigens and CD8+ TIL counts, a reliable biomarker for successful cancer immunotherapy.
Collapse
Affiliation(s)
- Sung-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongsangbukdo, Republic of Korea
| | - He Yun Choi
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Gil-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongsangbukdo, Republic of Korea
| | - Therasa Kim
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Hyun-Ju Cho
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - In-Jae Oh
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Sang Yun Song
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Deok Hwan Yang
- Department of Internal Medicine, Chonnam National University Medical School, Hwasun Hospital, Hwasunup, Jeollanamdo, Republic of Korea
| | - Jae-Ho Cho
- Department of Microbiology and Immunology, Chonnam National University Medical School, Hwasunup, Jeollanamdo, Republic of Korea .,Medical Research Center for Combinatorial Tumor Immunotherapy, Chonnam National University Medical School, Hwasunup, Jeollanamdo, Republic of Korea.,Immunotherapy Innovation Center, Chonnam National University Medical School, Hwasunup, Jeollanamdo, Republic of Korea.,BioMedical Sciences Graduate Program, Chonnam National University Medical School, Hwasunup, Jeollanamdo, Republic of Korea
| |
Collapse
|
13
|
Kinget L, Bechter O, Punie K, Debruyne PR, Brems H, Clement P, Roussel E, Van Herck Y, Albersen M, Baldewijns M, Schöffski P, Beuselinck B. Multitumor Case Series of Germline BRCA1, BRCA2 and CHEK2-Mutated Patients Responding Favorably on Immune Checkpoint Inhibitors. ACTA ACUST UNITED AC 2021; 28:3227-3239. [PMID: 34449592 PMCID: PMC8395488 DOI: 10.3390/curroncol28050280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022]
Abstract
In recent years, immune checkpoint inhibitors (ICPI) have become widely used for multiple solid malignancies. Reliable predictive biomarkers for selection of patients who would benefit most are lacking. Several tumor types with somatic or germline alterations in genes involved in the DNA damage response (DDR) pathway harbor a higher tumor mutational burden, possibly associated with an increased tumoral neoantigen load. These neoantigens are thought to lead to stronger immune activation and enhanced response to ICPIs. We present a series of seven patients with different malignancies with germline disease-associated variants in DDR genes (BRCA1, BRCA2, CHEK2) responding favorably to ICPIs.
Collapse
Affiliation(s)
- Lisa Kinget
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (O.B.); (K.P.); (P.C.); (Y.V.H.); (P.S.)
| | - Oliver Bechter
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (O.B.); (K.P.); (P.C.); (Y.V.H.); (P.S.)
| | - Kevin Punie
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (O.B.); (K.P.); (P.C.); (Y.V.H.); (P.S.)
| | - Philip R. Debruyne
- Department of General Medical Oncology, AZ Groeninge, 8500 Kortrijk, Belgium;
- Medical Technology Research Centre (MTRC), School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Hilde Brems
- Department of Human Genetics, University of Leuven, 3000 Leuven, Belgium;
| | - Paul Clement
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (O.B.); (K.P.); (P.C.); (Y.V.H.); (P.S.)
| | - Eduard Roussel
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (E.R.); (M.A.)
| | - Yannick Van Herck
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (O.B.); (K.P.); (P.C.); (Y.V.H.); (P.S.)
| | - Maarten Albersen
- Department of Urology, University Hospitals Leuven, 3000 Leuven, Belgium; (E.R.); (M.A.)
| | | | - Patrick Schöffski
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (O.B.); (K.P.); (P.C.); (Y.V.H.); (P.S.)
| | - Benoit Beuselinck
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium; (L.K.); (O.B.); (K.P.); (P.C.); (Y.V.H.); (P.S.)
- Correspondence: ; Tel.: +32-1634-6900
| |
Collapse
|
14
|
Tomasini PP, Guecheva TN, Leguisamo NM, Péricart S, Brunac AC, Hoffmann JS, Saffi J. Analyzing the Opportunities to Target DNA Double-Strand Breaks Repair and Replicative Stress Responses to Improve Therapeutic Index of Colorectal Cancer. Cancers (Basel) 2021; 13:3130. [PMID: 34201502 PMCID: PMC8268241 DOI: 10.3390/cancers13133130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/22/2022] Open
Abstract
Despite the ample improvements of CRC molecular landscape, the therapeutic options still rely on conventional chemotherapy-based regimens for early disease, and few targeted agents are recommended for clinical use in the metastatic setting. Moreover, the impact of cytotoxic, targeted agents, and immunotherapy combinations in the metastatic scenario is not fully satisfactory, especially the outcomes for patients who develop resistance to these treatments need to be improved. Here, we examine the opportunity to consider therapeutic agents targeting DNA repair and DNA replication stress response as strategies to exploit genetic or functional defects in the DNA damage response (DDR) pathways through synthetic lethal mechanisms, still not explored in CRC. These include the multiple actors involved in the repair of DNA double-strand breaks (DSBs) through homologous recombination (HR), classical non-homologous end joining (NHEJ), and microhomology-mediated end-joining (MMEJ), inhibitors of the base excision repair (BER) protein poly (ADP-ribose) polymerase (PARP), as well as inhibitors of the DNA damage kinases ataxia-telangiectasia and Rad3 related (ATR), CHK1, WEE1, and ataxia-telangiectasia mutated (ATM). We also review the biomarkers that guide the use of these agents, and current clinical trials with targeted DDR therapies.
Collapse
Affiliation(s)
- Paula Pellenz Tomasini
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| | - Temenouga Nikolova Guecheva
- Cardiology Institute of Rio Grande do Sul, University Foundation of Cardiology (IC-FUC), Porto Alegre 90620-000, Brazil;
| | - Natalia Motta Leguisamo
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
| | - Sarah Péricart
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Anne-Cécile Brunac
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jean Sébastien Hoffmann
- Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Laboratoire de Pathologie, Institut Universitaire du Cancer-Toulouse, Oncopole, 1 Avenue Irène-Joliot-Curie, 31059 Toulouse, France; (S.P.); (A.-C.B.); (J.S.H.)
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Avenida Sarmento Leite, 245, Porto Alegre 90050-170, Brazil; (P.P.T.); (N.M.L.)
- Post-Graduation Program in Cell and Molecular Biology, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, Brazil
| |
Collapse
|
15
|
Wang Y, Tong Z, Zhang W, Zhang W, Buzdin A, Mu X, Yan Q, Zhao X, Chang HH, Duhon M, Zhou X, Zhao G, Chen H, Li X. FDA-Approved and Emerging Next Generation Predictive Biomarkers for Immune Checkpoint Inhibitors in Cancer Patients. Front Oncol 2021; 11:683419. [PMID: 34164344 PMCID: PMC8216110 DOI: 10.3389/fonc.2021.683419] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
A patient's response to immune checkpoint inhibitors (ICIs) is a complex quantitative trait, and determined by multiple intrinsic and extrinsic factors. Three currently FDA-approved predictive biomarkers (progra1mmed cell death ligand-1 (PD-L1); microsatellite instability (MSI); tumor mutational burden (TMB)) are routinely used for patient selection for ICI response in clinical practice. Although clinical utility of these biomarkers has been demonstrated in ample clinical trials, many variables involved in using these biomarkers have poised serious challenges in daily practice. Furthermore, the predicted responders by these three biomarkers only have a small percentage of overlap, suggesting that each biomarker captures different contributing factors to ICI response. Optimized use of currently FDA-approved biomarkers and development of a new generation of predictive biomarkers are urgently needed. In this review, we will first discuss three widely used FDA-approved predictive biomarkers and their optimal use. Secondly, we will review four novel gene signature biomarkers: T-cell inflamed gene expression profile (GEP), T-cell dysfunction and exclusion gene signature (TIDE), melanocytic plasticity signature (MPS) and B-cell focused gene signature. The GEP and TIDE have shown better predictive performance than PD-L1, and PD-L1 or TMB, respectively. The MPS is superior to PD-L1, TMB, and TIDE. The B-cell focused gene signature represents a previously unexplored predictive biomarker to ICI response. Thirdly, we will highlight two combined predictive biomarkers: TMB+GEP and MPS+TIDE. These integrated biomarkers showed improved predictive outcomes compared to a single predictor. Finally, we will present a potential nucleic acid biomarker signature, allowing DNA and RNA biomarkers to be analyzed in one assay. This comprehensive signature could represent a future direction of developing robust predictive biomarkers, particularly for the cold tumors, for ICI response.
Collapse
Affiliation(s)
- Ye Wang
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Zhuang Tong
- Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Wenhua Zhang
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Weizhen Zhang
- Department of Biology, University of California – Santa Cruz, Santa Cruz, CA, United States
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russia
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Xiaofeng Mu
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Qing Yan
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Xiaowen Zhao
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| | - Hui-Hua Chang
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles (UCLA) Technology Center for Genomics & Bioinformatics, Los Angeles, CA, United States
| | - Mark Duhon
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles (UCLA) Technology Center for Genomics & Bioinformatics, Los Angeles, CA, United States
| | - Xin Zhou
- Department of Medicine, Qiqihaer First Hospital, Qiqihar, China
| | - Gexin Zhao
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles (UCLA) Technology Center for Genomics & Bioinformatics, Los Angeles, CA, United States
| | - Hong Chen
- Department of Medicine, Qiqihaer First Hospital, Qiqihar, China
| | - Xinmin Li
- Department of Pathology & Laboratory Medicine, University of California, Los Angeles (UCLA) Technology Center for Genomics & Bioinformatics, Los Angeles, CA, United States
| |
Collapse
|
16
|
Gong Z, Yang Y, Zhang J, Guo W. Evaluation of 30 DNA damage response and 6 mismatch repair gene mutations as biomarkers for immunotherapy outcomes across multiple solid tumor types. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0351. [PMID: 33960179 PMCID: PMC8610155 DOI: 10.20892/j.issn.2095-3941.2020.0351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/11/2020] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE DNA damage response (DDR) genes have low mutation rates, which may restrict their clinical applications in predicting the outcomes of immune checkpoint inhibitor (ICI) treatment. Thus, a systemic analysis of multiple DDR genes is needed to identify potential biomarkers of ICI efficacy. METHODS A total of 39,631 patients with mutation data were selected from the cBioPortal database. A total of 155 patients with mutation data were obtained from the Fudan University Shanghai Cancer Center (FUSCC). A total of 1,660 patients from the MSK-IMPACT cohort who underwent ICI treatment were selected for survival analysis. A total of 249 patients who underwent ICI treatment from the Dana-Farber Cancer Institute (DFCI) cohort were obtained from a published dataset. The Cancer Genome Atlas (TCGA) level 3 RNA-Seq version 2 RSEM data for gastric cancer were downloaded from cBioPortal. RESULTS Six MMR and 30 DDR genes were included in this study. Six MMR and 20 DDR gene mutations were found to predict the therapeutic efficacy of ICI, and most of them predicted the therapeutic efficacy of ICI, in a manner dependent on TMB, except for 4 combined DDR gene mutations, which were associated with the therapeutic efficacy of ICI independently of the TMB. Single MMR/DDR genes showed low mutation rates; however, the mutation rate of all the MMR/DDR genes associated with the therapeutic efficacy of ICI was relatively high, reaching 10%-30% in several cancer types. CONCLUSIONS Coanalysis of multiple MMR/DDR mutations aids in selecting patients who are potential candidates for immunotherapy.
Collapse
Affiliation(s)
- Zhe Gong
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yue Yang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jieyun Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
17
|
van Wilpe S, Tolmeijer SH, Koornstra RHT, de Vries IJM, Gerritsen WR, Ligtenberg M, Mehra N. Homologous Recombination Repair Deficiency and Implications for Tumor Immunogenicity. Cancers (Basel) 2021; 13:cancers13092249. [PMID: 34067105 PMCID: PMC8124836 DOI: 10.3390/cancers13092249] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 01/06/2023] Open
Abstract
Homologous recombination repair deficiency (HRD) can be observed in virtually all cancer types. Although HRD sensitizes tumors to DNA-damaging chemotherapy and poly(ADP-ribose) polymerase (PARP) inhibitors, all patients ultimately develop resistance to these therapies. Therefore, it is necessary to identify therapeutic regimens with a more durable efficacy. HRD tumors have been suggested to be more immunogenic and, therefore, more susceptible to treatment with checkpoint inhibitors. In this review, we describe how HRD might mechanistically affect antitumor immunity and summarize the available translational evidence for an association between HRD and antitumor immunity across multiple tumor types. In addition, we give an overview of all available clinical data on the efficacy of checkpoint inhibitors in HRD tumors and describe the evidence for using treatment strategies that combine checkpoint inhibitors with PARP inhibitors.
Collapse
Affiliation(s)
- Sandra van Wilpe
- Department of Medical Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.v.W.); (S.H.T.); (W.R.G.)
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Sofie H. Tolmeijer
- Department of Medical Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.v.W.); (S.H.T.); (W.R.G.)
| | | | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Winald R. Gerritsen
- Department of Medical Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.v.W.); (S.H.T.); (W.R.G.)
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Marjolijn Ligtenberg
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
- Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Niven Mehra
- Department of Medical Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (S.v.W.); (S.H.T.); (W.R.G.)
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
- Correspondence:
| |
Collapse
|
18
|
Wang P, Chen Y, Wang C. Beyond Tumor Mutation Burden: Tumor Neoantigen Burden as a Biomarker for Immunotherapy and Other Types of Therapy. Front Oncol 2021; 11:672677. [PMID: 33996601 PMCID: PMC8117238 DOI: 10.3389/fonc.2021.672677] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Immunotherapy has significantly improved the clinical outcome of patients with cancer. However, the immune response rate varies greatly, possibly due to lack of effective biomarkers that can be used to distinguish responders from non-responders. Recently, clinical studies have associated high tumor neoantigen burden (TNB) with improved outcomes in patients treated with immunotherapy. Therefore, TNB has emerged as a biomarker for immunotherapy and other types of therapy. In the present review, the potential application of TNB as a biomarker was evaluated. The methods of neoantigen prediction were summarized and the mechanisms involved in TNB were investigated. The impact of high TNB and increased number of infiltrating immune cells on the efficacy of immunotherapy was also addressed. Finally, the future challenges of TNB were discussed.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Biotherapy, Cancer Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yueyun Chen
- Department of Biotherapy, Cancer Center, West China Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Chun Wang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Combined vaccine-immune-checkpoint inhibition constitutes a promising strategy for treatment of dMMR tumors. Cancer Immunol Immunother 2021; 70:3405-3419. [PMID: 33870463 PMCID: PMC8571220 DOI: 10.1007/s00262-021-02933-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/29/2021] [Indexed: 12/29/2022]
Abstract
Background Mlh1-knock-out-driven mismatch-repair-deficient (dMMR) tumors can be targeted immunologically. By applying therapeutic tumor vaccination, tumor growth is delayed but escape mechanisms evolve, including upregulation of immune-checkpoint molecules (LAG-3, PD-L1). To counteract immune escape, we investigated the therapeutic activity of a combined tumor vaccine-immune-checkpoint inhibitor therapy using α-PD-L1. Design In this trial, Mlh1-knock-out mice with established gastrointestinal tumors received single or thrice injections of α-PD-L1 monoclonal antibody clone 6E11 (2.5 mg/kg bw, q2w, i.v.) either alone or in combination with the vaccine. Longitudinal flow cytometry and PET/CT imaging studies were followed by ex vivo functional immunological and gene expression assays. Results 6E11 monotherapy slightly increased median overall survival (mOS: 6.0 weeks vs. control 4.0 weeks). Increasing the number of injections (n = 3) improved therapy outcome (mOS: 9.2 weeks) and was significantly boosted by combining 6E11 with the vaccine (mOS: 19.4 weeks vs. 10.2 weeks vaccine monotherapy). Accompanying PET/CT imaging confirmed treatment-induced tumor growth control, with the strongest inhibition in the combination group. Three mice (30%) achieved a complete remission and showed long-term survival. Decreased levels of circulating splenic and intratumoral myeloid-derived suppressor cells (MDSC) and decreased numbers of immune-checkpoint-expressing splenic T cells (LAG-3, CTLA-4) accompanied therapeutic effects. Gene expression and protein analysis of residual tumors revealed downregulation of PI3K/Akt/Wnt-and TGF-signaling, leading to T cell infiltration, reduced numbers of macrophages, neutrophils and MDSC. Conclusions By successful uncoupling of the PD-1/PD-L1 axis, we provide further evidence for the safe and successful application of immunotherapies to combat dMMR-driven malignancies that warrants further investigation. Supplementary Information The online version contains supplementary material available at 10.1007/s00262-021-02933-4.
Collapse
|
20
|
Zheng Y, Bi G, Bian Y, Li M, Huang Y, Zhao M, Chen Z, Zhan C, Jiang W. The tumor environment immune phenotype of LUSC by genome-wide analysis. Int Immunopharmacol 2021; 96:107564. [PMID: 33813369 DOI: 10.1016/j.intimp.2021.107564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/17/2021] [Accepted: 03/02/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE To compare the landscape of tumor microenvironment (TME) of lung squamous carcinoma (LUSC) in different immune pattern and explore potential factors on immune therapy and prognosis. METHOD AND MATERIALS We have obtained the LUSC data from TCGA, GEO, and our department and classified them into 2 TME clusters by random forest model based on the infiltration pattern of 24 immune cell populations. We systemically compared the genomic significance, clinical characteristics, and immune infiltration pattern in 2 TME clusters. RESULTS Samples were divided into 2 TME clusters based on the relative abundance of 24 immune cells, and a random forest classifier model was constructed. TME cluster B was a higher immune infiltration group with lower mutation load, richer co-infiltrate immune cells, upregulated immune-related cytokines, immune checkpoint molecules, and higher active immune cells. TME cluster was also an independent predictor in prognosis (B vs. A, p < 0.05) in patients from TCGA, GEO, and our department. CONCLUSIONS Our study has described the microenvironment landscape of LUSC in different immune infiltration patterns and systemically analyzed genomic and clinical characteristics with distinct immunophenotypes, thus partly revealed the interaction between tumors and the immune microenvironment, which may guide a more precise and personalized immune therapeutic strategy for LUSC patients.
Collapse
Affiliation(s)
- Yuansheng Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai 200032, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai 200032, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai 200032, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai 200032, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai 200032, China
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai 200032, China.
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180, Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
21
|
Tsikala-Vafea M, Belani N, Vieira K, Khan H, Farmakiotis D. Use of antibiotics is associated with worse clinical outcomes in patients with cancer treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Int J Infect Dis 2021; 106:142-154. [PMID: 33771672 DOI: 10.1016/j.ijid.2021.03.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Observational and experimental studies suggest that the use of antibiotics close to administration of immune checkpoint inhibitors (ICI) can have a negative effect on tumour response and patient survival, due to microbiome dysbiosis and the resultant suppression of host immune response against neoplastic cells. METHODS A systematic search of PUBMED and EMBASE was undertaken for studies published between 1 January 2017 and 1 June 2020, evaluating the association between the use of antibiotics and clinical outcomes in patients with cancer treated with ICIs. A meta-analysis of the association between the use of antibiotics and clinical outcomes was also performed. RESULTS Forty-eight studies met the inclusion criteria (12,794 patients). Use of antibiotics was associated with shorter overall survival [hazard ratio (HR) 1.88, 95% confidence interval (CI) 1.59-2.22; adjusted HR 1.87, 95% CI 1.55-2.25] and progression-free survival (HR 1.52, 95% CI 1.36-1.70; adjusted HR 1.93, 95% CI 1.59-2.36), decreased response rate [odds ratio (OR) 0.54, 95% CI 0.34-0.86] and more disease progression (OR 2.00, 95% CI 1.27-3.14). The negative association between the use of antibiotics and progression-free survival was stronger in patients with renal cell carcinoma or melanoma compared with lung cancer. Only antibiotic administration >1 month prior to ICI initiation was associated with increased disease progression. Heterogeneity was substantial for all outcomes. CONCLUSIONS Recent use of antibiotics in patients with cancer treated with ICIs was associated with worse clinical outcomes. Such patients may benefit from dedicated antimicrobial stewardship programmes.
Collapse
Affiliation(s)
- Maria Tsikala-Vafea
- Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Neel Belani
- Division of Hematology-Oncology, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Kendra Vieira
- Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hina Khan
- Department of Internal Medicine, The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Dimitrios Farmakiotis
- Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
22
|
Genomic profiling reveals high frequency of DNA repair genetic aberrations in gallbladder cancer. Sci Rep 2020; 10:22087. [PMID: 33328484 PMCID: PMC7745036 DOI: 10.1038/s41598-020-77939-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
DNA repair gene aberrations (GAs) occur in several cancers, may be prognostic and are actionable. We investigated the frequency of DNA repair GAs in gallbladder cancer (GBC), association with tumor mutational burden (TMB), microsatellite instability (MSI), programmed cell death protein 1 (PD-1), and its ligand (PD-L1) expression. Comprehensive genomic profiling (CGP) of 760 GBC was performed. We investigated GAs in 19 DNA repair genes including direct DNA repair genes (ATM, ATR, BRCA1, BRCA2, FANCA, FANCD2, MLH1, MSH2, MSH6, PALB2, POLD1, POLE, PRKDC, and RAD50) and caretaker genes (BAP1, CDK12, MLL3, TP53, and BLM) and classified patients into 3 groups based on TMB level: low (< 5.5 mutations/Mb), intermediate (5.5-19.5 mutations/Mb), and high (≥ 19.5 mutations/Mb). We assessed MSI status and PD-1 & PD-L1 expression. 658 (86.6%) had at least 1 actionable GA. Direct DNA repair gene GAs were identified in 109 patients (14.2%), while 476 (62.6%) had GAs in caretaker genes. Both direct and caretaker DNA repair GAs were significantly associated with high TMB (P = 0.0005 and 0.0001, respectively). Tumor PD-L1 expression was positive in 119 (15.6%), with 17 (2.2%) being moderate or high. DNA repair GAs are relatively frequent in GBC and associated with coexisting actionable mutations and a high TMB.
Collapse
|
23
|
Arora A, Olshen AB, Seshan VE, Shen R. Pan-cancer identification of clinically relevant genomic subtypes using outcome-weighted integrative clustering. Genome Med 2020; 12:110. [PMID: 33272320 PMCID: PMC7716509 DOI: 10.1186/s13073-020-00804-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 11/10/2020] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Comprehensive molecular profiling has revealed somatic variations in cancer at genomic, epigenomic, transcriptomic, and proteomic levels. The accumulating data has shown clearly that molecular phenotypes of cancer are complex and influenced by a multitude of factors. Conventional unsupervised clustering applied to a large patient population is inevitably driven by the dominant variation from major factors such as cell-of-origin or histology. Translation of these data into clinical relevance requires more effective extraction of information directly associated with patient outcome. METHODS Drawing from ideas in supervised text classification, we developed survClust, an outcome-weighted clustering algorithm for integrative molecular stratification focusing on patient survival. survClust was performed on 18 cancer types across multiple data modalities including somatic mutation, DNA copy number, DNA methylation, and mRNA, miRNA, and protein expression from the Cancer Genome Atlas study to identify novel prognostic subtypes. RESULTS Our analysis identified the prognostic role of high tumor mutation burden with concurrently high CD8 T cell immune marker expression and the aggressive clinical behavior associated with CDKN2A deletion across cancer types. Visualization of somatic alterations, at a genome-wide scale (total mutation burden, mutational signature, fraction genome altered) and at the individual gene level, using circomap further revealed indolent versus aggressive subgroups in a pan-cancer setting. CONCLUSIONS Our analysis has revealed prognostic molecular subtypes not previously identified by unsupervised clustering. The algorithm and tools we developed have direct utility toward patient stratification based on tumor genomics to inform clinical decision-making. The survClust software tool is available at https://github.com/arorarshi/survClust .
Collapse
Affiliation(s)
- Arshi Arora
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Adam B Olshen
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
| | - Venkatraman E Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
24
|
Cao Y, Li W, Wang Z, Pang H. Potential and unsolved problems of anti-PD-1/PD-L1 therapy combined with radiotherapy. TUMORI JOURNAL 2020; 107:282-291. [PMID: 32734832 DOI: 10.1177/0300891620940382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tumor immunotherapy has become one of the main treatments for tumors. Inhibition of the pathways involving programmed cell death receptor 1 (PD-1) and its ligand (PD-L1) has gained favor in anticancer therapy, and can effectively prolong the survival of patients with cancer; however, numerous patients have PD-1/PD-L1 inhibitor primary resistance. The efficacy of anti-PD-1/PD-L1 therapy is related to the host tumor microenvironment. Radiation therapy can promote the body's antitumor immunity, change the tumor microenvironment, and synergize with anti-PD-1/PD-L1 treatment. Preclinical and clinical trials have shown that PD-1/PD-L1 inhibitor combined with radiotherapy has a significant effect. We review the synergistic antitumor mechanism and clinical trials of radiotherapy combined with anti-PD-1/PD-L1 therapy.
Collapse
Affiliation(s)
- Yiyi Cao
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenbo Li
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - ZhengJie Wang
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Pang
- Department of Nuclear Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
25
|
Gachechiladze M, Škarda J, Skanderová D, Überall I, Kolek V, Smičkova P, Vojta P, Vbrková J, Hajdúch M, Shani I, Kolář Z, Stahel R, Weder W, Rulle U, Soltermann A, Joerger M. Prognostic value of tumor-infiltrating lymphocytes (TILs) and their association with PD-L1 expression and DNA repair protein RAD51 in patients with resected non-small cell lung carcinoma. Lung Cancer 2020; 147:30-38. [PMID: 32653671 DOI: 10.1016/j.lungcan.2020.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES DNA repair proteins have emerged as potential predictors for immunotherapy response alongside PD-L1 expression, tumor-infiltrating lymphocytes (TILs) and tumor mutational burden. We analyzed expression of PD-L1, TILs count and expression of the homologous recombination (HR) protein RAD51, as potential prognostic factors in patients with resected non-small-cell lung carcinoma (NSCLC). MATERIALS AND METHODS Discovery set included 96 NSCLC patients from the University Hospital Olomouc (Czech Republic) and a replication set included 1109 NSCLC patients from University Hospital Zurich (Switzerland). Tissue microarrays (TMAs) were stained using the automated staining platform Ventana Benchmark Ultra with antibodies against RAD51,CD3, CD8, CD68 and PD-L1. RESULTS Loss of nuclear RAD51 protein was associated with high TILs (r=-0.25, p = 0.01) and PD-L1 status (10.6 vs. 2.4 %, p = 0.012) in patients receiving neoadjuvant chemo-/radiotherapy (CT/RT). In silico analysis from the TCGA data set showed a negative relationship between RAD51 mRNA expression and CD45 (r = ‒0.422, p < 0.0001), CD68 (r = ‒0.326, p < 0.001), CD3 (r = ‒0.266, p < 0.001) and CD8 (r = ‒0.102, p < 0.001). RAD51 low/PD-L1 high patients were clustered as separate entity in the replication set and in TCGA dataset. High TILs status was significantly associated with improved OS in the replication set (unadjusted HR = 0.57, 95 % CI 0.42-0.76, p < 0.001). Similar results have been seen for CD3, CD8 and CD68. CONCLUSIONS In conclusion, RAD51 nuclear loss is weakly associated with increased TILs and high PD-L1 at the time of surgery in curatively resected NSCLC and after prior exposure to neoadjuvant chemo- or radiotherapy. Both high TILs and RAD51 nuclear loss were confirmed as independent prognostic factors in curatively resected NSCLC.
Collapse
Affiliation(s)
- Mariam Gachechiladze
- Department of Clinical and Molecular Pathology, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15, Olomouc, Czech Republic.
| | - Josef Škarda
- Department of Clinical and Molecular Pathology, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Daniela Skanderová
- Department of Clinical and Molecular Pathology, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Ivo Überall
- Department of Clinical and Molecular Pathology, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Vítězslav Kolek
- Department of Tuberculosis and Respiratory Diseases, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Petra Smičkova
- Department of Tuberculosis and Respiratory Diseases, Faculty of Medicine and Dentistry, Palacky University and University Hospital, Olomouc, Czech Republic
| | - Petr Vojta
- Laboratory of Genomics, Institute of Molecular and Translational Medicine Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Jana Vbrková
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Ilay Shani
- Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Zdeněk Kolář
- Department of Clinical and Molecular Pathology, Institute of Translational and Molecular Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15, Olomouc, Czech Republic
| | - Rolf Stahel
- Clinic of Oncology, University Hospital, Zurich, Switzerland
| | - Walter Weder
- Department of Thoracic Surgery, University Hospital, Zurich, Switzerland
| | - Undine Rulle
- Department of Pathology and Molecular Pathology, University Hospital, Zurich, Switzerland
| | - Alex Soltermann
- Department of Pathology and Molecular Pathology, University Hospital, Zurich, Switzerland
| | - Markus Joerger
- Department of Medical Oncology and Hematology, Cantonal Hospital, CH-9007, St. Gallen, Switzerland
| |
Collapse
|
26
|
Cao J, Hu J, Liu S, Meric-Bernstam F, Abdel-Wahab R, Xu J, Li Q, Yan M, Feng Y, Lin J, Zhao S, Wang J, Kwong LN, Hu J, Carapeto F, Borad MJ, Wang K, Javle M, Zhao H. Intrahepatic Cholangiocarcinoma: Genomic Heterogeneity Between Eastern and Western Patients. JCO Precis Oncol 2020; 4:1800414. [PMID: 32923885 PMCID: PMC7446410 DOI: 10.1200/po.18.00414] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Intrahepatic cholangiocarcinoma (IHCCA), a global health problem, is increasing in incidence and has differing etiologies worldwide. Next-generation sequencing (NGS) is rapidly being incorporated into the clinical management of biliary cancers. IHCCA is enriched with actionable mutations, and there are several promising targeted therapies under development. NGS data from Asia, where IHCCA is most prevalent, are limited. METHODS Comprehensive genomic profiling of formalin-fixed paraffin-embedded tumor tissue from 164 Asian and 283 Western patients with IHCCA was performed using NGS. We measured the distribution of DNA repair genetic aberrations (GAs) in IHCCA, along with actionable mutations. Also, we evaluated the association between DNA repair GAs and tumor mutation burden (TMB). Based on the TMB status, patients were distinguished into 3 levels: low (< 6 mut/Mb), intermediate (6-10 mut/Mb), and high (TMB-H; ≥ 10 mut/Mb). RESULTS Seventy-two percent of Asian patients had ≥ 1 actionable GA, with a significantly higher frequency in KMT2C , BRCA1/2, and DDR2 compared with Western patients (P = .02, .003, and .003, respectively); 60.9% of Western patients had ≥ 1 actionable GA and higher frequency of CDKN2A/B and IDH1/2 GAs (P = .0004 and < .001, respectively). GAs in nuclear factor kappa B pathway regulators and DNA repair genes occurred more frequently in Asian patients (P = .006 and .001, respectively). There was a higher frequency of TMB-H in Asian compared with the Western cohort (12.2% v 5.9%; P = .07). CONCLUSION A higher burden of DNA repair mutations and frequency of patients with TMB-H in the Asian IHCCA cohort compared with the Western patients suggests a potential role for DNA repair and immune checkpoint inhibitors in the Asian population. Future clinical trials should account for this genetic heterogeneity.
Collapse
Affiliation(s)
- Jingyu Cao
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jing Hu
- Medical Oncology, First People's Hospital of Yunnan Province, Yunnan, People's Republic of China
| | - Siqin Liu
- OrigiMed, Shanghai, People's Republic of China
| | - Funda Meric-Bernstam
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Reham Abdel-Wahab
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Junjie Xu
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, People's Republic of China
| | - Qiang Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical, Sichuan, People's Republic of China
| | - Maolin Yan
- Department of Hepatobiliary Surgery, Fujian Provincial Hospital, Fujian, People's Republic of China
| | - Yujie Feng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jianzhen Lin
- Peking Union Medical College, Beijing, People's Republic of China
| | | | - Jian Wang
- OrigiMed, Shanghai, People's Republic of China
| | - Lawrence N Kwong
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jinwei Hu
- OrigiMed, Shanghai, People's Republic of China
| | - Fernando Carapeto
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Mitesh J Borad
- Division of Hematology and Oncology, Mayo Clinic, Scottsdale, AZ
| | - Kai Wang
- OrigiMed, Shanghai, People's Republic of China
| | - Milind Javle
- Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Haitao Zhao
- Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
27
|
Nikitin AG, Chudakova DA, Enikeev RF, Sakaeva D, Druzhkov M, Shigapova LH, Brovkina OI, Shagimardanova EI, Gusev OA, Gordiev MG. Lynch Syndrome Germline Mutations in Breast Cancer: Next Generation Sequencing Case-Control Study of 1,263 Participants. Front Oncol 2020; 10:666. [PMID: 32547938 PMCID: PMC7273971 DOI: 10.3389/fonc.2020.00666] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Genome instability—the increased tendency of acquiring mutations in the genome and ability of a cell to tolerate high mutation burden—is one of the drivers of cancer. Genome instability results from many causes including defects in DNA repair systems. Previously, it has been shown that germline pathogenic mutations in DNA Mismatch Repair (MMR) pathway cause cancer-predisposing Lynch Syndrome. We proposed that Lynch Syndrome-related germline mutations (LS-mutations) are associated with breast cancer (BC). In this study, we performed Targeted Next-Generation Sequencing of MMR pathway genes MLH1, MSH2, MSH6, EPCAM, and PMS2 in a cohort of 711 patients with hereditary BC, 60 patients with sporadic BC, and 492 healthy donors. Sixty-nine patients (9.7%) with hereditary BC harbored at least one germline mutation in the MMR pathway genes, of them 32 patients (4.5%) harbored mutations in MMR pathway genes which we define as pathogenic or likely pathogenic, and of them 26 patients (3.6%) did not have any pathogenic mutations in DDR pathway genes, compared to two mutations in MMR pathway genes (0.4%) detected in a group of 492 healthy donors [p = 0.00013, OR = 8.9 (CI 95% 2.2–78.4)]. Our study demonstrates that LS-mutations are present in patients with hereditary BC more frequently than in healthy donors, and that there is an association of hereditary BC and mutations c.1321G>A in MLH1, c.260C>G and c.2178G>C in MSH2, c.3217C>T in MSH6, c.1268C>G and c.86G>C in PMS2 genes. This finding provides a rationale for including pathogenic LS-mutations into genetic counseling tests for patients with hereditary BC.
Collapse
Affiliation(s)
- Aleksey G Nikitin
- Pulmonology Research Institute, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | - Daria A Chudakova
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | | | - Dina Sakaeva
- Department of Pharmacology, Bashkir State Medical University, Ufa, Russia
| | | | - Leyla H Shigapova
- Extreme Biology Lab, Scientific and Clinical Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Olga I Brovkina
- Federal Research and Clinical Centre, Federal Medical-Biological Agency of Russia, Moscow, Russia
| | | | - Oleg A Gusev
- Kazan (Volga Region) Federal University, Kazan, Russia.,KFU-RIKEN Translational Genomics Unit, RIKEN Cluster for Science, Technology and Innovation Hub, RIKEN, Yokohama, Japan
| | - Marat G Gordiev
- Tatarstan Cancer Centre, Kazan, Russia.,National Bioservice, Saint Petersburg, Russia
| |
Collapse
|
28
|
Hassan Venkatesh G, Bravo P, Shaaban Moustafa Elsayed W, Amirtharaj F, Wojtas B, Abou Khouzam R, Hussein Nawafleh H, Mallya S, Satyamoorthy K, Dessen P, Rosselli F, Thiery J, Chouaib S. Hypoxia increases mutational load of breast cancer cells through frameshift mutations. Oncoimmunology 2020; 9:1750750. [PMID: 32363122 PMCID: PMC7185205 DOI: 10.1080/2162402x.2020.1750750] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/23/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022] Open
Abstract
Tumor hypoxia-induced downregulation of DNA repair pathways and enhanced replication stress are potential sources of genomic instability. A plethora of genetic changes such as point mutations, large deletions and duplications, microsatellite and chromosomal instability have been discovered in cells under hypoxic stress. However, the influence of hypoxia on the mutational burden of the genome is not fully understood. Here, we attempted to elucidate the DNA damage response and repair patterns under different types of hypoxic stress. In addition, we examined the pattern of mutations exclusively induced under chronic and intermittent hypoxic conditions in two breast cancer cell lines using exome sequencing. Our data indicated that hypoxic stress resulted in transcriptional downregulation of DNA repair genes which can impact the DNA repair induced during anoxic as well as reoxygenated conditions. In addition, our findings demonstrate that hypoxic conditions increased the mutational burden, characterized by an increase in frameshift insertions and deletions. The somatic mutations were random and non-recurring, as huge variations within the technical duplicates were recognized. Hypoxia also resulted in an increase in the formation of potential neoantigens in both cell lines. More importantly, these data indicate that hypoxic stress mitigates DNA damage repair pathways and causes an increase in the mutational burden of tumor cells, thereby interfering with hypoxic cancer cell immunogenicity.
Collapse
Affiliation(s)
- Goutham Hassan Venkatesh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Pamela Bravo
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, Villejuif, France
| | - Walid Shaaban Moustafa Elsayed
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates.,Department of Oral Biology, College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Francis Amirtharaj
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, PAS, 02-093, Warsaw, Poland
| | - Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Husam Hussein Nawafleh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Sandeep Mallya
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Philippe Dessen
- Bioinformatic Core Facility, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Villejuif, France
| | - Filippo Rosselli
- CNRS UMR9019, Genome Integrity and Cancers, Gustave Roussy, Villejuif, France
| | - Jerome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, Villejuif, France
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates.,INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Faculty of Medicine, University Paris-Saclay, Villejuif, France
| |
Collapse
|
29
|
Wong-Brown MW, van der Westhuizen A, Bowden NA. Targeting DNA Repair in Ovarian Cancer Treatment Resistance. Clin Oncol (R Coll Radiol) 2020; 32:518-526. [PMID: 32253106 DOI: 10.1016/j.clon.2020.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
Most patients with advanced high-grade serous ovarian cancer (HGSOC) develop recurrent disease within 3 years and succumb to the disease within 5 years. Standard treatment for HGSOC is cytoreductive surgery followed by a combination of platinum (carboplatin or cisplatin) and taxol (paclitaxel) chemotherapies. Although initial recurrences are usually platinum-sensitive, patients eventually develop resistance to platinum-based chemotherapy. Accordingly, one of the major problems in the treatment of HGSOC and disease recurrence is the development of chemotherapy resistance. One of the causes of chemoresistance may be redundancies in the repair pathways involved in the response to DNA damage caused by chemotherapy. These pathways may be acting in parallel, where if the repair pathway that is responsible for triggering cell death after platinum chemotherapy therapy is deficient, an alternative repair pathway compensates and drives cancer cells to repair the damage, leading to chemotherapy resistance. In addition, if the repair pathways are epigenetically inactivated by DNA methylation, cell death may not be triggered, resulting in accumulation of mutations and DNA damage. There are novel and existing therapies that can drive DNA repair pathways towards sensitivity to platinum chemotherapy or targeted therapy, thus enabling treatment-resistant ovarian cancer to overcome chemotherapy resistance.
Collapse
Affiliation(s)
- M W Wong-Brown
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, NSW, Australia; Centre for Drug Repurposing and Medicines Research, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia.
| | - A van der Westhuizen
- Calvary Mater Newcastle, NSW, Australia; School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| | - N A Bowden
- Centre for Drug Repurposing and Medicines Research, University of Newcastle, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| |
Collapse
|
30
|
Miyazaki T, Ishikawa E, Matsuda M, Sugii N, Kohzuki H, Akutsu H, Sakamoto N, Takano S, Matsumura A. Infiltration of CD163-positive macrophages in glioma tissues after treatment with anti-PD-L1 antibody and role of PI3Kγ inhibitor as a combination therapy with anti-PD-L1 antibody in in vivo model using temozolomide-resistant murine glioma-initiating cells. Brain Tumor Pathol 2020; 37:41-49. [PMID: 31980975 DOI: 10.1007/s10014-020-00357-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
Although chemoimmunotherapy often lengthens glioblastoma (GBM) survival, early relapses remain problematic as immunosuppressive M2 macrophages (Mϕ) that function via inhibitory cytokine and PD-L1 production cause immunotherapy resistance. Here, we detail anti-PD-L1 antibody effects on the tumor microenvironment, including Mϕ infiltration, using a temozolomide (TMZ)-treated glioma model. In addition, we tested combinations of anti-PD-L1 antibody and the M2Mϕ inhibitor IPI-549 on tumor growth. We simulated late TMZ treatment or relapse stage, persistent GBM cells by generating TMZ-resistant TS (TMZRTS) cells. M2Mϕ-associated cytokine production and PD-L1 expression in these cells were investigated. TMZRTS cells were then subcutaneously implanted into C57BL/6 mice to determine the effectiveness of an anti-PD-L1 antibody and/or IPI-549 treatment on infiltration of CD163-positive Mϕ, usually considered as an M2Mϕ marker into tumor tissues. CD163 expression in samples from human GBM patients were also evaluated. CD163-positive Mϕ heavily infiltrated TMZRS tumor tissues after in vivo anti-PD-L1 antibody treatment. Tumor growth was strongly inhibited by anti-PD-L1 antibody and IPI-549 combination therapy. Anti-PD-L1 antibody treatment significantly reduced infiltration of CD163-positive Mϕ into tumors, while combined PD-L1 antibody and IPI-549 therapy remarkably inhibited tumor growth. These therapies may be useful for recurrent or chronic GBM after TMZ treatment, but clinical safety and effectiveness studies are needed.
Collapse
Affiliation(s)
- Tsubasa Miyazaki
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Cell-Medicine, Inc, Sengen 2-1-6, Tsukuba Science City, Ibaraki, 305-0047, Japan
| | - Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Masahide Matsuda
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Narushi Sugii
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hedihiro Kohzuki
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroyoshi Akutsu
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Noriaki Sakamoto
- Department of Pathology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shingo Takano
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
31
|
Klempner SJ, Fabrizio D, Bane S, Reinhart M, Peoples T, Ali SM, Sokol ES, Frampton G, Schrock AB, Anhorn R, Reddy P. Tumor Mutational Burden as a Predictive Biomarker for Response to Immune Checkpoint Inhibitors: A Review of Current Evidence. Oncologist 2020; 25:e147-e159. [PMID: 31578273 PMCID: PMC6964127 DOI: 10.1634/theoncologist.2019-0244] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
Treatment with immune checkpoint inhibitors (ICPIs) extends survival in a proportion of patients across multiple cancers. Tumor mutational burden (TMB)-the number of somatic mutations per DNA megabase (Mb)-has emerged as a proxy for neoantigen burden that is an independent biomarker associated with ICPI outcomes. Based on findings from recent studies, TMB can be reliably estimated using validated algorithms from next-generation sequencing assays that interrogate a sufficiently large subset of the exome as an alternative to whole-exome sequencing. Biological processes contributing to elevated TMB can result from exposure to cigarette smoke and ultraviolet radiation, from deleterious mutations in mismatch repair leading to microsatellite instability, or from mutations in the DNA repair machinery. A variety of clinical studies have shown that patients with higher TMB experience longer survival and greater response rates following treatment with ICPIs compared with those who have lower TMB levels; this includes a prospective randomized clinical trial that found a TMB threshold of ≥10 mutations per Mb to be predictive of longer progression-free survival in patients with non-small cell lung cancer. Multiple trials are underway to validate the predictive values of TMB across cancer types and in patients treated with other immunotherapies. Here we review the rationale, algorithm development methodology, and existing clinical data supporting the use of TMB as a predictive biomarker for treatment with ICPIs. We discuss emerging roles for TMB and its potential future value for stratifying patients according to their likelihood of ICPI treatment response. IMPLICATIONS FOR PRACTICE: Tumor mutational burden (TMB) is a newly established independent predictor of immune checkpoint inhibitor (ICPI) treatment outcome across multiple tumor types. Certain next-generation sequencing-based techniques allow TMB to be reliably estimated from a subset of the exome without the use of whole-exome sequencing, thus facilitating the adoption of TMB assessment in community oncology settings. Analyses of multiple clinical trials across several cancer types have demonstrated that TMB stratifies patients who are receiving ICPIs by response rate and survival. TMB, alongside other genomic biomarkers, may provide complementary information in selecting patients for ICPI-based therapies.
Collapse
Affiliation(s)
- Samuel J. Klempner
- The Angeles Clinic and Research InstituteLos AngelesCaliforniaUSA
- Samuel Oschin Comprehensive Cancer Institute, Cedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | | | | | | | | | - Siraj M. Ali
- Foundation Medicine, Inc.CambridgeMassachusettsUSA
| | | | | | | | | | | |
Collapse
|
32
|
Willis C, Fiander M, Tran D, Korytowsky B, Thomas JM, Calderon F, Zyczynski TM, Brixner D, Stenehjem DD. Tumor mutational burden in lung cancer: a systematic literature review. Oncotarget 2019; 10:6604-6622. [PMID: 31762941 PMCID: PMC6859921 DOI: 10.18632/oncotarget.27287] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/16/2019] [Indexed: 01/24/2023] Open
Abstract
Purpose: To assess the association of tumor mutational burden (TMB) with clinical outcomes, other biomarkers and patient/disease characteristics in patients receiving therapy for lung cancer. Results: In total, 4,303 publications were identified; 81 publications were included. The majority of publications assessing clinical efficacy of immunotherapy reported an association with high TMB, particularly when assessing progression-free survival and objective response rate. High TMB was consistently associated with TP53 alterations, and negatively associated with EGFR mutations. High TMB was also associated with smoking, squamous cell non-small cell lung carcinoma, and being male. Methods: A systematic literature review based upon an a priori protocol was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Cochrane methodologies. Searches were conducted in EMBASE, SCOPUS, Ovid MEDLINE®, and Emcare (from January 2012 until April 2018) and in two clinical trial registries. Conference abstracts were identified in EMBASE, and in targeted searches of recent major conference proceedings (from January 2016 until April 2018). Publications reporting data in patients receiving therapy for lung cancer that reported TMB and its association with clinical efficacy, or with other biomarkers or patient/disease characteristics, were included. Results are presented descriptively. Conclusion: This systematic literature review identified several clinical outcomes, biomarkers, and patient/disease characteristics associated with high TMB, and highlights the need for standardized definitions and testing practices. Further studies using standardized methodology are required to inform treatment decisions.
Collapse
Affiliation(s)
- Connor Willis
- Department of Pharmacotherapy, University of Utah, Salt Lake City, UT, USA
| | - Michelle Fiander
- Department of Pharmacotherapy, University of Utah, Salt Lake City, UT, USA
| | - Dao Tran
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, USA
| | | | | | | | | | - Diana Brixner
- Department of Pharmacotherapy, University of Utah, Salt Lake City, UT, USA
| | - David D. Stenehjem
- Department of Pharmacotherapy, University of Utah, Salt Lake City, UT, USA
- Department of Pharmacy Practice and Pharmaceutical Sciences, University of Minnesota, Duluth, MN, USA
| |
Collapse
|
33
|
Urbina-Jara LK, Rojas-Martinez A, Martinez-Ledesma E, Aguilar D, Villarreal-Garza C, Ortiz-Lopez R. Landscape of Germline Mutations in DNA Repair Genes for Breast Cancer in Latin America: Opportunities for PARP-Like Inhibitors and Immunotherapy. Genes (Basel) 2019; 10:E786. [PMID: 31658756 PMCID: PMC6827033 DOI: 10.3390/genes10100786] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
Germline mutations in BRCA1 and BRCA2 (BRCA1/2) genes are present in about 50% of cases of hereditary breast cancer. Proteins encoded by these genes are key players in DNA repair by homologous recombination (HR). Advances in next generation sequencing and gene panels for breast cancer testing have generated a large amount of data on gene variants implicated in hereditary breast cancer, particularly in genes such as PALB2, ATM, CHEK2, RAD51, MSH2, and BARD1. These genes are involved in DNA repair. Most of these variants have been reported for Caucasian, Jewish, and Asian population, with few reports for other communities, like those in Latin American (LA) countries. We reviewed 81 studies from 11 LA countries published between 2000 and 2019 but most of these studies focused on BRCA1/2 genes. In addition to these genes, breast cancer-related variants have been reported for PALB2, ATM, CHEK2, BARD1, MLH1, BRIP1, MSH2, NBN, MSH6, and PMS2 genes. Some of these variants are unique to LA populations. This analysis may contribute to enhance breast cancer variant characterization, and thus to find therapies and implement precision medicine for LA communities.
Collapse
Affiliation(s)
- Laura Keren Urbina-Jara
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico.
| | - Augusto Rojas-Martinez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico.
| | | | - Dione Aguilar
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico.
- Tecnologico de Monterrey, Centro de Cancer de Mama, Hospital Zambrano Hellion, San Pedro Garza Garcia 66278, Mexico.
| | - Cynthia Villarreal-Garza
- Tecnologico de Monterrey, Centro de Cancer de Mama, Hospital Zambrano Hellion, San Pedro Garza Garcia 66278, Mexico.
- Instituto Nacional de Cancerologia, Departamento de Investigacion, Av. San Fernando #22, Tlalpan, Ciudad de Mexico 14080, Mexico.
| | - Rocio Ortiz-Lopez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico.
| |
Collapse
|
34
|
Mistarz A, Komorowski MP, Graczyk MA, Gil M, Jiang A, Opyrchal M, Rokita H, Odunsi KO, Kozbor D. Recruitment of Intratumoral CD103 + Dendritic Cells by a CXCR4 Antagonist-Armed Virotherapy Enhances Antitumor Immunity. Mol Ther Oncolytics 2019; 14:233-245. [PMID: 31384667 PMCID: PMC6667789 DOI: 10.1016/j.omto.2019.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/21/2019] [Indexed: 01/16/2023] Open
Abstract
Intratumoral dendritic cells play an important role in stimulating cytotoxic T cells and driving antitumor immunity. Using a metastatic ovarian tumor model in syngeneic mice, we explored whether therapy with a CXCR4 antagonist-armed oncolytic vaccinia virus activates endogenous CD103+ dendritic cell responses associated with the induction of adaptive immunity against viral and tumor antigens. The overall goal of this study was to determine whether expansion of CD103+ dendritic cells by the virally delivered CXCR4 antagonist augments overall survival and in situ boosting with a tumor antigen peptide-based vaccine. We found that locoregional delivery of the CXCR4-A-armed virus reduced the tumor load and the immunosuppressive network in the tumor microenvironment, leading to infiltration of CD103+ dendritic cells that were capable of phagocytic clearance of cellular material from virally infected cancer cells. Further expansion of tumor-resident CD103+ DCs by injecting the FMS-related tyrosine kinase 3 ligand, the formative cytokine for CD103+ DCs, provided a platform for a booster immunization with the Wilms tumor antigen 1 peptide-based vaccine delivered intraperitoneally with polyriboinosinic:polyribocytidylic acid as an adjuvant. The vaccine-induced antitumor responses inhibited tumor growth and increased overall survival, indicating that expansion of intratumoral CD103+ dendritic cells by CXCR4-A-armed oncovirotherapy treatment can potentiate in situ cancer vaccine boosting.
Collapse
Affiliation(s)
- Anna Mistarz
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Marcin P. Komorowski
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Matthew A. Graczyk
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Margaret Gil
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Aimin Jiang
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mateusz Opyrchal
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hanna Rokita
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Kunle O. Odunsi
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Danuta Kozbor
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
35
|
Molecular and histological correlations in liver cancer. J Hepatol 2019; 71:616-630. [PMID: 31195064 DOI: 10.1016/j.jhep.2019.06.001] [Citation(s) in RCA: 321] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/22/2019] [Accepted: 06/01/2019] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer, both at the molecular and histological level. High-throughput sequencing and gene expression profiling have identified distinct transcriptomic subclasses and numerous recurrent genetic alterations; several HCC subtypes characterised by histological features have also been identified. HCC phenotype appears to be closely related to particular gene mutations, tumour subgroups and/or oncogenic pathways. Non-proliferative tumours display a well-differentiated phenotype. Among this molecular subgroup, CTNNB1-mutated HCCs constitute a homogeneous subtype, exhibiting cholestasis and microtrabecular and pseudoglandular architectural patterns. Another non-proliferative subtype has a gene expression pattern similar to that of mature hepatocytes (G4) and displays a steatohepatitic phenotype. In contrast, proliferative HCCs are most often poorly differentiated, and notably include tumours with progenitor features. A novel morphological variant of proliferative HCC - designated "macrotrabecular-massive" - was recently shown to be associated with angiogenesis activation and poor prognosis. Altogether, these findings may help to translate our knowledge of HCC biology into clinical practice, resulting in improved precision medicine for patients with this highly aggressive malignancy. This manuscript reviews the most recent data in this exciting field, discussing future directions and challenges.
Collapse
|
36
|
Park R, Winnicki M, Liu E, Chu WM. Immune checkpoints and cancer in the immunogenomics era. Brief Funct Genomics 2019; 18:133-139. [PMID: 30137232 DOI: 10.1093/bfgp/ely027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/22/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
Immune checkpoints have been the subject of a wave of new studies. Among these checkpoints are tytotoxic T-lymphocyte-associated antigen 4, checkpoints programmed death-1 and programmed death-ligand 1; their blockades have been approved by the Food and Drug Administration for therapy of melanoma and other types of cancers. Immunogenomics, which combines the latest nucleic acid sequencing strategy with immunotherapy, provides precise information about genomic alterations (e.g. mutations) and enables a paradigm shift of immune checkpoint therapy from tumor types to molecular signatures. Studying these critical checkpoints in relation to genomic mutations and neoantigens has produced groundbreaking results. This article examines these studies and delves into the relationships between immune checkpoint blockade and tumors harboring certain genomic mutations. Moreover, this article reviews recent studies on resistance to immune checkpoint therapy.
Collapse
Affiliation(s)
- Ryan Park
- University of Hawaii Cancer Center. He is an expert in the innate immunity and chronic inflammation-associated cancer fields
| | - Mary Winnicki
- University of Hawaii Cancer Center and studies the mechanisms of chronic inflammation-associated cancer
| | - Evan Liu
- University of Hawaii Cancer Center and studies the mechanisms of chronic inflammation-associated cancer
| | - Wen-Ming Chu
- University of Hawaii Cancer Center and studies the mechanisms of chronic inflammation-associated cancer
| |
Collapse
|
37
|
Liao Y, Ma Z, Zhang Y, Li D, Lv D, Chen Z, Li P, Ai-Dherasi A, Zheng F, Tian J, Zou K, Wang Y, Wang D, Cordova M, Zhou H, Li X, Liu D, Yu R, Zhang Q, Zhang X, Zhang J, Zhang X, Zhang X, Li Y, Shao Y, Song L, Liu R, Wang Y, Sufiyan S, Liu Q, Owen GI, Li Z, Chen J. Targeted deep sequencing from multiple sources demonstrates increased NOTCH1 alterations in lung cancer patient plasma. Cancer Med 2019; 8:5673-5686. [PMID: 31369215 PMCID: PMC6745866 DOI: 10.1002/cam4.2458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction Targeted therapies are based on specific gene alterations. Various specimen types have been used to determine gene alterations, however, no systemic comparisons have yet been made. Herein, we assessed alterations in selected cancer‐associated genes across varying sample sites in lung cancer patients. Materials and Methods Targeted deep sequencing for 48 tumor‐related genes was applied to 153 samples from 55 lung cancer patients obtained from six sources: Formalin‐fixed paraffin‐embedded (FFPE) tumor tissues, pleural effusion supernatant (PES) and pleural effusion cell sediments (PEC), white blood cells (WBCs), oral epithelial cells (OECs), and plasma. Results Mutations were detected in 96% (53/55) of the patients and in 83% (40/48) of the selected genes. Each sample type exhibited a characteristic mutational pattern. As anticipated, TP53 was the most affected sequence (54.5% patients), however this was followed by NOTCH1 (36%, across all sample types). EGFR was altered in patient samples at a frequency of 32.7% and KRAS 10.9%. This high EGFR/ low KRAS frequency is in accordance with other TCGA cohorts of Asian origin but differs from the Caucasian population where KRAS is the more dominant mutation. Additionally, 66% (31/47) of PEC samples had copy number variants (CNVs) in at least one gene. Unlike the concurrent loss and gain in most genes, herein NOTCH1 loss was identified in 21% patients, with no gain observed. Based on the relative prevalence of mutations and CNVs, we divided lung cancer patients into SNV‐dominated, CNV‐dominated, and codominated groups. Conclusions Our results confirm previous reports that EGFR mutations are more prevalent than KRAS in Chinese lung cancer patients. NOTCH1 gene alterations are more common than previously reported and reveals a role of NOTCH1 modifications in tumor metastasis. Furthermore, genetic material from malignant pleural effusion cell sediments may be a noninvasive manner to identify CNV and participate in treatment decisions.
Collapse
Affiliation(s)
- Yuwei Liao
- The Second Hospital of Dalian Medical University, Dalian, China.,Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhaokui Ma
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yu Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Dan Li
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Dekang Lv
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhisheng Chen
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Peiying Li
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Aisha Ai-Dherasi
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Jichao Tian
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Kun Zou
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Wang
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Dongxia Wang
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Miguel Cordova
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Huan Zhou
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiuhua Li
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Dan Liu
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Ruofei Yu
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Qingzheng Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaolong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jian Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xuehong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xia Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yulong Li
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yanyan Shao
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Luyao Song
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ruimei Liu
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yichen Wang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Sufiyan Sufiyan
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Quentin Liu
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Gareth I Owen
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zhiguang Li
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,The Second Affiliated Hospital, School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Jun Chen
- The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
38
|
Owen DH, Williams TM, Bertino EM, Mo X, Webb A, Schweitzer C, Liu T, Roychowdhury S, Timmers CD, Otterson GA. Homologous recombination and DNA repair mutations in patients treated with carboplatin and nab-paclitaxel for metastatic non-small cell lung cancer. Lung Cancer 2019; 134:167-173. [PMID: 31319977 DOI: 10.1016/j.lungcan.2019.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Chemotherapy remains a cornerstone treatment in non-small cell lung cancer either in combination with checkpoint inhibitors or as subsequent therapy. Identifying molecular predictors of response allows for optimal treatment selection. We performed genomic analysis on tumor samples of patients treated with carboplatin and nab-paclitaxel as part of a phase II trial to evaluate the prognostic and predictive value of mutations in DNA repair pathway in patients treated with this regimen. MATERIALS AND METHODS Next-generation sequencing libraries were produced using a capture-based targeted panel covering the coding exons of 278 genes on patients treated on clinical trial NCT00729612. Overall survival (OS) and progression-free survival (PFS) were assessed as part of the clinical outcomes and correlated with mutation analysis. RESULTS Of 63 patients enrolled, 25 patients had sufficient and acceptable DNA isolated from archival tumor samples for targeted sequencing. The most commonly altered pathways included DNA repair (DR) including Fanconi anemia and homologous recombination, JAK-STAT signaling, IGF-1, mTOR, and MAPK-ERK. Four patients with mutations in homologous recombination mutations had a shorter PFS (hazard ratio [HR] = 4.54, 95% CI 1.2, 17.1, p = 0.026) and OS (HR = 6.3, 95% CI 1.8, 21.3, p = 0.003). CONCLUSION In this analysis of patients with predominantly squamous cell non-small cell lung cancer treated with carboplatin and nab-paclitaxel in a phase II trial, patients with mutations in homologous recombination pathways had shorter overall and progression-free survival. Validation on additional datasets of patients treated with platinum-based chemotherapy and immunotherapy combinations is warranted.
Collapse
Affiliation(s)
- Dwight H Owen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States.
| | - Terence M Williams
- Department of Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Erin M Bertino
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Xiaokui Mo
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, United States
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, United States
| | - Catherine Schweitzer
- Clinical Trials Office, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Tom Liu
- The Ohio State University Comprehensive Cancer Center, United States
| | - Sameek Roychowdhury
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Cynthia D Timmers
- The Ohio State University Comprehensive Cancer Center, United States; Division of Hematology and Medical Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Gregory A Otterson
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
39
|
Campillo-Marcos I, Lazo PA. Olaparib and ionizing radiation trigger a cooperative DNA-damage repair response that is impaired by depletion of the VRK1 chromatin kinase. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:203. [PMID: 31101118 PMCID: PMC6525392 DOI: 10.1186/s13046-019-1204-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022]
Abstract
Background The VRK1 chromatin kinase regulates the organization of locally altered chromatin induced by DNA damage. The combination of ionizing radiation with inhibitors of DNA damage responses increases the accumulation of DNA damage in cancer cells, which facilitates their antitumor effect, a process regulated by VRK1. Methods Tumor cell lines with different genetic backgrounds were treated with olaparib to determine their effect on the activation of DNA repair pathways induced by ionizing radiation. The effect of combining olaparib with depletion of the chromatin kinase VRK1 was studied in the context of double-strand breaks repair pathway after treatment with ionizing radiation. The initiation and progression of DDR were studied by specific histone acetylation, as a marker of local chromatin relaxation, and formation of γH2AX and 53BP1 foci. Results In this work, we have studied the effect that VRK1 by itself or in collaboration with olaparib, an inhibitor of PARP, has on the DNA oxidative damage induced by irradiation in order to identify its potential as a new drug target. The combination of olaparib and ionizing radiation increases DNA damage permitting a significant reduction of their respective doses to achieve a similar amount of DNA damage detected by γH2AX and 53BP1 foci. Different treatment combinations of olaparib and ionizing radiation permitted to reach the maximum level of DNA damage at lower doses of both treatments. Furthermore, we have studied the effect that depletion of the VRK1 chromatin kinase, a regulator of DDR, has on this response. VRK1 knockdown impaired all steps in the DDR induced by these treatments, which were detected by a reduction of sequential markers such as H4K16 ac, γH2AX, NBS1 and 53BP1. Moreover, this effect of VRK1 is independent of TP53 or ATM, two genes frequently mutated in cancer. Conclusion The protective DNA damage response induced by ionizing radiation is impaired by the combination of olaparib with depletion of VRK1, and can be used to reduce doses of radiation and their associated toxicity. Proteins implicated in DNA damage responses are suitable targets for development of new therapeutic strategies and their combination can be an alternative form of synthetic lethality. Electronic supplementary material The online version of this article (10.1186/s13046-019-1204-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ignacio Campillo-Marcos
- Experimental Therapeutics and Traslational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Pedro A Lazo
- Experimental Therapeutics and Traslational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, 37007, Salamanca, Spain. .,Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
40
|
Zeneyedpour L, Dekker LJM, van Sten‐van`t Hoff JJM, Burgers PC, ten Hacken NHT, Luider TM. Neoantigens in Chronic Obstructive Pulmonary Disease and Lung Cancer: A Point of View. Proteomics Clin Appl 2019; 13:e1800093. [PMID: 30706659 PMCID: PMC6593722 DOI: 10.1002/prca.201800093] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/21/2019] [Indexed: 12/20/2022]
Abstract
The goal of this manuscript is to explore the role of clinical proteomics for detecting mutations in chronic obstructive pulmonary disease (COPD) and lung cancer by mass spectrometry-based technology. COPD and lung cancer caused by smoke inhalation are most likely linked by challenging the immune system via partly shared pathways. Genome-wide association studies have identified several single nucleotide polymorphisms which predispose an increased susceptibility to COPD and lung cancer. In lung cancer, this leads to coding mutations in the affected tissues, development of neoantigens, and different functionality and abundance of proteins in specific pathways. If a similar reasoning can also be applied in COPD will be discussed. The technology of mass spectrometry has developed into an advanced technology for proteome research detecting mutated peptides or proteins and finding relevant molecular mechanisms that will enable predicting the response to immunotherapy in COPD and lung cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Nick H. T. ten Hacken
- Department of PulmonologyUniversity Medical Center Groningen/University of Groningen9713 GroningenNetherlands
| | - Theo M. Luider
- Department of NeurologyErasmus MCRotterdam3015 GENetherlands
| |
Collapse
|
41
|
Chae YK, Anker JF, Oh MS, Bais P, Namburi S, Agte S, Giles FJ, Chuang JH. Mutations in DNA repair genes are associated with increased neoantigen burden and a distinct immunophenotype in lung squamous cell carcinoma. Sci Rep 2019; 9:3235. [PMID: 30824826 PMCID: PMC6397194 DOI: 10.1038/s41598-019-39594-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 12/19/2018] [Indexed: 12/26/2022] Open
Abstract
Deficiencies in DNA repair pathways, including mismatch repair (MMR), have been linked to higher tumor mutation burden and improved response to immune checkpoint inhibitors. However, the significance of MMR mutations in lung cancer has not been well characterized, and the relevance of other processes, including homologous recombination (HR) and polymerase epsilon (POLE) activity, remains unclear. Here, we analyzed a dataset of lung squamous cell carcinoma samples from The Cancer Genome Atlas. Variants in DNA repair genes were associated with increased tumor mutation and neoantigen burden, which in turn were linked with greater tumor infiltration by activated T cells. The subset of tumors with DNA repair gene variants but without T cell infiltration exhibited upregulation of TGF-β and Wnt pathway genes, and a combined score incorporating these genes and DNA repair status accurately predicted immune cell infiltration. Finally, high neoantigen burden was positively associated with genes related to cytolytic activity and immune checkpoints. These findings provide evidence that DNA repair pathway defects and immunomodulatory genes together lead to specific immunophenotypes in lung squamous cell carcinoma and could potentially serve as biomarkers for immunotherapy.
Collapse
Affiliation(s)
- Young Kwang Chae
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA. .,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA.
| | - Jonathan F Anker
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Michael S Oh
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Preeti Bais
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
| | - Sandeep Namburi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
| | - Sarita Agte
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Francis J Giles
- Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, 60611, USA
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA.,Department of Genetics and Genome Sciences, University of Connecticut Health, Farmington, CT, 06032, USA
| |
Collapse
|
42
|
van Vloten JP, Santry LA, McAusland TM, Karimi K, McFadden G, Petrik JJ, Wootton SK, Bridle BW. Quantifying Antigen-Specific T Cell Responses When Using Antigen-Agnostic Immunotherapies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:154-166. [PMID: 30788384 PMCID: PMC6369252 DOI: 10.1016/j.omtm.2019.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022]
Abstract
Immunotherapies are at the forefront of the fight against cancers, and researchers continue to develop and test novel immunotherapeutic modalities. Ideal cancer immunotherapies induce a patient’s immune system to kill their own cancer and develop long-lasting immunity. Research has demonstrated a critical requirement for CD8+ and CD4+ T cells in achieving durable responses. In the path to the clinic, researchers require robust tools to effectively evaluate the capacity for immunotherapies to generate adaptive anti-tumor responses. To study functional tumor-specific T cells, researchers have relied on targeting tumor-associated antigens (TAAs) or the inclusion of surrogate transgenes in pre-clinical models, which facilitate detection of T cells by using the targeted antigen(s) in peptide re-stimulation or tetramer-staining assays. Unfortunately, many pre-clinical models lack a defined TAA, and epitope mapping of TAAs is costly. Surrogate transgenes can alter tumor engraftment and influence the immunogenicity of tumors, making them less relevant to clinical tumors. Further, some researchers prefer to develop therapies that do not rely on pre-defined TAAs. Here, we describe a method to exploit major histocompatibility complex expression on murine cancer cell lines in a co-culture assay to detect T cells responding to bulk, undefined, tumor antigens. This is a tool to support the preclinical evaluation of novel, antigen-agnostic immunotherapies.
Collapse
Affiliation(s)
- Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lisa A Santry
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Thomas M McAusland
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Grant McFadden
- The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - James J Petrik
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
43
|
Prelaj A, Tay R, Ferrara R, Chaput N, Besse B, Califano R. Predictive biomarkers of response for immune checkpoint inhibitors in non-small-cell lung cancer. Eur J Cancer 2018; 106:144-159. [PMID: 30528799 DOI: 10.1016/j.ejca.2018.11.002] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 10/10/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022]
Abstract
Immune checkpoint blockade has been a pivotal development in the management of advanced non-small-cell lung cancer (NSCLC). Although durable antitumour activity and improved survival have been observed in a subset of patients, there is a need for additional predictive biomarkers to improve patient selection and avoid toxicity in potential non-responders. This review will address the use and limitations of tumour programmed death-ligand 1 expression as a predictive biomarker and review emerging biomarker strategies specifically related to NSCLC including genetic alterations (tumour mutation burden, loss and gain activated mutations), tumour-related factors (tumour microenvironment) and factors related to the host immune system. Novel approaches in biomarker detection such as peripheral blood monitoring will also be reviewed.
Collapse
Affiliation(s)
- Arsela Prelaj
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Department of Radiological, Pathological and Oncological Science, Sapienza University of Rome, Italy.
| | - Rebecca Tay
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK.
| | - Roberto Ferrara
- Laboratory of Immunomonitoring in Oncology, UMS 3655 CNRS/US 23 INSERM, Gustave Roussy, Villejuif, France.
| | - Nathalie Chaput
- Laboratory of Immunomonitoring in Oncology, UMS 3655 CNRS/US 23 INSERM, Gustave Roussy, Villejuif, France; Faculty of Pharmacy, University Paris-Saclay, Chatenay-Malabry, France.
| | - Benjamin Besse
- Cancer Medicine Department, Gustave Roussy, Villejuif, France; Paris-Sud University, Orsay, France.
| | - Raffaele Califano
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK; Department of Medical Oncology, Manchester University NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
44
|
Heeke S, Hofman P. Tumor mutational burden assessment as a predictive biomarker for immunotherapy in lung cancer patients: getting ready for prime-time or not? Transl Lung Cancer Res 2018; 7:631-638. [PMID: 30505707 DOI: 10.21037/tlcr.2018.08.04] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The emergence of immunotherapy as a first- or second-line of treatment has revolutionized the therapeutic management of lung cancer patients. However, not all lung cancer patients receive the same benefit from this treatment, leading to limitations in the number of patients who can receive anti-PD-1/PD-L1 checkpoint inhibitors because some secondary toxicity has been associated with immunotherapy, and because some patients would benefit more from chemotherapy. In this context, the selection of patients is currently based on PD-L1 immunohistochemistry (IHC), specifically on the percentage of PD-L1 positive tumor cells. To date, this is the only validated biomarker that is used as a companion diagnostic test for immunotherapy in non-small cell carcinoma lung (NSCLC) patients. However, this biomarker is not sufficiently robust and demonstrates many challenges. For example, some patients with more than 50% PD-L1 positive tumor cells are non-responders to anti-PD-1/PD-L1 treatment, while conversely, other patients with no PD-L1 positive tumor cells are good responders. The tumor mutation burden (TMB) or tumor mutation load (TML) emerged recently as a new predictive biomarker for immunotherapy response in NSCLC. However, this biomarker needs to be validated for routine clinical use and shares similar constraints with the PD-L1 IHC biomarker. PD-L1 IHC and TMB are currently the two best predictive biomarkers that could soon be used to systematically inform treatment decisions in advanced or metastatic NSCLC patients. The aim of this review is to consider the possible integration of TMB testing in daily practice through a pros- and cons-debate, and to establish sample quality-dependent algorithms and the main current constraints for laboratories considering TMB assessments.
Collapse
Affiliation(s)
- Simon Heeke
- Université Côte d'Azur, Nice, France.,Team 4 IRCAN, Inserm U1081/CNRS 7284, Antoine Lacassagne Cancer Center, Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Nice, France.,Team 4 IRCAN, Inserm U1081/CNRS 7284, Antoine Lacassagne Cancer Center, Nice, France.,Laboratory of Clinical and Experimental Pathology, Biobank BB-0033-00025, Pasteur Hospital, Nice, France.,FHU OncoAge Pasteur Hospital, Nice, France
| |
Collapse
|
45
|
The clinical role of the TME in solid cancer. Br J Cancer 2018; 120:45-53. [PMID: 30413828 PMCID: PMC6325164 DOI: 10.1038/s41416-018-0327-z] [Citation(s) in RCA: 407] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 12/14/2022] Open
Abstract
The highly complex and heterogenous ecosystem of a tumour not only contains malignant cells, but also interacting cells from the host such as endothelial cells, stromal fibroblasts, and a variety of immune cells that control tumour growth and invasion. It is well established that anti-tumour immunity is a critical hurdle that must be overcome for tumours to initiate, grow and spread and that anti-tumour immunity can be modulated using current immunotherapies to achieve meaningful anti-tumour clinical responses. Pioneering studies in melanoma, ovarian and colorectal cancer have demonstrated that certain features of the tumour immune microenvironment (TME)-in particular, the degree of tumour infiltration by cytotoxic T cells-can predict a patient's clinical outcome. More recently, studies in renal cell cancer have highlighted the importance of assessing the phenotype of the infiltrating T cells to predict early relapse. Furthermore, intricate interactions with non-immune cellular players such as endothelial cells and fibroblasts modulate the clinical impact of immune cells in the TME. Here, we review the critical components of the TME in solid tumours and how they shape the immune cell contexture, and we summarise numerous studies evaluating its clinical significance from a prognostic and theranostic perspective.
Collapse
|
46
|
Terry S, Faouzi Zaarour R, Hassan Venkatesh G, Francis A, El-Sayed W, Buart S, Bravo P, Thiery J, Chouaib S. Role of Hypoxic Stress in Regulating Tumor Immunogenicity, Resistance and Plasticity. Int J Mol Sci 2018; 19:ijms19103044. [PMID: 30301213 PMCID: PMC6213127 DOI: 10.3390/ijms19103044] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 12/15/2022] Open
Abstract
Hypoxia, or gradients of hypoxia, occurs in most growing solid tumors and may result in pleotropic effects contributing significantly to tumor aggressiveness and therapy resistance. Indeed, the generated hypoxic stress has a strong impact on tumor cell biology. For example, it may contribute to increasing tumor heterogeneity, help cells gain new functional properties and/or select certain cell subpopulations, facilitating the emergence of therapeutic resistant cancer clones, including cancer stem cells coincident with tumor relapse and progression. It controls tumor immunogenicity, immune plasticity, and promotes the differentiation and expansion of immune-suppressive stromal cells. In this context, manipulation of the hypoxic microenvironment may be considered for preventing or reverting the malignant transformation. Here, we review the current knowledge on how hypoxic stress in tumor microenvironments impacts on tumor heterogeneity, plasticity and resistance, with a special interest in the impact on immune resistance and tumor immunogenicity.
Collapse
Affiliation(s)
- Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Rania Faouzi Zaarour
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Amirtharaj Francis
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Walid El-Sayed
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Pamela Bravo
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Jérome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| |
Collapse
|
47
|
Califano R, Lal R, Lewanski C, Nicolson MC, Ottensmeier CH, Popat S, Hodgson M, Postmus PE. Patient selection for anti-PD-1/PD-L1 therapy in advanced non-small-cell lung cancer: implications for clinical practice. Future Oncol 2018; 14:2415-2431. [PMID: 29978725 DOI: 10.2217/fon-2018-0330] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Immune checkpoint inhibitors targeting PD-1 or PD-L1 represent a standard treatment option for patients with advanced non-small-cell lung cancer. However, a substantial proportion of patients will not benefit from these treatments, and robust biomarkers are required to help clinicians select patients who are most likely to benefit. Here, we discuss the available evidence on the utility of clinical characteristics in the selection of patients with advanced non-small-cell lung cancer as potential candidates for single-agent anti-PD-1/PD-L1 therapy, and provide practical guidance to clinicians on identifying those patients who are most likely to benefit. Recommendations on the use of immune checkpoint inhibitor in clinically challenging populations are also provided.
Collapse
Affiliation(s)
- Raffaele Califano
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Department of Medical Oncology, Manchester University NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Rohit Lal
- Lung Cancer Unit, Guy's & St Thomas' Hospital, London, UK
| | | | | | - Christian H Ottensmeier
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton & University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Sanjay Popat
- Royal Marsden Hospital & the National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Pieter E Postmus
- Clatterbridge Cancer Centre, Liverpool Heart & Chest Hospital, University of Liverpool, Liverpool, UK
| |
Collapse
|
48
|
Hydrogen peroxide-induced oxidative stress and its impact on innate immune responses in lung carcinoma A549 cells. Mol Cell Biochem 2018; 450:135-147. [DOI: 10.1007/s11010-018-3380-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 06/11/2018] [Indexed: 02/07/2023]
|
49
|
Morrison C, Pabla S, Conroy JM, Nesline MK, Glenn ST, Dressman D, Papanicolau-Sengos A, Burgher B, Andreas J, Giamo V, Qin M, Wang Y, Lenzo FL, Omilian A, Bshara W, Zibelman M, Ghatalia P, Dragnev K, Shirai K, Madden KG, Tafe LJ, Shah N, Kasuganti D, de la Cruz-Merino L, Araujo I, Saenger Y, Bogardus M, Villalona-Calero M, Diaz Z, Day R, Eisenberg M, Anderson SM, Puzanov I, Galluzzi L, Gardner M, Ernstoff MS. Predicting response to checkpoint inhibitors in melanoma beyond PD-L1 and mutational burden. J Immunother Cancer 2018; 6:32. [PMID: 29743104 PMCID: PMC5944039 DOI: 10.1186/s40425-018-0344-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have changed the clinical management of melanoma. However, not all patients respond, and current biomarkers including PD-L1 and mutational burden show incomplete predictive performance. The clinical validity and utility of complex biomarkers have not been studied in melanoma. METHODS Cutaneous metastatic melanoma patients at eight institutions were evaluated for PD-L1 expression, CD8+ T-cell infiltration pattern, mutational burden, and 394 immune transcript expression. PD-L1 IHC and mutational burden were assessed for association with overall survival (OS) in 94 patients treated prior to ICI approval by the FDA (historical-controls), and in 137 patients treated with ICIs. Unsupervised analysis revealed distinct immune-clusters with separate response rates. This comprehensive immune profiling data were then integrated to generate a continuous Response Score (RS) based upon response criteria (RECIST v.1.1). RS was developed using a single institution training cohort (n = 48) and subsequently tested in a separate eight institution validation cohort (n = 29) to mimic a real-world clinical scenario. RESULTS PD-L1 positivity ≥1% correlated with response and OS in ICI-treated patients, but demonstrated limited predictive performance. High mutational burden was associated with response in ICI-treated patients, but not with OS. Comprehensive immune profiling using RS demonstrated higher sensitivity (72.2%) compared to PD-L1 IHC (34.25%) and tumor mutational burden (32.5%), but with similar specificity. CONCLUSIONS In this study, the response score derived from comprehensive immune profiling in a limited melanoma cohort showed improved predictive performance as compared to PD-L1 IHC and tumor mutational burden.
Collapse
Affiliation(s)
- Carl Morrison
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
- OmniSeq Inc., Buffalo, NY, 14203, USA.
| | | | - Jeffrey M Conroy
- Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- OmniSeq Inc., Buffalo, NY, 14203, USA
| | | | - Sean T Glenn
- Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
- OmniSeq Inc., Buffalo, NY, 14203, USA
| | | | | | | | | | | | | | | | | | - Angela Omilian
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Matthew Zibelman
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Pooja Ghatalia
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Konstantin Dragnev
- Department of Hematology and Oncology, Dartmouth Hitchcock, Lebanon, NH, 03756, USA
| | - Keisuke Shirai
- Department of Hematology and Oncology, Dartmouth Hitchcock, Lebanon, NH, 03756, USA
| | - Katherine G Madden
- Department of Hematology and Oncology, Dartmouth Hitchcock, Lebanon, NH, 03756, USA
| | - Laura J Tafe
- Department of Hematology and Oncology, Dartmouth Hitchcock, Lebanon, NH, 03756, USA
- Department of Pathology, Dartmouth Hitchcock, Lebanon, NH, 03756, USA
| | - Neel Shah
- Department of Pathology, Community Hospital, Munster, IN, 46321, USA
| | - Deepa Kasuganti
- Department of Pathology, Community Hospital, Munster, IN, 46321, USA
| | - Luis de la Cruz-Merino
- Department of Clinical Oncology Development, Hospital Universitario Virgen Macarena, 41009, Sevilla, Spain
| | - Isabel Araujo
- Department of Clinical Oncology Development, Hospital Universitario Virgen Macarena, 41009, Sevilla, Spain
| | - Yvonne Saenger
- Department of Medicine, Columbia University, New York, NY, 10032, USA
| | - Margaret Bogardus
- Department of Medicine, Columbia University, New York, NY, 10032, USA
| | | | - Zuanel Diaz
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, 33176, USA
| | - Roger Day
- Department of Biomedical Informatics and Biostatistics, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Marcia Eisenberg
- Laboratory Corporation of America Holdings, Burlington, NC, 27215, USA
| | - Steven M Anderson
- Laboratory Corporation of America Holdings, Burlington, NC, 27215, USA
| | - Igor Puzanov
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, 10065, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, 10065, USA
- Université Paris Descartes/Paris V, 75006, Paris, France
| | | | - Marc S Ernstoff
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|