1
|
Steadman K, You S, Srinivas DV, Mouakkad L, Yan Y, Kim M, Venugopal SV, Tanaka H, Freeman MR. Autonomous action and cooperativity between the ONECUT2 transcription factor and its 3' untranslated region. Front Cell Dev Biol 2023; 11:1206259. [PMID: 37484909 PMCID: PMC10356556 DOI: 10.3389/fcell.2023.1206259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023] Open
Abstract
The transcription factor ONECUT2 (OC2) is a master transcriptional regulator operating in metastatic castration-resistant prostate cancer that suppresses androgen receptor activity and promotes neural differentiation and tumor cell survival. OC2 mRNA possesses an unusually long (14,575 nt), evolutionarily conserved 3' untranslated region (3' UTR) with many microRNA binding sites, including up to 26 miR-9 sites. This is notable because miR-9 targets many of the same genes regulated by the OC2 protein. Paradoxically, OC2 expression is high in tissues with high miR-9 expression. The length and complex secondary structure of OC2 mRNA suggests that it is a potent master competing endogenous RNA (ceRNA) capable of sequestering miRNAs. Here, we describe a novel role for OC2 3' UTR in lethal prostate cancer consistent with a function as a ceRNA. A plausible ceRNA network in OC2-driven tumors was constructed computationally and then confirmed in prostate cancer cell lines. Genes regulated by OC2 3' UTR exhibited high overlap (up to 45%) with genes driven by the overexpression of the OC2 protein in the absence of 3' UTR, indicating a cooperative functional relationship between the OC2 protein and its 3' UTR. These overlapping networks suggest an evolutionarily conserved mechanism to reinforce OC2 transcription by protection of OC2-regulated mRNAs from miRNA suppression. Both the protein and 3' UTR showed increased polycomb-repressive complex activity. The expression of OC2 3' UTR mRNA alone (without protein) dramatically increased the metastatic potential by in vitro assays. Additionally, OC2 3' UTR increased the expression of Aldo-Keto reductase and UDP-glucuronyl transferase family genes responsible for altering the androgen synthesis pathway. ONECUT2 represents the first-described dual-modality transcript that operates as both a key transcription factor driving castration-resistant prostate cancer and a master ceRNA that promotes and protects the same transcriptional network.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael R. Freeman
- Division of Cancer Biology and Therapeutics, Biomedical Sciences and Pathology and Laboratory Medicine, Department of Urology, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, United States
| |
Collapse
|
2
|
Cardoso HJ, Figueira MI, Carvalho TM, Serra CD, Vaz CV, Madureira PA, Socorro S. Androgens and low density lipoprotein-cholesterol interplay in modulating prostate cancer cell fate and metabolism. Pathol Res Pract 2022; 240:154181. [DOI: 10.1016/j.prp.2022.154181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/16/2022] [Indexed: 11/15/2022]
|
3
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
4
|
Wilk M, Waśko-Grabowska A, Skoneczna I, Szmit S. Angiotensin System Inhibitors May Improve Outcomes of Patients With Castration-Resistant Prostate Cancer During Abiraterone Acetate Treatment-A Cardio-Oncology Study. Front Oncol 2021; 11:664741. [PMID: 33869068 PMCID: PMC8047632 DOI: 10.3389/fonc.2021.664741] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/11/2021] [Indexed: 01/13/2023] Open
Abstract
Background Abiraterone acetate (ABI) therapy improves overall survival in metastatic prostate cancer (PC) patients; however, this effect may be diminished by concurrent comorbidities. We aimed to evaluate the influence of pre-existing chronic diseases and concomitant medications on the course of ABI treatment among post-chemotherapy patients with metastatic castration-resistant prostate cancer patients (mCRPC). Methods From the Polish National Health Fund database, we identified 93 post-chemotherapy, mCRPC patients, who were qualified for ABI treatment in our oncology center between 2014 and 2018. Survival curves and Cox proportional hazard models (univariate and multivariate) were used to determine the predictors for longer time to treatment failure (TTF) of ABI therapy. Results Median TTF was 9,8 months (IQR: 0,6–56,5) Factors associated with longer TTF were: well controlled hypertension (HR, 0.59; 95% CI. 0.38–0.90; p = 0.02), stable coronary artery disease (HR, 0.56; 95% CI, 0.33–0.95; p=0.03), the use of angiotensin system inhibitor (ASi) (HR, 0.61; 95% CI 0.4–0.94; p = 0,02). Patients who were receiving ASi had median TTF of 12.2 months versus 5.8 months in men who did not receive ASi before ABI initiation. At the start of ABI therapy, the aforementioned groups did not differ in terms of well-known prognostic factors: Gleason score, PSA level, or the number of patients with visceral metastases. In a multivariate analysis, the use of ASi remained statistically significant, even after adjustment for well-known oncological factors (HR, 0.57; 95% CI, 0.34–0.98; p = 0.04). Conclusions The use of ASi may enhance and prolong ABI therapy in post-docetaxel mCRPC patients and may potentially be considered a new, non-oncological, predictive factor for longer TTF. This association requires a prospective validation.
Collapse
Affiliation(s)
- Michał Wilk
- Department of Oncology, Centre of Postgraduate Medical Education, European Health Centre, Otwock, Poland
| | - Anna Waśko-Grabowska
- Department of Oncology, Centre of Postgraduate Medical Education, European Health Centre, Otwock, Poland
| | - Iwona Skoneczna
- Department of Oncology, Centre of Postgraduate Medical Education, European Health Centre, Otwock, Poland.,Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Sebastian Szmit
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre of Postgraduate Medical Education, European Health Centre, Otwock, Poland
| |
Collapse
|
5
|
Sviripa VM, Fiandalo MV, Begley KL, Wyrebek P, Kril LM, Balia AG, Parkin SR, Subramanian V, Chen X, Williams AH, Zhan CG, Liu C, Mohler JL, Watt DS. Pictet-Spengler condensations using 4-(2-aminoethyl)coumarins. NEW J CHEM 2020; 44:13415-13429. [PMID: 33795928 DOI: 10.1039/d0nj02664f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Androgen-deprivation therapy (ADT) is only a palliative measure, and prostate cancer invariably recurs in a lethal, castration-resistant form (CRPC). Prostate cancer resists ADT by metabolizing weak, adrenal androgens to growth-promoting 5α-dihydrotestosterone (DHT), the preferred ligand for the androgen receptor (AR). Developing small-molecule inhibitors for the final steps in androgen metabolic pathways that utilize 17-oxidoreductases required probes that possess fluorescent groups at C-3 and intact, naturally occurring functionality at C-17. Application of the Pictet-Spengler condensation to substituted 4-(2-aminoethyl)coumarins and 5α-androstane-3-ones furnished spirocyclic, fluorescent androgens at the desired C-3 position. Condensations required the presence of activating C-7 amino or N,N-dialkylamino groups in the 4-(2-aminoethyl)coumarin component of these condensation reactions. Successful Pictet-Spengler condensation, for example, of DHT with 9-(2-aminoethyl)-2,3,6,7-tetrahydro-1H,5H,11H-pyrano[2,3-f]pyrido[3,2,1-ij]quinolin-11-one led to a spirocyclic androgen, (3R,5S,10S,13S,17S)-17-hydroxy-10,13-dimethyl-1,2,2',3',4,5,6,7,8,8',9,9',10,11,12,12',13,13',14,15,16,17-docosahydro-7'H,11'H-spiro-[cyclopenta[a]phenanthrene-3,4'-pyrido[3,2,1-ij]pyrido[4',3':4,5]pyrano[2,3-f]quinolin]-5'(1'H)-one. Computational modeling supported the surrogacy of the C-3 fluorescent DHT analog as a tool to study 17-oxidoreductases for intracrine, androgen metabolism.
Collapse
Affiliation(s)
- Vitaliy M Sviripa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093 USA
| | - Michael V Fiandalo
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
| | - Kristin L Begley
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509 USA
| | - Przemyslaw Wyrebek
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509 USA
| | - Liliia M Kril
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509 USA
| | - Andrii G Balia
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509 USA
| | - Sean R Parkin
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, KY 40506 USA
| | | | - Xi Chen
- College of Chemistry and Material Science, South Central University for Nationalities, Wuhan 430074, People's Republic of China
| | - Alexander H Williams
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.,Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA
| | - Chunming Liu
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093 USA.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509 USA
| | - James L Mohler
- Department of Experimental Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA.,Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263 USA
| | - David S Watt
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536-0596 USA.,Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, KY 40536-0093 USA.,Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, KY 40536-0509 USA
| |
Collapse
|
6
|
Salviato E, Djordjilović V, Chiogna M, Romualdi C. SourceSet: A graphical model approach to identify primary genes in perturbed biological pathways. PLoS Comput Biol 2019; 15:e1007357. [PMID: 31652275 PMCID: PMC6834292 DOI: 10.1371/journal.pcbi.1007357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 11/06/2019] [Accepted: 08/23/2019] [Indexed: 11/24/2022] Open
Abstract
Topological gene-set analysis has emerged as a powerful means for omic data interpretation. Although numerous methods for identifying dysregulated genes have been proposed, few of them aim to distinguish genes that are the real source of perturbation from those that merely respond to the signal dysregulation. Here, we propose a new method, called SourceSet, able to distinguish between the primary and the secondary dysregulation within a Gaussian graphical model context. The proposed method compares gene expression profiles in the control and in the perturbed condition and detects the differences in both the mean and the covariance parameters with a series of likelihood ratio tests. The resulting evidence is used to infer the primary and the secondary set, i.e. the genes responsible for the primary dysregulation, and the genes affected by the perturbation through network propagation. The proposed method demonstrates high specificity and sensitivity in different simulated scenarios and on several real biological case studies. In order to fit into the more traditional pathway analysis framework, SourceSet R package also extends the analysis from a single to multiple pathways and provides several graphical outputs, including Cytoscape visualization to browse the results. The rapid increase in omic studies has created a need to understand the biological implications of their results. Gene-set analysis has emerged as a powerful means for gaining such understanding, evolving in the last decade from the classical enrichment analysis to the more powerful topological approaches. Although numerous methods for identifying dysregulated genes have been proposed, few of them aim to distinguish genes that are the real source of perturbation from those that merely respond to the signal dysregulation. This distinction is crucial for network medicine, where the prioritization of the effect of biological perturbations may help in the molecular understanding of drug treatments and diseases. Here we propose a new method, called SourceSet, able to distinguish between primary and secondary dysregulation within a graphical model context, demonstrating a high specificity and sensitivity in different simulated scenarios and on real biological case studies.
Collapse
Affiliation(s)
- Elisa Salviato
- IFOM - The FIRC Institute of Molecular Oncology, Milan, Italy
- * E-mail: (ES); (CR)
| | | | - Monica Chiogna
- Department of Statistical Sciences, University of Bologna, Bologna, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, Padova, Italy
- * E-mail: (ES); (CR)
| |
Collapse
|
7
|
Kaipainen A, Zhang A, da Costa RMG, Lucas J, Marck B, Matsumoto AM, Morrissey C, True LD, Mostaghel EA, Nelson PS. Testosterone accumulation in prostate cancer cells is enhanced by facilitated diffusion. Prostate 2019; 79:1530-1542. [PMID: 31376206 PMCID: PMC6783279 DOI: 10.1002/pros.23874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Testosterone is a driver of prostate cancer (PC) growth via ligand-mediated activation of the androgen receptor (AR). Tumors that have escaped systemic androgen deprivation, castration-resistant prostate cancers (CRPC), have measurable intratumoral levels of testosterone, suggesting that a resistance mechanism still depends on androgen-simulated growth. However, AR activation requires an optimal intracellular concentration of androgens, a situation challenged by low circulating testosterone concentrations. Notably, PC cells may optimize their androgen levels by regulating the expression of steroid metabolism enzymes that convert androgen precursors into androgens. Here we propose that testosterone entry into the cell could be another control point. METHODS To determine whether testosterone enters cells via a transporter, we performed in vitro 3 H-testosterone uptake assays in androgen-dependent LNCaP and androgen and AR-independent PC3 cells. To determine if the uptake mechanism depended on a concentration gradient, we modified UGT2B17 levels in LNCaP cells and measured androgen levels by liquid-liquid extraction-mass spectrometry. We also analyzed CRPC metastases for expression of AKR1C3 to determine whether this enzyme that converts adrenal androgens to testosterone was present in the tumor stroma (microenvironment) in addition to its expression in the tumor epithelium. RESULTS Testosterone uptake followed a concentration gradient but unlike in passive diffusion, was saturable and temperature-dependent, thus suggesting facilitated transport. Suppression of UGT2B17 to abrogate a testosterone gradient reduced testosterone transport while overexpression of the enzyme enhanced it. The facilitated transport suggests a paracrine route of testosterone uptake for maintaining optimal intracellular levels. We found that AKR1C3 was expressed in the tumor microenvironment of CRPC metastases in addition to epithelial cells and the pattern of relative abundance of the enzyme in epithelium vs stroma varied substantially between the metastatic sites. CONCLUSIONS Our findings suggest that in addition to testosterone transport and metabolism by tumor epithelium, testosterone could also be produced by components of the tumor microenvironment. Facilitated testosterone uptake by tumor cells supports a cell nonautonomous mechanism for testosterone signaling in CRPC.
Collapse
Affiliation(s)
- Arja Kaipainen
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ailin Zhang
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Rui M. Gil da Costa
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jared Lucas
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Brett Marck
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108
| | - Alvin M. Matsumoto
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Lawrence D. True
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elahe A. Mostaghel
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA 98108
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle WA 98104
| | - Peter S. Nelson
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Department of Medicine, University of Washington, Seattle WA 98104
| |
Collapse
|
8
|
Fiandalo MV, Gewirth DT, Mohler JL. Potential impact of combined inhibition of 3α-oxidoreductases and 5α-reductases on prostate cancer. Asian J Urol 2018; 6:50-56. [PMID: 30775248 PMCID: PMC6363635 DOI: 10.1016/j.ajur.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/02/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) growth and progression rely on the interaction between the androgen receptor (AR) and the testicular ligands, testosterone and dihydrotestosterone (DHT). Almost all men with advanced PCa receive androgen deprivation therapy (ADT). ADT lowers circulating testosterone levels, which impairs AR activation and leads to PCa regression. However, ADT is palliative and PCa recurs as castration-recurrent/resistant PCa (CRPC). One mechanism for PCa recurrence relies on intratumoral synthesis of DHT, which can be synthesized using the frontdoor or primary or secondary backdoor pathway. Androgen metabolism inhibitors, such as those targeting 5α-reductase, aldo-keto-reductase family member 3 (AKR1C3), or cytochrome P450 17A1 (CYP17A1) have either failed or produced only modest clinical outcomes. The goal of this review is to describe the therapeutic potential of combined inhibition of 5α-reductase and 3α-oxidoreductase enzymes that facilitate the terminal steps of the frontdoor and primary and secondary backdoor pathways for DHT synthesis. Inhibition of the terminal steps of the androgen metabolism pathways may be a way to overcome the shortcomings of existing androgen metabolism inhibitors and thereby delay PCa recurrence during ADT or enhance the response of CRPC to androgen axis manipulation.
Collapse
Affiliation(s)
- Michael V Fiandalo
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | | | - James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| |
Collapse
|
9
|
Cook SF, Fiandalo MV, Watt DS, Wu Y, Mohler JL, Bies RR. Mathematical modeling of intracrine androgen metabolism in prostate cancer: Methodological aspects. Prostate 2018; 78:1069-1076. [PMID: 29938815 DOI: 10.1002/pros.23665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/07/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Progression of castration-recurrent/resistant prostate cancer (CRPC) relies in part on dihydrotestosterone derived from intratumoral androgen metabolism. Mathematical modeling provides a valuable tool for studies of androgen metabolism in CRPC. This modeling approach integrates existing knowledge about complex biologic systems and provides a means of interrogating the effects of various interventions. We sought to model a single reaction in the androgen biosynthesis network, namely the oxidation of androsterone (AND) to androstanedione (5α-dione) by four 3α-oxidoreductase enzymes, as an initial effort to establish the feasibility of our modeling approach. METHODS Models were constructed for two cell culture systems, a non-prostate cancer cell line (CV-1) and a prostate cancer cell line (LAPC-4), using the SimBiology app (version 5.3) in MATLAB (version 8.6). The models included components for substrate (AND), product (5α-dione), each of the four enzymes, and each of the four enzyme-substrate complexes. Each enzymatic reaction consisted of a reversible enzyme-substrate binding step and an irreversible catalysis step. Rates of change for each component were described using ordinary differential equations. RESULTS Mathematical models were developed with model parameter values derived from literature sources or from existing experimental data, which included gene expression measurements and substrate and product concentrations determined using liquid chromatography-tandem mass spectrometry. The models for both cell lines adequately described substrate and product concentrations observed after 12 h treatment with AND. CONCLUSIONS This modeling approach represents an adaptable, extensible and mechanistic framework that reflects androgen metabolism. The models can be expanded systematically to describe the complex androgen metabolic pathways important for study of novel therapies for CRPC.
Collapse
Affiliation(s)
- Sarah F Cook
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
| | | | - David S Watt
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky
- Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, Kentucky
- Lucille Parker Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| | - Yue Wu
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York
| | - James L Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York
| | - Robert R Bies
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York
- Computational and Data-Enabled Science and Engineering Program, University at Buffalo, State University of New York, Buffalo, New York
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
10
|
Mohler JL. A brief history of intracrine androgen metabolism by castration-recurrent prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2018; 6:101-106. [PMID: 29666838 PMCID: PMC5902728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
This mini-review describes the evolution of the concept of intracrine androgen metabolism by prostate cancer during androgen deprivation therapy. Persistence of androgen receptor protein in the face of castrate circulating levels of testosterone could not be explained fully by hypersensitization or mutation of the androgen receptor. The hypothesis that castration-recurrent prostate cancer produced its own testosterone was proven using radioimmunoassay and mass spectrometry methods adopted for use in prostate tissue. Intracrine synthesis of testicular androgens led to FDA approval of abiraterone, an inhibitor of androgen metabolism. Further understanding of intracrine androgen metabolism may allow the development of more targeted agents that perform better and do not require co-administration of prednisone that may extend survival and diminish side effects from treatment of advanced prostate cancer.
Collapse
Affiliation(s)
- James L Mohler
- Department of Urology, Roswell Park Comprehensive Cancer CenterBuffalo, NY, USA
- University of North Carolina Lineberger Comprehensive Cancer CenterChapel Hill, NC, USA
| |
Collapse
|